unordered/test/cfoa/insert_tests.cpp
Braden Ganetsky e214ecdbd0
Use std::ref instead of copying the function parameter… (#290)
* GHA: revise numerous CI jobs. Fix sanitizer on new kernel

* Use std::ref instead of copying the function parameter in std::initializer_list overloads of insert_{or|and}_[c]visit

* Reimplement detail::is_invocable

* Update docs for std::ref(f) changes

---------

Co-authored-by: sdarwin <samuel.d.darwin@gmail.com>
2024-10-08 17:35:58 +02:00

1303 lines
42 KiB
C++

// Copyright (C) 2023 Christian Mazakas
// Copyright (C) 2023-2024 Joaquin M Lopez Munoz
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "helpers.hpp"
#include <boost/config.hpp>
#include <boost/unordered/concurrent_flat_map.hpp>
#include <boost/unordered/concurrent_flat_set.hpp>
#include <boost/unordered/concurrent_node_map.hpp>
#include <boost/unordered/concurrent_node_set.hpp>
#include <boost/core/ignore_unused.hpp>
#if defined(BOOST_MSVC)
#pragma warning(disable : 4127) // conditional expression is constant
#endif
struct raii_convertible
{
int x = 0, y = 0 ;
template <typename T>
raii_convertible(T const & t) : x{t.x_} {}
template <typename T, typename Q>
raii_convertible(std::pair<T, Q> const & p) : x{p.first.x_}, y{p.second.x_}
{}
operator raii() { return {x}; }
operator std::pair<raii const, raii>() { return {x, y}; }
};
namespace {
test::seed_t initialize_seed(78937);
struct lvalue_inserter_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
std::atomic<std::uint64_t> num_inserts{0};
thread_runner(values, [&x, &num_inserts](boost::span<T> s) {
for (auto const& r : s) {
bool b = x.insert(r);
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(
raii::copy_constructor, value_type_cardinality * x.size());
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
} lvalue_inserter;
struct norehash_lvalue_inserter_type : public lvalue_inserter_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
x.reserve(values.size());
lvalue_inserter_type::operator()(values, x);
BOOST_TEST_EQ(
raii::copy_constructor, value_type_cardinality * x.size());
BOOST_TEST_EQ(raii::move_constructor, 0u);
}
} norehash_lvalue_inserter;
struct rvalue_inserter_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
BOOST_TEST_EQ(raii::copy_constructor, 0u);
std::atomic<std::uint64_t> num_inserts{0};
thread_runner(values, [&x, &num_inserts](boost::span<T> s) {
for (auto& r : s) {
bool b = x.insert(std::move(r));
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, x.size());
if (std::is_same<T, typename X::value_type>::value &&
!std::is_same<typename X::key_type, typename X::value_type>::value) {
BOOST_TEST_EQ(raii::copy_constructor, x.size());
} else {
BOOST_TEST_EQ(raii::copy_constructor, 0u);
}
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
} rvalue_inserter;
struct norehash_rvalue_inserter_type : public rvalue_inserter_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
x.reserve(values.size());
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_EQ(raii::move_constructor, 0u);
rvalue_inserter_type::operator()(values, x);
if (std::is_same<T, typename X::value_type>::value) {
if (std::is_same<typename X::key_type,
typename X::value_type>::value) {
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_EQ(raii::move_constructor, x.size());
}
else {
BOOST_TEST_EQ(raii::copy_constructor, x.size());
BOOST_TEST_EQ(raii::move_constructor, x.size());
}
} else {
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_EQ(
raii::move_constructor, value_type_cardinality * x.size());
}
}
} norehash_rvalue_inserter;
struct iterator_range_inserter_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
std::vector<raii_convertible> values2;
values2.reserve(values.size());
for (auto const& v : values) {
values2.push_back(raii_convertible(v));
}
thread_runner(values2, [&x](boost::span<raii_convertible> s) {
BOOST_TEST_EQ(x.insert(s.begin(), s.end()), s.size());
});
BOOST_TEST_EQ(
raii::default_constructor, value_type_cardinality * values2.size());
#if BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 50300) && \
BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50500)
// some versions of old gcc have trouble eliding copies here
// https://godbolt.org/z/Ebo6TbvaG
#elif BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 40900) && \
BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50000)
// seemingly same problem, though the snippet above does not reveal it
#else
BOOST_TEST_EQ(raii::copy_constructor, 0u);
#endif
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
} iterator_range_inserter;
struct lvalue_insert_or_assign_copy_assign_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
thread_runner(values, [&x](boost::span<T> s) {
for (auto& r : s) {
x.insert_or_assign(r.first, r.second);
}
});
BOOST_TEST_EQ(raii::default_constructor, 0u);
BOOST_TEST_EQ(raii::copy_constructor, 2 * x.size());
if (is_container_node_based<X>::value) {
BOOST_TEST_EQ(raii::move_constructor, 0u);
}
else{
// don't check move construction count here because of rehashing
BOOST_TEST_GT(raii::move_constructor, 0u);
}
BOOST_TEST_EQ(raii::copy_assignment, values.size() - x.size());
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
} lvalue_insert_or_assign_copy_assign;
struct lvalue_insert_or_assign_move_assign_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
thread_runner(values, [&x](boost::span<T> s) {
for (auto& r : s) {
x.insert_or_assign(r.first, std::move(r.second));
}
});
BOOST_TEST_EQ(raii::default_constructor, 0u);
BOOST_TEST_EQ(raii::copy_constructor, x.size());
if (is_container_node_based<X>::value) {
BOOST_TEST_EQ(raii::move_constructor, x.size());
}
else{
BOOST_TEST_GT(raii::move_constructor, x.size()); // rehashing
}
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, values.size() - x.size());
}
} lvalue_insert_or_assign_move_assign;
struct rvalue_insert_or_assign_copy_assign_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
thread_runner(values, [&x](boost::span<T> s) {
for (auto& r : s) {
x.insert_or_assign(std::move(r.first), r.second);
}
});
BOOST_TEST_EQ(raii::default_constructor, 0u);
BOOST_TEST_EQ(raii::copy_constructor, x.size());
if (is_container_node_based<X>::value) {
BOOST_TEST_EQ(raii::move_constructor, x.size());
}
else{
BOOST_TEST_GT(raii::move_constructor, x.size()); // rehashing
}
BOOST_TEST_EQ(raii::copy_assignment, values.size() - x.size());
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
} rvalue_insert_or_assign_copy_assign;
struct rvalue_insert_or_assign_move_assign_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
thread_runner(values, [&x](boost::span<T> s) {
for (auto& r : s) {
x.insert_or_assign(std::move(r.first), std::move(r.second));
}
});
BOOST_TEST_EQ(raii::default_constructor, 0u);
BOOST_TEST_EQ(raii::copy_constructor, 0u);
if (is_container_node_based<X>::value) {
BOOST_TEST_EQ(raii::move_constructor, 2 * x.size());
}
else{
BOOST_TEST_GE(raii::move_constructor, 2 * x.size()); // rehashing
}
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, values.size() - x.size());
}
} rvalue_insert_or_assign_move_assign;
struct trans_insert_or_assign_copy_assign_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
using is_transparent =
typename boost::make_void<typename X::hasher::is_transparent,
typename X::key_equal::is_transparent>::type;
boost::ignore_unused<is_transparent>();
BOOST_TEST_EQ(raii::default_constructor, 0u);
thread_runner(values, [&x](boost::span<T> s) {
for (auto& r : s) {
x.insert_or_assign(r.first.x_, r.second);
}
});
BOOST_TEST_EQ(raii::default_constructor, x.size());
BOOST_TEST_EQ(raii::copy_constructor, x.size());
if (is_container_node_based<X>::value) {
BOOST_TEST_EQ(raii::move_constructor, 0u);
}
else{
BOOST_TEST_GT(raii::move_constructor, 0u); // rehashing
}
BOOST_TEST_EQ(raii::copy_assignment, values.size() - x.size());
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
} trans_insert_or_assign_copy_assign;
struct trans_insert_or_assign_move_assign_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
using is_transparent =
typename boost::make_void<typename X::hasher::is_transparent,
typename X::key_equal::is_transparent>::type;
boost::ignore_unused<is_transparent>();
thread_runner(values, [&x](boost::span<T> s) {
for (auto& r : s) {
x.insert_or_assign(r.first.x_, std::move(r.second));
}
});
BOOST_TEST_EQ(raii::default_constructor, x.size());
BOOST_TEST_EQ(raii::copy_constructor, 0u);
if (is_container_node_based<X>::value) {
BOOST_TEST_EQ(raii::move_constructor, x.size());
}
else{
BOOST_TEST_GT(raii::move_constructor, x.size()); // rehashing
}
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, values.size() - x.size());
}
} trans_insert_or_assign_move_assign;
struct lvalue_insert_or_cvisit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
std::atomic<std::uint64_t> num_inserts{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values, [&x, &num_inserts, &num_invokes](boost::span<T> s) {
for (auto& r : s) {
bool b = x.insert_or_cvisit(
r, [&num_invokes](typename X::value_type const& v) {
(void)v;
++num_invokes;
});
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(raii::default_constructor, 0u);
BOOST_TEST_EQ(
raii::copy_constructor, value_type_cardinality * x.size());
if (is_container_node_based<X>::value) {
BOOST_TEST_EQ(raii::move_constructor, 0u);
}
else{
// don't check move construction count here because of rehashing
BOOST_TEST_GT(raii::move_constructor, 0u);
}
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
} lvalue_insert_or_cvisit;
struct lvalue_insert_and_cvisit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
// concurrent_flat_set visit is always const access
using arg_type = typename std::conditional<
std::is_same<typename X::key_type, typename X::value_type>::value,
typename X::value_type const,
typename X::value_type
>::type;
std::atomic<std::uint64_t> num_inserts{0}, num_inserts_internal{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values,
[&x, &num_inserts, &num_inserts_internal, &num_invokes](boost::span<T> s) {
for (auto& r : s) {
bool b = x.insert_and_cvisit(
r,
[&num_inserts_internal](arg_type& v) {
(void)v;
++num_inserts_internal;
},
[&num_invokes](typename X::value_type const& v) {
(void)v;
++num_invokes;
});
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, num_inserts_internal);
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(raii::default_constructor, 0u);
BOOST_TEST_EQ(
raii::copy_constructor, value_type_cardinality * x.size());
if (is_container_node_based<X>::value) {
BOOST_TEST_EQ(raii::move_constructor, 0u);
}
else{
// don't check move construction count here because of rehashing
BOOST_TEST_GT(raii::move_constructor, 0u);
}
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
} lvalue_insert_and_cvisit;
struct lvalue_insert_or_visit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
// concurrent_flat_set visit is always const access
using arg_type = typename std::conditional<
std::is_same<typename X::key_type, typename X::value_type>::value,
typename X::value_type const,
typename X::value_type
>::type;
std::atomic<std::uint64_t> num_inserts{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values, [&x, &num_inserts, &num_invokes](boost::span<T> s) {
for (auto& r : s) {
bool b =
x.insert_or_visit(r, [&num_invokes](arg_type& v) {
(void)v;
++num_invokes;
});
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(raii::default_constructor, 0u);
BOOST_TEST_EQ(raii::copy_constructor, value_type_cardinality * x.size());
if (is_container_node_based<X>::value) {
BOOST_TEST_EQ(raii::move_constructor, 0u);
}
else{
// don't check move construction count here because of rehashing
BOOST_TEST_GT(raii::move_constructor, 0u);
}
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
} lvalue_insert_or_visit;
struct lvalue_insert_and_visit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
// concurrent_flat_set visit is always const access
using arg_type = typename std::conditional<
std::is_same<typename X::key_type, typename X::value_type>::value,
typename X::value_type const,
typename X::value_type
>::type;
std::atomic<std::uint64_t> num_inserts{0}, num_inserts_internal{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values,
[&x, &num_inserts, &num_inserts_internal, &num_invokes](boost::span<T> s) {
for (auto& r : s) {
bool b =
x.insert_and_visit(r,
[&num_inserts_internal](arg_type& v) {
(void)v;
++num_inserts_internal;
},
[&num_invokes](arg_type& v) {
(void)v;
++num_invokes;
});
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, num_inserts_internal);
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(raii::default_constructor, 0u);
BOOST_TEST_EQ(raii::copy_constructor, value_type_cardinality * x.size());
if (is_container_node_based<X>::value) {
BOOST_TEST_EQ(raii::move_constructor, 0u);
}
else{
// don't check move construction count here because of rehashing
BOOST_TEST_GT(raii::move_constructor, 0u);
}
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
} lvalue_insert_and_visit;
struct rvalue_insert_or_cvisit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
std::atomic<std::uint64_t> num_inserts{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values, [&x, &num_inserts, &num_invokes](boost::span<T> s) {
for (auto& r : s) {
bool b = x.insert_or_cvisit(
std::move(r), [&num_invokes](typename X::value_type const& v) {
(void)v;
++num_invokes;
});
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(raii::default_constructor, 0u);
if (std::is_same<T, typename X::value_type>::value) {
if (std::is_same<typename X::key_type,
typename X::value_type>::value) {
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_GE(raii::move_constructor, x.size());
}
else {
BOOST_TEST_EQ(raii::copy_constructor, x.size());
BOOST_TEST_GE(raii::move_constructor, x.size());
}
} else {
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_GE(
raii::move_constructor, value_type_cardinality * x.size());
}
}
} rvalue_insert_or_cvisit;
struct rvalue_insert_and_cvisit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
// concurrent_flat_set visit is always const access
using arg_type = typename std::conditional<
std::is_same<typename X::key_type, typename X::value_type>::value,
typename X::value_type const,
typename X::value_type
>::type;
std::atomic<std::uint64_t> num_inserts{0}, num_inserts_internal{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values,
[&x, &num_inserts, &num_inserts_internal, &num_invokes](boost::span<T> s) {
for (auto& r : s) {
bool b = x.insert_and_cvisit(
std::move(r),
[&num_inserts_internal](arg_type& v) {
(void)v;
++num_inserts_internal;
},
[&num_invokes](typename X::value_type const& v) {
(void)v;
++num_invokes;
});
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, num_inserts_internal);
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(raii::default_constructor, 0u);
if (std::is_same<T, typename X::value_type>::value) {
if (std::is_same<typename X::key_type,
typename X::value_type>::value) {
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_GE(raii::move_constructor, x.size());
}
else {
BOOST_TEST_EQ(raii::copy_constructor, x.size());
BOOST_TEST_GE(raii::move_constructor, x.size());
}
} else {
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_GE(
raii::move_constructor, value_type_cardinality * x.size());
}
}
} rvalue_insert_and_cvisit;
struct rvalue_insert_or_visit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
// concurrent_flat_set visit is always const access
using arg_type = typename std::conditional<
std::is_same<typename X::key_type, typename X::value_type>::value,
typename X::value_type const,
typename X::value_type
>::type;
std::atomic<std::uint64_t> num_inserts{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values, [&x, &num_inserts, &num_invokes](boost::span<T> s) {
for (auto& r : s) {
bool b = x.insert_or_visit(
std::move(r), [&num_invokes](arg_type& v) {
(void)v;
++num_invokes;
});
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(raii::default_constructor, 0u);
if (std::is_same<T, typename X::value_type>::value) {
if (std::is_same<typename X::key_type,
typename X::value_type>::value) {
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_GE(raii::move_constructor, x.size());
}
else {
BOOST_TEST_EQ(raii::copy_constructor, x.size());
BOOST_TEST_GE(raii::move_constructor, x.size());
}
} else {
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_GE(
raii::move_constructor, value_type_cardinality * x.size());
}
}
} rvalue_insert_or_visit;
struct rvalue_insert_and_visit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
// concurrent_flat_set visit is always const access
using arg_type = typename std::conditional<
std::is_same<typename X::key_type, typename X::value_type>::value,
typename X::value_type const,
typename X::value_type
>::type;
std::atomic<std::uint64_t> num_inserts{0}, num_inserts_internal{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values,
[&x, &num_inserts, &num_inserts_internal, &num_invokes](boost::span<T> s) {
for (auto& r : s) {
bool b = x.insert_and_visit(
std::move(r),
[&num_inserts_internal](arg_type& v) {
(void)v;
++num_inserts_internal;
},
[&num_invokes](arg_type& v) {
(void)v;
++num_invokes;
});
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, num_inserts_internal);
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(raii::default_constructor, 0u);
if (std::is_same<T, typename X::value_type>::value) {
if (std::is_same<typename X::key_type,
typename X::value_type>::value) {
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_GE(raii::move_constructor, x.size());
}
else {
BOOST_TEST_EQ(raii::copy_constructor, x.size());
BOOST_TEST_GE(raii::move_constructor, x.size());
}
} else {
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_GE(
raii::move_constructor, value_type_cardinality * x.size());
}
}
} rvalue_insert_and_visit;
struct iterator_range_insert_or_cvisit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
std::vector<raii_convertible> values2;
values2.reserve(values.size());
for (auto const& v : values) {
values2.push_back(raii_convertible(v));
}
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(
values2, [&x, &num_invokes](boost::span<raii_convertible> s) {
BOOST_TEST_EQ(x.insert_or_cvisit(s.begin(), s.end(),
[&num_invokes](typename X::value_type const& v) {
(void)v;
++num_invokes;
}),
s.size());
});
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(
raii::default_constructor, value_type_cardinality * values2.size());
#if (BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 50300) && \
BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50500)) || \
(BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 40900) && \
BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50000))
// skip test
#else
BOOST_TEST_EQ(raii::copy_constructor, 0u);
#endif
BOOST_TEST_GT(raii::move_constructor, 0u);
}
} iterator_range_insert_or_cvisit;
struct iterator_range_insert_and_cvisit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
// concurrent_flat_set visit is always const access
using arg_type = typename std::conditional<
std::is_same<typename X::key_type, typename X::value_type>::value,
typename X::value_type const,
typename X::value_type
>::type;
std::vector<raii_convertible> values2;
values2.reserve(values.size());
for (auto const& v : values) {
values2.push_back(raii_convertible(v));
}
std::atomic<std::uint64_t> num_inserts{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values2,
[&x, &num_inserts, &num_invokes](boost::span<raii_convertible> s) {
BOOST_TEST_EQ(x.insert_and_cvisit(
s.begin(), s.end(),
[&num_inserts](arg_type& v) {
(void)v;
++num_inserts;
},
[&num_invokes](typename X::value_type const& v) {
(void)v;
++num_invokes;
}),
s.size());
});
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(
raii::default_constructor, value_type_cardinality * values2.size());
#if (BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 50300) && \
BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50500)) || \
(BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 40900) && \
BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50000))
// skip test
#else
BOOST_TEST_EQ(raii::copy_constructor, 0u);
#endif
BOOST_TEST_GT(raii::move_constructor, 0u);
}
} iterator_range_insert_and_cvisit;
struct iterator_range_insert_or_visit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
// concurrent_flat_set visit is always const access
using arg_type = typename std::conditional<
std::is_same<typename X::key_type, typename X::value_type>::value,
typename X::value_type const,
typename X::value_type
>::type;
std::vector<raii_convertible> values2;
values2.reserve(values.size());
for (auto const& v : values) {
values2.push_back(raii_convertible(v));
}
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(
values2, [&x, &num_invokes](boost::span<raii_convertible> s) {
BOOST_TEST_EQ(x.insert_or_visit(s.begin(), s.end(),
[&num_invokes](arg_type& v) {
(void)v;
++num_invokes;
}),
s.size());
});
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(
raii::default_constructor, value_type_cardinality * values2.size());
#if (BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 50300) && \
BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50500)) || \
(BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 40900) && \
BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50000))
// skip test
#else
BOOST_TEST_EQ(raii::copy_constructor, 0u);
#endif
BOOST_TEST_GT(raii::move_constructor, 0u);
}
} iterator_range_insert_or_visit;
struct iterator_range_insert_and_visit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
// concurrent_flat_set visit is always const access
using arg_type = typename std::conditional<
std::is_same<typename X::key_type, typename X::value_type>::value,
typename X::value_type const,
typename X::value_type
>::type;
std::vector<raii_convertible> values2;
values2.reserve(values.size());
for (auto const& v : values) {
values2.push_back(raii_convertible(v));
}
std::atomic<std::uint64_t> num_inserts{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values2,
[&x, &num_inserts, &num_invokes](boost::span<raii_convertible> s) {
BOOST_TEST_EQ(x.insert_and_visit(
s.begin(), s.end(),
[&num_inserts](arg_type& v) {
(void)v;
++num_inserts;
},
[&num_invokes](typename X::value_type const& v) {
(void)v;
++num_invokes;
}),
s.size());
});
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(
raii::default_constructor, value_type_cardinality * values2.size());
#if (BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 50300) && \
BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50500)) || \
(BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 40900) && \
BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50000))
// skip test
#else
BOOST_TEST_EQ(raii::copy_constructor, 0u);
#endif
BOOST_TEST_GT(raii::move_constructor, 0u);
}
} iterator_range_insert_and_visit;
struct non_copyable_function
{
non_copyable_function() = default;
non_copyable_function(const non_copyable_function&) = delete;
non_copyable_function(non_copyable_function&&) = default;
template <class... Args> void operator()(Args&&...) const {}
};
template <class X, class GF, class F>
void insert(X*, GF gen_factory, F inserter, test::random_generator rg)
{
auto gen = gen_factory.template get<X>();
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
raii::reset_counts();
{
X x;
inserter(values, x);
BOOST_TEST_EQ(x.size(), reference_cont.size());
using value_type = typename X::value_type;
BOOST_TEST_EQ(x.size(), x.visit_all([&](value_type const& v) {
BOOST_TEST(reference_cont.contains(get_key(v)));
if (rg == test::sequential) {
BOOST_TEST_EQ(v, *reference_cont.find(get_key(v)));
}
}));
}
BOOST_TEST_GE(raii::default_constructor, 0u);
BOOST_TEST_GE(raii::copy_constructor, 0u);
BOOST_TEST_GE(raii::move_constructor, 0u);
BOOST_TEST_GT(raii::destructor, 0u);
BOOST_TEST_EQ(raii::default_constructor + raii::copy_constructor +
raii::move_constructor,
raii::destructor);
}
template <class X, class IL>
void insert_initializer_list(std::pair<X*, IL> p)
{
using value_type = typename X::value_type;
// concurrent_flat_set visit is always const access
using arg_type = typename std::conditional<
std::is_same<typename X::key_type, typename X::value_type>::value,
typename X::value_type const,
typename X::value_type
>::type;
auto init_list = p.second;
std::vector<raii> dummy;
auto reference_cont = reference_container<X>(
init_list.begin(), init_list.end());
raii::reset_counts();
{
{
X x;
thread_runner(dummy, [&x, &init_list](boost::span<raii>) {
BOOST_TEST_EQ(x.insert(init_list), init_list.size());
});
BOOST_TEST_EQ(x.size(), reference_cont.size());
BOOST_TEST_EQ(x.size(), x.visit_all([&](value_type const& v) {
BOOST_TEST(reference_cont.contains(get_key(v)));
BOOST_TEST_EQ(v, *reference_cont.find(get_key(v)));
}));
}
BOOST_TEST_GE(raii::default_constructor, 0u);
BOOST_TEST_GE(raii::copy_constructor, 0u);
BOOST_TEST_GE(raii::move_constructor, 0u);
BOOST_TEST_GT(raii::destructor, 0u);
BOOST_TEST_EQ(raii::default_constructor + raii::copy_constructor +
raii::move_constructor,
raii::destructor);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
{
{
std::atomic<std::uint64_t> num_invokes{0};
X x;
thread_runner(dummy, [&x, &init_list, &num_invokes](boost::span<raii>) {
BOOST_TEST_EQ(x.insert_or_visit(init_list,
[&num_invokes](arg_type& v) {
(void)v;
++num_invokes;
}),
init_list.size());
BOOST_TEST_EQ(x.insert_or_cvisit(init_list,
[&num_invokes](typename X::value_type const& v) {
(void)v;
++num_invokes;
}),
init_list.size());
x.insert_or_visit(init_list, non_copyable_function{});
x.insert_or_cvisit(init_list, non_copyable_function{});
});
BOOST_TEST_EQ(num_invokes, (init_list.size() - x.size()) +
(num_threads - 1) * init_list.size() +
num_threads * init_list.size());
BOOST_TEST_EQ(x.size(), reference_cont.size());
BOOST_TEST_EQ(x.size(), x.visit_all([&](value_type const& v) {
BOOST_TEST(reference_cont.contains(get_key(v)));
BOOST_TEST_EQ(v, *reference_cont.find(get_key(v)));
}));
}
BOOST_TEST_GE(raii::default_constructor, 0u);
BOOST_TEST_GE(raii::copy_constructor, 0u);
BOOST_TEST_GE(raii::move_constructor, 0u);
BOOST_TEST_GT(raii::destructor, 0u);
BOOST_TEST_EQ(raii::default_constructor + raii::copy_constructor +
raii::move_constructor,
raii::destructor);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
{
{
std::atomic<std::uint64_t> num_inserts{0};
std::atomic<std::uint64_t> num_invokes{0};
X x;
thread_runner(dummy,
[&x, &init_list, &num_inserts, &num_invokes](boost::span<raii>) {
BOOST_TEST_EQ(x.insert_and_visit(
init_list,
[&num_inserts](arg_type& v) {
(void)v;
++num_inserts;
},
[&num_invokes](arg_type& v) {
(void)v;
++num_invokes;
}),
init_list.size());
BOOST_TEST_EQ(x.insert_and_cvisit(
init_list,
[&num_inserts](arg_type& v) {
(void)v;
++num_inserts;
},
[&num_invokes](typename X::value_type const& v) {
(void)v;
++num_invokes;
}),
init_list.size());
x.insert_and_visit(
init_list, non_copyable_function{}, non_copyable_function{});
x.insert_and_cvisit(
init_list, non_copyable_function{}, non_copyable_function{});
});
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, (init_list.size() - x.size()) +
(num_threads - 1) * init_list.size() +
num_threads * init_list.size());
BOOST_TEST_EQ(x.size(), reference_cont.size());
BOOST_TEST_EQ(x.size(), x.visit_all([&](value_type const& v) {
BOOST_TEST(reference_cont.contains(get_key(v)));
BOOST_TEST_EQ(v, *reference_cont.find(get_key(v)));
}));
}
BOOST_TEST_GE(raii::default_constructor, 0u);
BOOST_TEST_GE(raii::copy_constructor, 0u);
BOOST_TEST_GE(raii::move_constructor, 0u);
BOOST_TEST_GT(raii::destructor, 0u);
BOOST_TEST_EQ(raii::default_constructor + raii::copy_constructor +
raii::move_constructor,
raii::destructor);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
}
template <class X>
void insert_map_sfinae_test(X*)
{
// mostly a compile-time tests to ensure that there's no ambiguity when a
// user does this
using value_type = typename X::value_type;
X x;
x.insert({1, 2});
x.insert_or_visit({2, 3}, [](value_type&) {});
x.insert_or_cvisit({3, 4}, [](value_type const&) {});
x.insert_and_visit({4, 5}, [](value_type&) {}, [](value_type&) {});
x.insert_and_cvisit({5, 6}, [](value_type&) {}, [](value_type const&) {});
}
boost::unordered::concurrent_flat_map<raii, raii>* map;
boost::unordered::concurrent_flat_map<raii, raii, transp_hash,
transp_key_equal>* trans_map;
boost::unordered::concurrent_flat_map<raii, raii, boost::hash<raii>,
std::equal_to<raii>, fancy_allocator<std::pair<raii const, raii> > >*
fancy_map;
boost::unordered::concurrent_node_map<raii, raii>* node_map;
boost::unordered::concurrent_node_map<raii, raii, transp_hash,
transp_key_equal>* trans_node_map;
boost::unordered::concurrent_node_map<raii, raii, boost::hash<raii>,
std::equal_to<raii>, fancy_allocator<std::pair<raii const, raii> > >*
fancy_node_map;
boost::unordered::concurrent_flat_set<raii>* set;
boost::unordered::concurrent_flat_set<raii, boost::hash<raii>,
std::equal_to<raii>, fancy_allocator<raii> >*
fancy_set;
boost::unordered::concurrent_node_set<raii>* node_set;
boost::unordered::concurrent_node_set<raii, boost::hash<raii>,
std::equal_to<raii>, fancy_allocator<raii> >*
fancy_node_set;
std::initializer_list<std::pair<raii const, raii> > map_init_list{
{raii{0}, raii{0}},
{raii{1}, raii{1}},
{raii{2}, raii{2}},
{raii{3}, raii{3}},
{raii{4}, raii{4}},
{raii{5}, raii{5}},
{raii{6}, raii{6}},
{raii{6}, raii{6}},
{raii{7}, raii{7}},
{raii{8}, raii{8}},
{raii{9}, raii{9}},
{raii{10}, raii{10}},
{raii{9}, raii{9}},
{raii{8}, raii{8}},
{raii{7}, raii{7}},
{raii{6}, raii{6}},
{raii{5}, raii{5}},
{raii{4}, raii{4}},
{raii{3}, raii{3}},
{raii{2}, raii{2}},
{raii{1}, raii{1}},
{raii{0}, raii{0}},
};
std::initializer_list<raii> set_init_list{
raii{0},
raii{1},
raii{2},
raii{3},
raii{4},
raii{5},
raii{6},
raii{6},
raii{7},
raii{8},
raii{9},
raii{10},
raii{9},
raii{8},
raii{7},
raii{6},
raii{5},
raii{4},
raii{3},
raii{2},
raii{1},
raii{0},
};
auto map_and_init_list=std::make_pair(map,map_init_list);
auto node_map_and_init_list=std::make_pair(node_map,map_init_list);
auto set_and_init_list=std::make_pair(set,set_init_list);
auto node_set_and_init_list=std::make_pair(node_set,set_init_list);
} // namespace
using test::default_generator;
using test::limited_range;
using test::sequential;
// clang-format off
UNORDERED_TEST(
insert_initializer_list,
((map_and_init_list)(node_map_and_init_list)
(set_and_init_list)(node_set_and_init_list)))
UNORDERED_TEST(
insert,
((map)(fancy_map)(node_map)(fancy_node_map)
(set)(fancy_set)(node_set)(fancy_node_set))
((value_type_generator_factory)(init_type_generator_factory))
((lvalue_inserter)(rvalue_inserter)(iterator_range_inserter)
(norehash_lvalue_inserter)(norehash_rvalue_inserter)
(lvalue_insert_or_cvisit)(lvalue_insert_or_visit)
(rvalue_insert_or_cvisit)(rvalue_insert_or_visit)
(iterator_range_insert_or_cvisit)(iterator_range_insert_or_visit))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
insert,
((map)(fancy_map)(node_map)(fancy_node_map)
(set)(fancy_set)(node_set)(fancy_node_set))
((value_type_generator_factory)(init_type_generator_factory))
((lvalue_insert_and_cvisit)(lvalue_insert_and_visit)
(rvalue_insert_and_cvisit)(rvalue_insert_and_visit)
(iterator_range_insert_and_cvisit)(iterator_range_insert_and_visit))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
insert,
((map)(node_map))
((init_type_generator_factory))
((lvalue_insert_or_assign_copy_assign)(lvalue_insert_or_assign_move_assign)
(rvalue_insert_or_assign_copy_assign)(rvalue_insert_or_assign_move_assign))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
insert,
((trans_map)(trans_node_map))
((init_type_generator_factory))
((trans_insert_or_assign_copy_assign)(trans_insert_or_assign_move_assign))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
insert_map_sfinae_test,
((map)(node_map)))
// clang-format on
RUN_TESTS()