// Copyright (C) 2023 Christian Mazakas // Copyright (C) 2023-2024 Joaquin M Lopez Munoz // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #include "helpers.hpp" #include #include #include #include #include #include #if defined(BOOST_MSVC) #pragma warning(disable : 4127) // conditional expression is constant #endif struct raii_convertible { int x = 0, y = 0 ; template raii_convertible(T const & t) : x{t.x_} {} template raii_convertible(std::pair const & p) : x{p.first.x_}, y{p.second.x_} {} operator raii() { return {x}; } operator std::pair() { return {x, y}; } }; namespace { test::seed_t initialize_seed(78937); struct lvalue_inserter_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; std::atomic num_inserts{0}; thread_runner(values, [&x, &num_inserts](boost::span s) { for (auto const& r : s) { bool b = x.insert(r); if (b) { ++num_inserts; } } }); BOOST_TEST_EQ(num_inserts, x.size()); BOOST_TEST_EQ( raii::copy_constructor, value_type_cardinality * x.size()); BOOST_TEST_EQ(raii::copy_assignment, 0u); BOOST_TEST_EQ(raii::move_assignment, 0u); } } lvalue_inserter; struct norehash_lvalue_inserter_type : public lvalue_inserter_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; x.reserve(values.size()); lvalue_inserter_type::operator()(values, x); BOOST_TEST_EQ( raii::copy_constructor, value_type_cardinality * x.size()); BOOST_TEST_EQ(raii::move_constructor, 0u); } } norehash_lvalue_inserter; struct rvalue_inserter_type { template void operator()(std::vector& values, X& x) { BOOST_TEST_EQ(raii::copy_constructor, 0u); std::atomic num_inserts{0}; thread_runner(values, [&x, &num_inserts](boost::span s) { for (auto& r : s) { bool b = x.insert(std::move(r)); if (b) { ++num_inserts; } } }); BOOST_TEST_EQ(num_inserts, x.size()); if (std::is_same::value && !std::is_same::value) { BOOST_TEST_EQ(raii::copy_constructor, x.size()); } else { BOOST_TEST_EQ(raii::copy_constructor, 0u); } BOOST_TEST_EQ(raii::copy_assignment, 0u); BOOST_TEST_EQ(raii::move_assignment, 0u); } } rvalue_inserter; struct norehash_rvalue_inserter_type : public rvalue_inserter_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; x.reserve(values.size()); BOOST_TEST_EQ(raii::copy_constructor, 0u); BOOST_TEST_EQ(raii::move_constructor, 0u); rvalue_inserter_type::operator()(values, x); if (std::is_same::value) { if (std::is_same::value) { BOOST_TEST_EQ(raii::copy_constructor, 0u); BOOST_TEST_EQ(raii::move_constructor, x.size()); } else { BOOST_TEST_EQ(raii::copy_constructor, x.size()); BOOST_TEST_EQ(raii::move_constructor, x.size()); } } else { BOOST_TEST_EQ(raii::copy_constructor, 0u); BOOST_TEST_EQ( raii::move_constructor, value_type_cardinality * x.size()); } } } norehash_rvalue_inserter; struct iterator_range_inserter_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; std::vector values2; values2.reserve(values.size()); for (auto const& v : values) { values2.push_back(raii_convertible(v)); } thread_runner(values2, [&x](boost::span s) { BOOST_TEST_EQ(x.insert(s.begin(), s.end()), s.size()); }); BOOST_TEST_EQ( raii::default_constructor, value_type_cardinality * values2.size()); #if BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 50300) && \ BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50500) // some versions of old gcc have trouble eliding copies here // https://godbolt.org/z/Ebo6TbvaG #elif BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 40900) && \ BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50000) // seemingly same problem, though the snippet above does not reveal it #else BOOST_TEST_EQ(raii::copy_constructor, 0u); #endif BOOST_TEST_EQ(raii::copy_assignment, 0u); BOOST_TEST_EQ(raii::move_assignment, 0u); } } iterator_range_inserter; struct lvalue_insert_or_assign_copy_assign_type { template void operator()(std::vector& values, X& x) { thread_runner(values, [&x](boost::span s) { for (auto& r : s) { x.insert_or_assign(r.first, r.second); } }); BOOST_TEST_EQ(raii::default_constructor, 0u); BOOST_TEST_EQ(raii::copy_constructor, 2 * x.size()); if (is_container_node_based::value) { BOOST_TEST_EQ(raii::move_constructor, 0u); } else{ // don't check move construction count here because of rehashing BOOST_TEST_GT(raii::move_constructor, 0u); } BOOST_TEST_EQ(raii::copy_assignment, values.size() - x.size()); BOOST_TEST_EQ(raii::move_assignment, 0u); } } lvalue_insert_or_assign_copy_assign; struct lvalue_insert_or_assign_move_assign_type { template void operator()(std::vector& values, X& x) { thread_runner(values, [&x](boost::span s) { for (auto& r : s) { x.insert_or_assign(r.first, std::move(r.second)); } }); BOOST_TEST_EQ(raii::default_constructor, 0u); BOOST_TEST_EQ(raii::copy_constructor, x.size()); if (is_container_node_based::value) { BOOST_TEST_EQ(raii::move_constructor, x.size()); } else{ BOOST_TEST_GT(raii::move_constructor, x.size()); // rehashing } BOOST_TEST_EQ(raii::copy_assignment, 0u); BOOST_TEST_EQ(raii::move_assignment, values.size() - x.size()); } } lvalue_insert_or_assign_move_assign; struct rvalue_insert_or_assign_copy_assign_type { template void operator()(std::vector& values, X& x) { thread_runner(values, [&x](boost::span s) { for (auto& r : s) { x.insert_or_assign(std::move(r.first), r.second); } }); BOOST_TEST_EQ(raii::default_constructor, 0u); BOOST_TEST_EQ(raii::copy_constructor, x.size()); if (is_container_node_based::value) { BOOST_TEST_EQ(raii::move_constructor, x.size()); } else{ BOOST_TEST_GT(raii::move_constructor, x.size()); // rehashing } BOOST_TEST_EQ(raii::copy_assignment, values.size() - x.size()); BOOST_TEST_EQ(raii::move_assignment, 0u); } } rvalue_insert_or_assign_copy_assign; struct rvalue_insert_or_assign_move_assign_type { template void operator()(std::vector& values, X& x) { thread_runner(values, [&x](boost::span s) { for (auto& r : s) { x.insert_or_assign(std::move(r.first), std::move(r.second)); } }); BOOST_TEST_EQ(raii::default_constructor, 0u); BOOST_TEST_EQ(raii::copy_constructor, 0u); if (is_container_node_based::value) { BOOST_TEST_EQ(raii::move_constructor, 2 * x.size()); } else{ BOOST_TEST_GE(raii::move_constructor, 2 * x.size()); // rehashing } BOOST_TEST_EQ(raii::copy_assignment, 0u); BOOST_TEST_EQ(raii::move_assignment, values.size() - x.size()); } } rvalue_insert_or_assign_move_assign; struct trans_insert_or_assign_copy_assign_type { template void operator()(std::vector& values, X& x) { using is_transparent = typename boost::make_void::type; boost::ignore_unused(); BOOST_TEST_EQ(raii::default_constructor, 0u); thread_runner(values, [&x](boost::span s) { for (auto& r : s) { x.insert_or_assign(r.first.x_, r.second); } }); BOOST_TEST_EQ(raii::default_constructor, x.size()); BOOST_TEST_EQ(raii::copy_constructor, x.size()); if (is_container_node_based::value) { BOOST_TEST_EQ(raii::move_constructor, 0u); } else{ BOOST_TEST_GT(raii::move_constructor, 0u); // rehashing } BOOST_TEST_EQ(raii::copy_assignment, values.size() - x.size()); BOOST_TEST_EQ(raii::move_assignment, 0u); } } trans_insert_or_assign_copy_assign; struct trans_insert_or_assign_move_assign_type { template void operator()(std::vector& values, X& x) { using is_transparent = typename boost::make_void::type; boost::ignore_unused(); thread_runner(values, [&x](boost::span s) { for (auto& r : s) { x.insert_or_assign(r.first.x_, std::move(r.second)); } }); BOOST_TEST_EQ(raii::default_constructor, x.size()); BOOST_TEST_EQ(raii::copy_constructor, 0u); if (is_container_node_based::value) { BOOST_TEST_EQ(raii::move_constructor, x.size()); } else{ BOOST_TEST_GT(raii::move_constructor, x.size()); // rehashing } BOOST_TEST_EQ(raii::copy_assignment, 0u); BOOST_TEST_EQ(raii::move_assignment, values.size() - x.size()); } } trans_insert_or_assign_move_assign; struct lvalue_insert_or_cvisit_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; std::atomic num_inserts{0}; std::atomic num_invokes{0}; thread_runner(values, [&x, &num_inserts, &num_invokes](boost::span s) { for (auto& r : s) { bool b = x.insert_or_cvisit( r, [&num_invokes](typename X::value_type const& v) { (void)v; ++num_invokes; }); if (b) { ++num_inserts; } } }); BOOST_TEST_EQ(num_inserts, x.size()); BOOST_TEST_EQ(num_invokes, values.size() - x.size()); BOOST_TEST_EQ(raii::default_constructor, 0u); BOOST_TEST_EQ( raii::copy_constructor, value_type_cardinality * x.size()); if (is_container_node_based::value) { BOOST_TEST_EQ(raii::move_constructor, 0u); } else{ // don't check move construction count here because of rehashing BOOST_TEST_GT(raii::move_constructor, 0u); } BOOST_TEST_EQ(raii::move_assignment, 0u); } } lvalue_insert_or_cvisit; struct lvalue_insert_and_cvisit_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; // concurrent_flat_set visit is always const access using arg_type = typename std::conditional< std::is_same::value, typename X::value_type const, typename X::value_type >::type; std::atomic num_inserts{0}, num_inserts_internal{0}; std::atomic num_invokes{0}; thread_runner(values, [&x, &num_inserts, &num_inserts_internal, &num_invokes](boost::span s) { for (auto& r : s) { bool b = x.insert_and_cvisit( r, [&num_inserts_internal](arg_type& v) { (void)v; ++num_inserts_internal; }, [&num_invokes](typename X::value_type const& v) { (void)v; ++num_invokes; }); if (b) { ++num_inserts; } } }); BOOST_TEST_EQ(num_inserts, num_inserts_internal); BOOST_TEST_EQ(num_inserts, x.size()); BOOST_TEST_EQ(num_invokes, values.size() - x.size()); BOOST_TEST_EQ(raii::default_constructor, 0u); BOOST_TEST_EQ( raii::copy_constructor, value_type_cardinality * x.size()); if (is_container_node_based::value) { BOOST_TEST_EQ(raii::move_constructor, 0u); } else{ // don't check move construction count here because of rehashing BOOST_TEST_GT(raii::move_constructor, 0u); } BOOST_TEST_EQ(raii::move_assignment, 0u); } } lvalue_insert_and_cvisit; struct lvalue_insert_or_visit_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; // concurrent_flat_set visit is always const access using arg_type = typename std::conditional< std::is_same::value, typename X::value_type const, typename X::value_type >::type; std::atomic num_inserts{0}; std::atomic num_invokes{0}; thread_runner(values, [&x, &num_inserts, &num_invokes](boost::span s) { for (auto& r : s) { bool b = x.insert_or_visit(r, [&num_invokes](arg_type& v) { (void)v; ++num_invokes; }); if (b) { ++num_inserts; } } }); BOOST_TEST_EQ(num_inserts, x.size()); BOOST_TEST_EQ(num_invokes, values.size() - x.size()); BOOST_TEST_EQ(raii::default_constructor, 0u); BOOST_TEST_EQ(raii::copy_constructor, value_type_cardinality * x.size()); if (is_container_node_based::value) { BOOST_TEST_EQ(raii::move_constructor, 0u); } else{ // don't check move construction count here because of rehashing BOOST_TEST_GT(raii::move_constructor, 0u); } BOOST_TEST_EQ(raii::move_assignment, 0u); } } lvalue_insert_or_visit; struct lvalue_insert_and_visit_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; // concurrent_flat_set visit is always const access using arg_type = typename std::conditional< std::is_same::value, typename X::value_type const, typename X::value_type >::type; std::atomic num_inserts{0}, num_inserts_internal{0}; std::atomic num_invokes{0}; thread_runner(values, [&x, &num_inserts, &num_inserts_internal, &num_invokes](boost::span s) { for (auto& r : s) { bool b = x.insert_and_visit(r, [&num_inserts_internal](arg_type& v) { (void)v; ++num_inserts_internal; }, [&num_invokes](arg_type& v) { (void)v; ++num_invokes; }); if (b) { ++num_inserts; } } }); BOOST_TEST_EQ(num_inserts, num_inserts_internal); BOOST_TEST_EQ(num_inserts, x.size()); BOOST_TEST_EQ(num_invokes, values.size() - x.size()); BOOST_TEST_EQ(raii::default_constructor, 0u); BOOST_TEST_EQ(raii::copy_constructor, value_type_cardinality * x.size()); if (is_container_node_based::value) { BOOST_TEST_EQ(raii::move_constructor, 0u); } else{ // don't check move construction count here because of rehashing BOOST_TEST_GT(raii::move_constructor, 0u); } BOOST_TEST_EQ(raii::move_assignment, 0u); } } lvalue_insert_and_visit; struct rvalue_insert_or_cvisit_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; std::atomic num_inserts{0}; std::atomic num_invokes{0}; thread_runner(values, [&x, &num_inserts, &num_invokes](boost::span s) { for (auto& r : s) { bool b = x.insert_or_cvisit( std::move(r), [&num_invokes](typename X::value_type const& v) { (void)v; ++num_invokes; }); if (b) { ++num_inserts; } } }); BOOST_TEST_EQ(num_inserts, x.size()); BOOST_TEST_EQ(num_invokes, values.size() - x.size()); BOOST_TEST_EQ(raii::default_constructor, 0u); if (std::is_same::value) { if (std::is_same::value) { BOOST_TEST_EQ(raii::copy_constructor, 0u); BOOST_TEST_GE(raii::move_constructor, x.size()); } else { BOOST_TEST_EQ(raii::copy_constructor, x.size()); BOOST_TEST_GE(raii::move_constructor, x.size()); } } else { BOOST_TEST_EQ(raii::copy_constructor, 0u); BOOST_TEST_GE( raii::move_constructor, value_type_cardinality * x.size()); } } } rvalue_insert_or_cvisit; struct rvalue_insert_and_cvisit_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; // concurrent_flat_set visit is always const access using arg_type = typename std::conditional< std::is_same::value, typename X::value_type const, typename X::value_type >::type; std::atomic num_inserts{0}, num_inserts_internal{0}; std::atomic num_invokes{0}; thread_runner(values, [&x, &num_inserts, &num_inserts_internal, &num_invokes](boost::span s) { for (auto& r : s) { bool b = x.insert_and_cvisit( std::move(r), [&num_inserts_internal](arg_type& v) { (void)v; ++num_inserts_internal; }, [&num_invokes](typename X::value_type const& v) { (void)v; ++num_invokes; }); if (b) { ++num_inserts; } } }); BOOST_TEST_EQ(num_inserts, num_inserts_internal); BOOST_TEST_EQ(num_inserts, x.size()); BOOST_TEST_EQ(num_invokes, values.size() - x.size()); BOOST_TEST_EQ(raii::default_constructor, 0u); if (std::is_same::value) { if (std::is_same::value) { BOOST_TEST_EQ(raii::copy_constructor, 0u); BOOST_TEST_GE(raii::move_constructor, x.size()); } else { BOOST_TEST_EQ(raii::copy_constructor, x.size()); BOOST_TEST_GE(raii::move_constructor, x.size()); } } else { BOOST_TEST_EQ(raii::copy_constructor, 0u); BOOST_TEST_GE( raii::move_constructor, value_type_cardinality * x.size()); } } } rvalue_insert_and_cvisit; struct rvalue_insert_or_visit_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; // concurrent_flat_set visit is always const access using arg_type = typename std::conditional< std::is_same::value, typename X::value_type const, typename X::value_type >::type; std::atomic num_inserts{0}; std::atomic num_invokes{0}; thread_runner(values, [&x, &num_inserts, &num_invokes](boost::span s) { for (auto& r : s) { bool b = x.insert_or_visit( std::move(r), [&num_invokes](arg_type& v) { (void)v; ++num_invokes; }); if (b) { ++num_inserts; } } }); BOOST_TEST_EQ(num_inserts, x.size()); BOOST_TEST_EQ(num_invokes, values.size() - x.size()); BOOST_TEST_EQ(raii::default_constructor, 0u); if (std::is_same::value) { if (std::is_same::value) { BOOST_TEST_EQ(raii::copy_constructor, 0u); BOOST_TEST_GE(raii::move_constructor, x.size()); } else { BOOST_TEST_EQ(raii::copy_constructor, x.size()); BOOST_TEST_GE(raii::move_constructor, x.size()); } } else { BOOST_TEST_EQ(raii::copy_constructor, 0u); BOOST_TEST_GE( raii::move_constructor, value_type_cardinality * x.size()); } } } rvalue_insert_or_visit; struct rvalue_insert_and_visit_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; // concurrent_flat_set visit is always const access using arg_type = typename std::conditional< std::is_same::value, typename X::value_type const, typename X::value_type >::type; std::atomic num_inserts{0}, num_inserts_internal{0}; std::atomic num_invokes{0}; thread_runner(values, [&x, &num_inserts, &num_inserts_internal, &num_invokes](boost::span s) { for (auto& r : s) { bool b = x.insert_and_visit( std::move(r), [&num_inserts_internal](arg_type& v) { (void)v; ++num_inserts_internal; }, [&num_invokes](arg_type& v) { (void)v; ++num_invokes; }); if (b) { ++num_inserts; } } }); BOOST_TEST_EQ(num_inserts, num_inserts_internal); BOOST_TEST_EQ(num_inserts, x.size()); BOOST_TEST_EQ(num_invokes, values.size() - x.size()); BOOST_TEST_EQ(raii::default_constructor, 0u); if (std::is_same::value) { if (std::is_same::value) { BOOST_TEST_EQ(raii::copy_constructor, 0u); BOOST_TEST_GE(raii::move_constructor, x.size()); } else { BOOST_TEST_EQ(raii::copy_constructor, x.size()); BOOST_TEST_GE(raii::move_constructor, x.size()); } } else { BOOST_TEST_EQ(raii::copy_constructor, 0u); BOOST_TEST_GE( raii::move_constructor, value_type_cardinality * x.size()); } } } rvalue_insert_and_visit; struct iterator_range_insert_or_cvisit_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; std::vector values2; values2.reserve(values.size()); for (auto const& v : values) { values2.push_back(raii_convertible(v)); } std::atomic num_invokes{0}; thread_runner( values2, [&x, &num_invokes](boost::span s) { BOOST_TEST_EQ(x.insert_or_cvisit(s.begin(), s.end(), [&num_invokes](typename X::value_type const& v) { (void)v; ++num_invokes; }), s.size()); }); BOOST_TEST_EQ(num_invokes, values.size() - x.size()); BOOST_TEST_EQ( raii::default_constructor, value_type_cardinality * values2.size()); #if (BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 50300) && \ BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50500)) || \ (BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 40900) && \ BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50000)) // skip test #else BOOST_TEST_EQ(raii::copy_constructor, 0u); #endif BOOST_TEST_GT(raii::move_constructor, 0u); } } iterator_range_insert_or_cvisit; struct iterator_range_insert_and_cvisit_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; // concurrent_flat_set visit is always const access using arg_type = typename std::conditional< std::is_same::value, typename X::value_type const, typename X::value_type >::type; std::vector values2; values2.reserve(values.size()); for (auto const& v : values) { values2.push_back(raii_convertible(v)); } std::atomic num_inserts{0}; std::atomic num_invokes{0}; thread_runner(values2, [&x, &num_inserts, &num_invokes](boost::span s) { BOOST_TEST_EQ(x.insert_and_cvisit( s.begin(), s.end(), [&num_inserts](arg_type& v) { (void)v; ++num_inserts; }, [&num_invokes](typename X::value_type const& v) { (void)v; ++num_invokes; }), s.size()); }); BOOST_TEST_EQ(num_inserts, x.size()); BOOST_TEST_EQ(num_invokes, values.size() - x.size()); BOOST_TEST_EQ( raii::default_constructor, value_type_cardinality * values2.size()); #if (BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 50300) && \ BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50500)) || \ (BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 40900) && \ BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50000)) // skip test #else BOOST_TEST_EQ(raii::copy_constructor, 0u); #endif BOOST_TEST_GT(raii::move_constructor, 0u); } } iterator_range_insert_and_cvisit; struct iterator_range_insert_or_visit_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; // concurrent_flat_set visit is always const access using arg_type = typename std::conditional< std::is_same::value, typename X::value_type const, typename X::value_type >::type; std::vector values2; values2.reserve(values.size()); for (auto const& v : values) { values2.push_back(raii_convertible(v)); } std::atomic num_invokes{0}; thread_runner( values2, [&x, &num_invokes](boost::span s) { BOOST_TEST_EQ(x.insert_or_visit(s.begin(), s.end(), [&num_invokes](arg_type& v) { (void)v; ++num_invokes; }), s.size()); }); BOOST_TEST_EQ(num_invokes, values.size() - x.size()); BOOST_TEST_EQ( raii::default_constructor, value_type_cardinality * values2.size()); #if (BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 50300) && \ BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50500)) || \ (BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 40900) && \ BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50000)) // skip test #else BOOST_TEST_EQ(raii::copy_constructor, 0u); #endif BOOST_TEST_GT(raii::move_constructor, 0u); } } iterator_range_insert_or_visit; struct iterator_range_insert_and_visit_type { template void operator()(std::vector& values, X& x) { static constexpr auto value_type_cardinality = value_cardinality::value; // concurrent_flat_set visit is always const access using arg_type = typename std::conditional< std::is_same::value, typename X::value_type const, typename X::value_type >::type; std::vector values2; values2.reserve(values.size()); for (auto const& v : values) { values2.push_back(raii_convertible(v)); } std::atomic num_inserts{0}; std::atomic num_invokes{0}; thread_runner(values2, [&x, &num_inserts, &num_invokes](boost::span s) { BOOST_TEST_EQ(x.insert_and_visit( s.begin(), s.end(), [&num_inserts](arg_type& v) { (void)v; ++num_inserts; }, [&num_invokes](typename X::value_type const& v) { (void)v; ++num_invokes; }), s.size()); }); BOOST_TEST_EQ(num_inserts, x.size()); BOOST_TEST_EQ(num_invokes, values.size() - x.size()); BOOST_TEST_EQ( raii::default_constructor, value_type_cardinality * values2.size()); #if (BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 50300) && \ BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50500)) || \ (BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 40900) && \ BOOST_WORKAROUND(BOOST_GCC_VERSION, < 50000)) // skip test #else BOOST_TEST_EQ(raii::copy_constructor, 0u); #endif BOOST_TEST_GT(raii::move_constructor, 0u); } } iterator_range_insert_and_visit; struct non_copyable_function { non_copyable_function() = default; non_copyable_function(const non_copyable_function&) = delete; non_copyable_function(non_copyable_function&&) = default; template void operator()(Args&&...) const {} }; template void insert(X*, GF gen_factory, F inserter, test::random_generator rg) { auto gen = gen_factory.template get(); auto values = make_random_values(1024 * 16, [&] { return gen(rg); }); auto reference_cont = reference_container(values.begin(), values.end()); raii::reset_counts(); { X x; inserter(values, x); BOOST_TEST_EQ(x.size(), reference_cont.size()); using value_type = typename X::value_type; BOOST_TEST_EQ(x.size(), x.visit_all([&](value_type const& v) { BOOST_TEST(reference_cont.contains(get_key(v))); if (rg == test::sequential) { BOOST_TEST_EQ(v, *reference_cont.find(get_key(v))); } })); } BOOST_TEST_GE(raii::default_constructor, 0u); BOOST_TEST_GE(raii::copy_constructor, 0u); BOOST_TEST_GE(raii::move_constructor, 0u); BOOST_TEST_GT(raii::destructor, 0u); BOOST_TEST_EQ(raii::default_constructor + raii::copy_constructor + raii::move_constructor, raii::destructor); } template void insert_initializer_list(std::pair p) { using value_type = typename X::value_type; // concurrent_flat_set visit is always const access using arg_type = typename std::conditional< std::is_same::value, typename X::value_type const, typename X::value_type >::type; auto init_list = p.second; std::vector dummy; auto reference_cont = reference_container( init_list.begin(), init_list.end()); raii::reset_counts(); { { X x; thread_runner(dummy, [&x, &init_list](boost::span) { BOOST_TEST_EQ(x.insert(init_list), init_list.size()); }); BOOST_TEST_EQ(x.size(), reference_cont.size()); BOOST_TEST_EQ(x.size(), x.visit_all([&](value_type const& v) { BOOST_TEST(reference_cont.contains(get_key(v))); BOOST_TEST_EQ(v, *reference_cont.find(get_key(v))); })); } BOOST_TEST_GE(raii::default_constructor, 0u); BOOST_TEST_GE(raii::copy_constructor, 0u); BOOST_TEST_GE(raii::move_constructor, 0u); BOOST_TEST_GT(raii::destructor, 0u); BOOST_TEST_EQ(raii::default_constructor + raii::copy_constructor + raii::move_constructor, raii::destructor); BOOST_TEST_EQ(raii::copy_assignment, 0u); BOOST_TEST_EQ(raii::move_assignment, 0u); } { { std::atomic num_invokes{0}; X x; thread_runner(dummy, [&x, &init_list, &num_invokes](boost::span) { BOOST_TEST_EQ(x.insert_or_visit(init_list, [&num_invokes](arg_type& v) { (void)v; ++num_invokes; }), init_list.size()); BOOST_TEST_EQ(x.insert_or_cvisit(init_list, [&num_invokes](typename X::value_type const& v) { (void)v; ++num_invokes; }), init_list.size()); x.insert_or_visit(init_list, non_copyable_function{}); x.insert_or_cvisit(init_list, non_copyable_function{}); }); BOOST_TEST_EQ(num_invokes, (init_list.size() - x.size()) + (num_threads - 1) * init_list.size() + num_threads * init_list.size()); BOOST_TEST_EQ(x.size(), reference_cont.size()); BOOST_TEST_EQ(x.size(), x.visit_all([&](value_type const& v) { BOOST_TEST(reference_cont.contains(get_key(v))); BOOST_TEST_EQ(v, *reference_cont.find(get_key(v))); })); } BOOST_TEST_GE(raii::default_constructor, 0u); BOOST_TEST_GE(raii::copy_constructor, 0u); BOOST_TEST_GE(raii::move_constructor, 0u); BOOST_TEST_GT(raii::destructor, 0u); BOOST_TEST_EQ(raii::default_constructor + raii::copy_constructor + raii::move_constructor, raii::destructor); BOOST_TEST_EQ(raii::copy_assignment, 0u); BOOST_TEST_EQ(raii::move_assignment, 0u); } { { std::atomic num_inserts{0}; std::atomic num_invokes{0}; X x; thread_runner(dummy, [&x, &init_list, &num_inserts, &num_invokes](boost::span) { BOOST_TEST_EQ(x.insert_and_visit( init_list, [&num_inserts](arg_type& v) { (void)v; ++num_inserts; }, [&num_invokes](arg_type& v) { (void)v; ++num_invokes; }), init_list.size()); BOOST_TEST_EQ(x.insert_and_cvisit( init_list, [&num_inserts](arg_type& v) { (void)v; ++num_inserts; }, [&num_invokes](typename X::value_type const& v) { (void)v; ++num_invokes; }), init_list.size()); x.insert_and_visit( init_list, non_copyable_function{}, non_copyable_function{}); x.insert_and_cvisit( init_list, non_copyable_function{}, non_copyable_function{}); }); BOOST_TEST_EQ(num_inserts, x.size()); BOOST_TEST_EQ(num_invokes, (init_list.size() - x.size()) + (num_threads - 1) * init_list.size() + num_threads * init_list.size()); BOOST_TEST_EQ(x.size(), reference_cont.size()); BOOST_TEST_EQ(x.size(), x.visit_all([&](value_type const& v) { BOOST_TEST(reference_cont.contains(get_key(v))); BOOST_TEST_EQ(v, *reference_cont.find(get_key(v))); })); } BOOST_TEST_GE(raii::default_constructor, 0u); BOOST_TEST_GE(raii::copy_constructor, 0u); BOOST_TEST_GE(raii::move_constructor, 0u); BOOST_TEST_GT(raii::destructor, 0u); BOOST_TEST_EQ(raii::default_constructor + raii::copy_constructor + raii::move_constructor, raii::destructor); BOOST_TEST_EQ(raii::copy_assignment, 0u); BOOST_TEST_EQ(raii::move_assignment, 0u); } } template void insert_map_sfinae_test(X*) { // mostly a compile-time tests to ensure that there's no ambiguity when a // user does this using value_type = typename X::value_type; X x; x.insert({1, 2}); x.insert_or_visit({2, 3}, [](value_type&) {}); x.insert_or_cvisit({3, 4}, [](value_type const&) {}); x.insert_and_visit({4, 5}, [](value_type&) {}, [](value_type&) {}); x.insert_and_cvisit({5, 6}, [](value_type&) {}, [](value_type const&) {}); } boost::unordered::concurrent_flat_map* map; boost::unordered::concurrent_flat_map* trans_map; boost::unordered::concurrent_flat_map, std::equal_to, fancy_allocator > >* fancy_map; boost::unordered::concurrent_node_map* node_map; boost::unordered::concurrent_node_map* trans_node_map; boost::unordered::concurrent_node_map, std::equal_to, fancy_allocator > >* fancy_node_map; boost::unordered::concurrent_flat_set* set; boost::unordered::concurrent_flat_set, std::equal_to, fancy_allocator >* fancy_set; boost::unordered::concurrent_node_set* node_set; boost::unordered::concurrent_node_set, std::equal_to, fancy_allocator >* fancy_node_set; std::initializer_list > map_init_list{ {raii{0}, raii{0}}, {raii{1}, raii{1}}, {raii{2}, raii{2}}, {raii{3}, raii{3}}, {raii{4}, raii{4}}, {raii{5}, raii{5}}, {raii{6}, raii{6}}, {raii{6}, raii{6}}, {raii{7}, raii{7}}, {raii{8}, raii{8}}, {raii{9}, raii{9}}, {raii{10}, raii{10}}, {raii{9}, raii{9}}, {raii{8}, raii{8}}, {raii{7}, raii{7}}, {raii{6}, raii{6}}, {raii{5}, raii{5}}, {raii{4}, raii{4}}, {raii{3}, raii{3}}, {raii{2}, raii{2}}, {raii{1}, raii{1}}, {raii{0}, raii{0}}, }; std::initializer_list set_init_list{ raii{0}, raii{1}, raii{2}, raii{3}, raii{4}, raii{5}, raii{6}, raii{6}, raii{7}, raii{8}, raii{9}, raii{10}, raii{9}, raii{8}, raii{7}, raii{6}, raii{5}, raii{4}, raii{3}, raii{2}, raii{1}, raii{0}, }; auto map_and_init_list=std::make_pair(map,map_init_list); auto node_map_and_init_list=std::make_pair(node_map,map_init_list); auto set_and_init_list=std::make_pair(set,set_init_list); auto node_set_and_init_list=std::make_pair(node_set,set_init_list); } // namespace using test::default_generator; using test::limited_range; using test::sequential; // clang-format off UNORDERED_TEST( insert_initializer_list, ((map_and_init_list)(node_map_and_init_list) (set_and_init_list)(node_set_and_init_list))) UNORDERED_TEST( insert, ((map)(fancy_map)(node_map)(fancy_node_map) (set)(fancy_set)(node_set)(fancy_node_set)) ((value_type_generator_factory)(init_type_generator_factory)) ((lvalue_inserter)(rvalue_inserter)(iterator_range_inserter) (norehash_lvalue_inserter)(norehash_rvalue_inserter) (lvalue_insert_or_cvisit)(lvalue_insert_or_visit) (rvalue_insert_or_cvisit)(rvalue_insert_or_visit) (iterator_range_insert_or_cvisit)(iterator_range_insert_or_visit)) ((default_generator)(sequential)(limited_range))) UNORDERED_TEST( insert, ((map)(fancy_map)(node_map)(fancy_node_map) (set)(fancy_set)(node_set)(fancy_node_set)) ((value_type_generator_factory)(init_type_generator_factory)) ((lvalue_insert_and_cvisit)(lvalue_insert_and_visit) (rvalue_insert_and_cvisit)(rvalue_insert_and_visit) (iterator_range_insert_and_cvisit)(iterator_range_insert_and_visit)) ((default_generator)(sequential)(limited_range))) UNORDERED_TEST( insert, ((map)(node_map)) ((init_type_generator_factory)) ((lvalue_insert_or_assign_copy_assign)(lvalue_insert_or_assign_move_assign) (rvalue_insert_or_assign_copy_assign)(rvalue_insert_or_assign_move_assign)) ((default_generator)(sequential)(limited_range))) UNORDERED_TEST( insert, ((trans_map)(trans_node_map)) ((init_type_generator_factory)) ((trans_insert_or_assign_copy_assign)(trans_insert_or_assign_move_assign)) ((default_generator)(sequential)(limited_range))) UNORDERED_TEST( insert_map_sfinae_test, ((map)(node_map))) // clang-format on RUN_TESTS()