unordered/test/cfoa/constructor_tests.cpp

303 lines
8.6 KiB
C++

// Copyright (C) 2023 Christian Mazakas
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "helpers.hpp"
#include <boost/unordered/concurrent_flat_map.hpp>
test::seed_t initialize_seed(4122023);
using test::default_generator;
using test::limited_range;
using test::sequential;
template <class T> struct soccc_allocator
{
int x_ = -1;
using value_type = T;
soccc_allocator() = default;
soccc_allocator(soccc_allocator const&) = default;
soccc_allocator(soccc_allocator&&) = default;
soccc_allocator(int const x) : x_{x} {}
template <class U> soccc_allocator(soccc_allocator<U> const& rhs) : x_{rhs.x_}
{
}
T* allocate(std::size_t n)
{
return static_cast<T*>(::operator new(n * sizeof(T)));
}
void deallocate(T* p, std::size_t) { ::operator delete(p); }
soccc_allocator select_on_container_copy_construction() const
{
return {x_ + 1};
}
bool operator==(soccc_allocator const& rhs) const { return x_ == rhs.x_; }
bool operator!=(soccc_allocator const& rhs) const { return x_ != rhs.x_; }
};
using hasher = stateful_hash;
using key_equal = stateful_key_equal;
using allocator_type = std::allocator<std::pair<raii const, raii> >;
using map_type = boost::unordered::concurrent_flat_map<raii, raii, hasher,
key_equal, allocator_type>;
UNORDERED_AUTO_TEST (default_constructor) {
boost::unordered::concurrent_flat_map<raii, raii> x;
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.size(), 0u);
}
UNORDERED_AUTO_TEST (bucket_count_with_hasher_key_equal_and_allocator) {
raii::reset_counts();
{
map_type x(0);
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
}
{
map_type x(0, hasher(1));
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal());
}
{
map_type x(0, hasher(1), key_equal(2));
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
}
{
map_type x(0, hasher(1), key_equal(2), allocator_type{});
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST(x.get_allocator() == allocator_type{});
}
raii::reset_counts();
}
UNORDERED_AUTO_TEST (soccc) {
boost::unordered::concurrent_flat_map<raii, raii, hasher, key_equal,
soccc_allocator<std::pair<raii const, raii> > >
x;
boost::unordered::concurrent_flat_map<raii, raii, hasher, key_equal,
soccc_allocator<std::pair<raii const, raii> > >
y(x);
BOOST_TEST_EQ(y.hash_function(), x.hash_function());
BOOST_TEST_EQ(y.key_eq(), x.key_eq());
BOOST_TEST(y.get_allocator() != x.get_allocator());
}
namespace {
template <class G> void from_iterator_range(G gen, test::random_generator rg)
{
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_map =
boost::unordered_flat_map<raii, raii>(values.begin(), values.end());
raii::reset_counts();
{
map_type x(values.begin(), values.end());
test_matches_reference(x, reference_map);
BOOST_TEST_GT(x.size(), 0u);
BOOST_TEST_LE(x.size(), values.size());
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == allocator_type{});
if (rg == sequential) {
BOOST_TEST_EQ(x.size(), values.size());
}
raii::reset_counts();
}
{
map_type x(values.begin(), values.end(), 0);
test_matches_reference(x, reference_map);
BOOST_TEST_GT(x.size(), 0u);
BOOST_TEST_LE(x.size(), values.size());
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == allocator_type{});
if (rg == sequential) {
BOOST_TEST_EQ(x.size(), values.size());
}
raii::reset_counts();
}
{
map_type x(values.begin(), values.end(), 0, hasher(1));
test_matches_reference(x, reference_map);
BOOST_TEST_GT(x.size(), 0u);
BOOST_TEST_LE(x.size(), values.size());
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == allocator_type{});
if (rg == sequential) {
BOOST_TEST_EQ(x.size(), values.size());
}
raii::reset_counts();
}
{
map_type x(values.begin(), values.end(), 0, hasher(1), key_equal(2));
test_matches_reference(x, reference_map);
BOOST_TEST_GT(x.size(), 0u);
BOOST_TEST_LE(x.size(), values.size());
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST(x.get_allocator() == allocator_type{});
if (rg == sequential) {
BOOST_TEST_EQ(x.size(), values.size());
}
raii::reset_counts();
}
{
map_type x(values.begin(), values.end(), 0, hasher(1), key_equal(2),
allocator_type{});
test_matches_reference(x, reference_map);
BOOST_TEST_GT(x.size(), 0u);
BOOST_TEST_LE(x.size(), values.size());
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST(x.get_allocator() == allocator_type{});
if (rg == sequential) {
BOOST_TEST_EQ(x.size(), values.size());
}
raii::reset_counts();
}
}
template <class G> void copy_constructor(G gen, test::random_generator rg)
{
{
map_type x(0, hasher(1), key_equal(2), allocator_type{});
map_type y(x);
BOOST_TEST_EQ(y.size(), x.size());
BOOST_TEST_EQ(y.hash_function(), x.hash_function());
BOOST_TEST_EQ(y.key_eq(), x.key_eq());
BOOST_TEST(y.get_allocator() == x.get_allocator());
}
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_map =
boost::unordered_flat_map<raii, raii>(values.begin(), values.end());
raii::reset_counts();
{
map_type x(values.begin(), values.end(), 0, hasher(1), key_equal(2),
allocator_type{});
thread_runner(
values, [&x, &reference_map](
boost::span<typename decltype(values)::value_type> s) {
(void)s;
map_type y(x);
test_matches_reference(x, reference_map);
test_matches_reference(y, reference_map);
BOOST_TEST_EQ(y.size(), x.size());
BOOST_TEST_EQ(y.hash_function(), x.hash_function());
BOOST_TEST_EQ(y.key_eq(), x.key_eq());
BOOST_TEST(y.get_allocator() == x.get_allocator());
});
}
}
template <class G>
void copy_constructor_with_insertion(G gen, test::random_generator rg)
{
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_map =
boost::unordered_flat_map<raii, raii>(values.begin(), values.end());
raii::reset_counts();
{
map_type x(0, hasher(1), key_equal(2), allocator_type{});
auto f = [&x, &values] {
std::this_thread::sleep_for(std::chrono::milliseconds(75));
for (auto const& val : values) {
x.insert(val);
}
};
std::thread t1(f);
std::thread t2(f);
thread_runner(
values, [&x, &reference_map, &values, rg](
boost::span<typename decltype(values)::value_type> s) {
(void)s;
map_type y(x);
BOOST_TEST_GT(y.size(), 0u);
BOOST_TEST_LE(y.size(), values.size());
BOOST_TEST_EQ(y.hash_function(), x.hash_function());
BOOST_TEST_EQ(y.key_eq(), x.key_eq());
BOOST_TEST(y.get_allocator() == x.get_allocator());
x.visit_all([&reference_map, rg](
typename map_type::value_type const& val) {
BOOST_TEST(reference_map.contains(val.first));
if (rg == sequential) {
BOOST_TEST_EQ(val.second, reference_map.find(val.first)->second);
}
});
});
t1.join();
t2.join();
}
}
} // namespace
// clang-format off
UNORDERED_TEST(
from_iterator_range,
((value_type_generator))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
copy_constructor,
((value_type_generator))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
copy_constructor_with_insertion,
((value_type_generator))
((default_generator)(sequential)(limited_range)))
// clang-format on
RUN_TESTS()