unordered/test/cfoa/assign_tests.cpp
joaquintides cd9a592f00
Fixed std::initializer_list assignment issues for open-addressing containers (#277)
* fixed #276

* used range insert, stylistic this->

* assigned non-empty std::initializer_lists
2024-09-02 18:56:13 +02:00

1163 lines
34 KiB
C++

// Copyright (C) 2023 Christian Mazakas
// Copyright (C) 2023-2024 Joaquin M Lopez Munoz
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "helpers.hpp"
#include "../helpers/replace_allocator.hpp"
#include "../objects/non_default_ctble_allocator.hpp"
#include <boost/unordered/concurrent_flat_map.hpp>
#include <boost/unordered/concurrent_flat_set.hpp>
#include <boost/unordered/concurrent_node_map.hpp>
#include <boost/unordered/concurrent_node_set.hpp>
#include <vector>
#if defined(__clang__) && defined(__has_warning)
#if __has_warning("-Wself-assign-overloaded")
#pragma clang diagnostic ignored "-Wself-assign-overloaded"
#endif
#if __has_warning("-Wself-move")
#pragma clang diagnostic ignored "-Wself-move"
#endif
#endif /* defined(__clang__) && defined(__has_warning) */
#if defined(BOOST_GCC) && BOOST_GCC >= 130000
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wself-move"
#endif
test::seed_t initialize_seed{2762556623};
using test::default_generator;
using test::limited_range;
using test::sequential;
using hasher = stateful_hash;
using key_equal = stateful_key_equal;
using map_type = boost::unordered::concurrent_flat_map<raii, raii, hasher,
key_equal, stateful_allocator<std::pair<raii const, raii> > >;
using node_map_type = boost::unordered::concurrent_node_map<raii, raii, hasher,
key_equal, stateful_allocator<std::pair<raii const, raii> > >;
using set_type = boost::unordered::concurrent_flat_set<raii, hasher,
key_equal, stateful_allocator<raii> >;
using node_set_type = boost::unordered::concurrent_node_set<raii, hasher,
key_equal, stateful_allocator<raii> >;
using fancy_map_type = boost::unordered::concurrent_flat_map<raii, raii, hasher,
key_equal, stateful_allocator2<std::pair<raii const, raii> > >;
using fancy_node_map_type = boost::unordered::concurrent_node_map<raii, raii, hasher,
key_equal, stateful_allocator2<std::pair<raii const, raii> > >;
using fancy_set_type = boost::unordered::concurrent_flat_set<raii, hasher,
key_equal, stateful_allocator2<raii> >;
using fancy_node_set_type = boost::unordered::concurrent_node_set<raii, hasher,
key_equal, stateful_allocator2<raii> >;
map_type* test_map;
node_map_type* test_node_map;
set_type* test_set;
node_set_type* test_node_set;
fancy_map_type* fancy_test_map;
fancy_node_map_type* fancy_test_node_map;
fancy_set_type* fancy_test_set;
fancy_node_set_type* fancy_test_node_set;
std::initializer_list<map_type::value_type> map_init_list{
{raii{0}, raii{0}},
{raii{1}, raii{1}},
{raii{2}, raii{2}},
{raii{3}, raii{3}},
{raii{4}, raii{4}},
{raii{5}, raii{5}},
{raii{6}, raii{6}},
{raii{6}, raii{6}},
{raii{7}, raii{7}},
{raii{8}, raii{8}},
{raii{9}, raii{9}},
{raii{10}, raii{10}},
{raii{9}, raii{9}},
{raii{8}, raii{8}},
{raii{7}, raii{7}},
{raii{6}, raii{6}},
{raii{5}, raii{5}},
{raii{4}, raii{4}},
{raii{3}, raii{3}},
{raii{2}, raii{2}},
{raii{1}, raii{1}},
{raii{0}, raii{0}},
};
std::initializer_list<set_type::value_type> set_init_list{
raii{0},
raii{1},
raii{2},
raii{3},
raii{4},
raii{5},
raii{6},
raii{6},
raii{7},
raii{8},
raii{9},
raii{10},
raii{9},
raii{8},
raii{7},
raii{6},
raii{5},
raii{4},
raii{3},
raii{2},
raii{1},
raii{0},
};
auto test_map_and_init_list=std::make_pair(test_map,map_init_list);
auto test_node_map_and_init_list=std::make_pair(test_node_map,map_init_list);
auto test_set_and_init_list=std::make_pair(test_set,set_init_list);
auto test_node_set_and_init_list=std::make_pair(test_node_set,set_init_list);
template <class T,bool POCCA, bool POCMA>
struct poca_allocator: fancy_allocator<T>
{
using super = fancy_allocator<T>;
using pointer = typename super::pointer;
using propagate_on_container_copy_assignment =
std::integral_constant<bool, POCCA>;
using propagate_on_container_move_assignment =
std::integral_constant<bool, POCMA>;
int x_ = -1;
template <class U> struct rebind
{
typedef poca_allocator<U, POCCA, POCMA> other;
};
poca_allocator() = default;
poca_allocator(poca_allocator const&) = default;
poca_allocator(poca_allocator &&) = default;
poca_allocator(int const x) : x_{x} {}
poca_allocator& operator=(poca_allocator const& rhs)
{
if (this != &rhs) {
super::operator=(rhs);
x_ = rhs.x_;
}
return *this;
}
template <class U> poca_allocator(
poca_allocator<U, POCCA, POCMA> const& rhs) :
super{rhs}, x_{rhs.x_}
{
}
pointer allocate(std::size_t n)
{
auto p = super::allocate(n + 1);
reinterpret_cast<char&>(*p) = static_cast<char>(x_);
return p + std::ptrdiff_t(1);
}
void deallocate(pointer p, std::size_t n)
{
p = p + std::ptrdiff_t(-1);
BOOST_TEST_EQ(reinterpret_cast<char&>(*p), static_cast<char>(x_));
super::deallocate(p, n + 1);
}
bool operator==(poca_allocator const& rhs) const { return x_ == rhs.x_; }
bool operator!=(poca_allocator const& rhs) const { return x_ != rhs.x_; }
};
template <class T>
struct pocca_allocator: poca_allocator<T, true, false>
{
pocca_allocator() = default;
pocca_allocator(pocca_allocator const&) = default;
pocca_allocator(pocca_allocator &&) = default;
using poca_allocator<T, true, false>::poca_allocator;
pocca_allocator& operator=(pocca_allocator const&) = default;
};
template <class T>
struct pocma_allocator: poca_allocator<T, false, true>
{
pocma_allocator() = default;
pocma_allocator(pocma_allocator const&) = default;
pocma_allocator(pocma_allocator &&) = default;
using poca_allocator<T, false, true>::poca_allocator;
pocma_allocator& operator=(pocma_allocator const&) = default;
};
namespace {
template <class X, class GF>
void copy_assign(X*, GF gen_factory, test::random_generator rg)
{
using value_type = typename X::value_type;
static constexpr auto value_type_cardinality =
value_cardinality<value_type>::value;
using allocator_type = typename X::allocator_type;
auto gen = gen_factory.template get<X>();
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
// lhs empty, rhs empty
{
raii::reset_counts();
X x(0, hasher(1), key_equal(2), allocator_type(3));
thread_runner(values, [&x](boost::span<value_type> s) {
(void)s;
X y;
BOOST_TEST(x.empty());
BOOST_TEST(y.empty());
y = x;
BOOST_TEST_EQ(x.hash_function(), y.hash_function());
BOOST_TEST_EQ(x.key_eq(), y.key_eq());
BOOST_TEST(x.get_allocator() != y.get_allocator());
});
BOOST_TEST_EQ(raii::destructor, 0u);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(raii::copy_constructor, 0u);
}
// lhs non-empty, rhs empty
{
raii::reset_counts();
X x(0, hasher(1), key_equal(2), allocator_type(3));
auto const old_size = reference_cont.size();
thread_runner(values, [&x, &values](boost::span<value_type> s) {
(void)s;
X y(values.size());
for (auto const& v : values) {
y.insert(v);
}
BOOST_TEST(x.empty());
BOOST_TEST(!y.empty());
y = x;
BOOST_TEST_EQ(x.hash_function(), y.hash_function());
BOOST_TEST_EQ(x.key_eq(), y.key_eq());
BOOST_TEST(x.get_allocator() != y.get_allocator());
BOOST_TEST(y.empty());
});
BOOST_TEST_EQ(
raii::destructor, num_threads * (value_type_cardinality * old_size));
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(
raii::copy_constructor,
num_threads * value_type_cardinality * reference_cont.size());
}
check_raii_counts();
// lhs empty, rhs non-empty
{
raii::reset_counts();
X x(values.size(), hasher(1), key_equal(2), allocator_type(3));
for (auto const& v : values) {
x.insert(v);
}
auto const old_cc = +raii::copy_constructor;
thread_runner(
values, [&x, &reference_cont](boost::span<value_type> s) {
(void)s;
X y;
BOOST_TEST(!x.empty());
BOOST_TEST(y.empty());
y = x;
BOOST_TEST_EQ(x.hash_function(), y.hash_function());
BOOST_TEST_EQ(x.key_eq(), y.key_eq());
BOOST_TEST(x.get_allocator() != y.get_allocator());
test_matches_reference(y, reference_cont);
});
BOOST_TEST_EQ(
raii::destructor, num_threads * value_type_cardinality * x.size());
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(
raii::copy_constructor,
old_cc + (num_threads * value_type_cardinality * x.size()));
}
check_raii_counts();
// lhs non-empty, rhs non-empty
{
raii::reset_counts();
X x(values.size(), hasher(1), key_equal(2), allocator_type(3));
for (auto const& v : values) {
x.insert(v);
}
auto const old_size = x.size();
auto const old_cc = +raii::copy_constructor;
thread_runner(values, [&x, &values](boost::span<value_type> s) {
(void)s;
X y(values.size());
for (auto const& v : values) {
y.insert(v);
}
BOOST_TEST(!x.empty());
BOOST_TEST(!y.empty());
y = x;
BOOST_TEST_EQ(x.hash_function(), y.hash_function());
BOOST_TEST_EQ(x.key_eq(), y.key_eq());
BOOST_TEST(x.get_allocator() != y.get_allocator());
});
BOOST_TEST_EQ(
raii::destructor, 2 * num_threads * value_type_cardinality * old_size);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(
raii::copy_constructor,
old_cc + (2 * num_threads * value_type_cardinality * x.size()));
}
check_raii_counts();
// self-assign
{
raii::reset_counts();
X x(values.size(), hasher(1), key_equal(2), allocator_type(3));
for (auto const& v : values) {
x.insert(v);
}
auto const old_cc = +raii::copy_constructor;
thread_runner(
values, [&x, &reference_cont](boost::span<value_type> s) {
(void)s;
BOOST_TEST(!x.empty());
x = x;
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST(x.get_allocator() == allocator_type(3));
test_matches_reference(x, reference_cont);
});
BOOST_TEST_EQ(raii::destructor, 0u);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(raii::copy_constructor, old_cc);
}
check_raii_counts();
// propagation
{
using pocca_container_type = replace_allocator<X, pocca_allocator>;
using pocca_allocator_type =
typename pocca_container_type::allocator_type;
raii::reset_counts();
pocca_container_type x(
values.size(), hasher(1), key_equal(2), pocca_allocator_type(3));
for (auto const& v : values) {
x.insert(v);
}
auto const old_size = x.size();
auto const old_cc = +raii::copy_constructor;
thread_runner(values, [&x, &values](boost::span<value_type> s) {
(void)s;
pocca_container_type y(values.size());
for (auto const& v : values) {
y.insert(v);
}
BOOST_TEST(!x.empty());
BOOST_TEST(!y.empty());
BOOST_TEST(x.get_allocator() != y.get_allocator());
y = x;
BOOST_TEST_EQ(x.hash_function(), y.hash_function());
BOOST_TEST_EQ(x.key_eq(), y.key_eq());
BOOST_TEST(x.get_allocator() == y.get_allocator());
});
BOOST_TEST_EQ(
raii::destructor, 2 * num_threads * value_type_cardinality * old_size);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(
raii::copy_constructor,
old_cc + (2 * num_threads * value_type_cardinality * x.size()));
}
check_raii_counts();
}
template <class X, class GF>
void move_assign(X*, GF gen_factory, test::random_generator rg)
{
using value_type = typename X::value_type;
static constexpr auto value_type_cardinality =
value_cardinality<value_type>::value;
using allocator_type = typename X::allocator_type;
using pocma_container_type = replace_allocator<X, pocma_allocator>;
using pocma_allocator_type = typename pocma_container_type::allocator_type;
auto gen = gen_factory.template get<X>();
BOOST_STATIC_ASSERT(
std::is_nothrow_move_assignable<
replace_allocator<X, std::allocator> >::value);
BOOST_STATIC_ASSERT(
!std::is_nothrow_move_assignable<
replace_allocator<X, stateful_allocator> >::value);
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
// move assignment has more complex requirements than copying
// equal allocators:
// lhs empty, rhs non-empty
// lhs non-empty, rhs empty
// lhs non-empty, rhs non-empty
//
// unequal allocators:
// lhs non-empty, rhs non-empty
//
// pocma
// self move-assign
// lhs empty, rhs empty
{
raii::reset_counts();
X x(0, hasher(1), key_equal(2), allocator_type(3));
std::atomic<unsigned> num_transfers{0};
thread_runner(
values, [&x, &num_transfers](boost::span<value_type> s) {
(void)s;
X y(0, hasher(2), key_equal(1), allocator_type(3));
BOOST_TEST(x.empty());
BOOST_TEST(y.empty());
BOOST_TEST(x.get_allocator() == y.get_allocator());
y = std::move(x);
if (y.hash_function() == hasher(1)) {
++num_transfers;
BOOST_TEST_EQ(y.key_eq(), key_equal(2));
} else {
BOOST_TEST_EQ(y.hash_function(), hasher(2));
BOOST_TEST_EQ(y.key_eq(), key_equal(1));
}
BOOST_TEST_EQ(x.hash_function(), hasher(2));
BOOST_TEST_EQ(x.key_eq(), key_equal(1));
BOOST_TEST(x.get_allocator() == y.get_allocator());
});
BOOST_TEST_EQ(num_transfers, 1u);
BOOST_TEST_EQ(raii::destructor, 0u);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(raii::copy_constructor, 0u);
}
// lhs non-empty, rhs empty
{
raii::reset_counts();
X x(0, hasher(1), key_equal(2), allocator_type(3));
std::atomic<unsigned> num_transfers{0};
thread_runner(
values, [&x, &values, &num_transfers](boost::span<value_type> s) {
(void)s;
X y(values.size(), hasher(2), key_equal(1), allocator_type(3));
for (auto const& v : values) {
y.insert(v);
}
BOOST_TEST(x.empty());
BOOST_TEST(!y.empty());
BOOST_TEST(x.get_allocator() == y.get_allocator());
y = std::move(x);
if (y.hash_function() == hasher(1)) {
++num_transfers;
BOOST_TEST_EQ(y.key_eq(), key_equal(2));
} else {
BOOST_TEST_EQ(y.hash_function(), hasher(2));
BOOST_TEST_EQ(y.key_eq(), key_equal(1));
}
BOOST_TEST_EQ(x.hash_function(), hasher(2));
BOOST_TEST_EQ(x.key_eq(), key_equal(1));
BOOST_TEST(x.get_allocator() == y.get_allocator());
BOOST_TEST(y.empty());
});
BOOST_TEST_EQ(num_transfers, 1u);
BOOST_TEST_EQ(
raii::destructor, num_threads * value_type_cardinality * reference_cont.size());
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(
raii::copy_constructor,
num_threads * value_type_cardinality * reference_cont.size());
}
check_raii_counts();
// lhs empty, rhs non-empty
{
raii::reset_counts();
X x(values.size(), hasher(1), key_equal(2), allocator_type(3));
for (auto const& v : values) {
x.insert(v);
}
auto const old_cc = +raii::copy_constructor;
auto const old_mc = +raii::move_constructor;
std::atomic<unsigned> num_transfers{0};
thread_runner(values,
[&x, &reference_cont, &num_transfers](boost::span<value_type> s) {
(void)s;
X y(allocator_type(3));
BOOST_TEST(y.empty());
BOOST_TEST(x.get_allocator() == y.get_allocator());
y = std::move(x);
if (!y.empty()) {
++num_transfers;
test_matches_reference(y, reference_cont);
BOOST_TEST_EQ(y.hash_function(), hasher(1));
BOOST_TEST_EQ(y.key_eq(), key_equal(2));
} else {
BOOST_TEST_EQ(y.hash_function(), hasher());
BOOST_TEST_EQ(y.key_eq(), key_equal());
}
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == y.get_allocator());
});
BOOST_TEST_EQ(num_transfers, 1u);
BOOST_TEST_EQ(
raii::destructor, value_type_cardinality * reference_cont.size());
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(raii::copy_constructor, old_cc);
BOOST_TEST_EQ(raii::move_constructor, old_mc);
}
check_raii_counts();
// lhs non-empty, rhs non-empty
{
raii::reset_counts();
X x(values.size(), hasher(1), key_equal(2), allocator_type(3));
for (auto const& v : values) {
x.insert(v);
}
auto const old_size = x.size();
auto const old_cc = +raii::copy_constructor;
auto const old_mc = +raii::move_constructor;
std::atomic<unsigned> num_transfers{0};
thread_runner(values, [&x, &values, &num_transfers, &reference_cont](
boost::span<value_type> s) {
(void)s;
X y(values.size(), hasher(2), key_equal(1), allocator_type(3));
for (auto const& v : values) {
y.insert(v);
}
BOOST_TEST(!y.empty());
BOOST_TEST(x.get_allocator() == y.get_allocator());
y = std::move(x);
if (y.hash_function() == hasher(1)) {
++num_transfers;
test_matches_reference(y, reference_cont);
BOOST_TEST_EQ(y.key_eq(), key_equal(2));
} else {
BOOST_TEST_EQ(y.hash_function(), hasher(2));
BOOST_TEST_EQ(y.key_eq(), key_equal(1));
}
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.hash_function(), hasher(2));
BOOST_TEST_EQ(x.key_eq(), key_equal(1));
BOOST_TEST(x.get_allocator() == y.get_allocator());
});
BOOST_TEST_EQ(num_transfers, 1u);
BOOST_TEST_EQ(
raii::destructor,
value_type_cardinality * old_size +
num_threads * value_type_cardinality * old_size);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(raii::move_constructor, old_mc);
BOOST_TEST_EQ(
raii::copy_constructor,
old_cc + (num_threads * value_type_cardinality * reference_cont.size()));
}
check_raii_counts();
// lhs non-empty, rhs non-empty, unequal allocators, no propagation
{
raii::reset_counts();
X x(values.size(), hasher(1), key_equal(2), allocator_type(3));
for (auto const& v : values) {
x.insert(v);
}
auto const old_size = x.size();
auto const old_cc = +raii::copy_constructor;
auto const old_mc = +raii::move_constructor;
std::atomic<unsigned> num_transfers{0};
thread_runner(values, [&x, &values, &num_transfers, &reference_cont](
boost::span<value_type> s) {
(void)s;
X y(values.size(), hasher(2), key_equal(1), allocator_type(13));
for (auto const& v : values) {
y.insert(v);
}
BOOST_TEST(
!boost::allocator_is_always_equal<allocator_type>::type::value);
BOOST_TEST(!boost::allocator_propagate_on_container_move_assignment<
allocator_type>::type::value);
BOOST_TEST(!y.empty());
BOOST_TEST(x.get_allocator() != y.get_allocator());
y = std::move(x);
if (y.hash_function() == hasher(1)) {
++num_transfers;
test_matches_reference(y, reference_cont);
BOOST_TEST_EQ(y.key_eq(), key_equal(2));
} else {
BOOST_TEST_EQ(y.hash_function(), hasher(2));
BOOST_TEST_EQ(y.key_eq(), key_equal(1));
}
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.hash_function(), hasher(2));
BOOST_TEST_EQ(x.key_eq(), key_equal(1));
BOOST_TEST(x.get_allocator() != y.get_allocator());
});
BOOST_TEST_EQ(num_transfers, 1u);
BOOST_TEST_EQ(
raii::destructor,
2 * value_type_cardinality * old_size +
num_threads * value_type_cardinality * old_size);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(
raii::move_constructor, old_mc + value_type_cardinality * old_size);
BOOST_TEST_EQ(
raii::copy_constructor,
old_cc + (num_threads * value_type_cardinality * reference_cont.size()));
}
check_raii_counts();
// lhs non-empty, rhs non-empty, pocma
{
raii::reset_counts();
pocma_container_type x(
values.size(), hasher(1), key_equal(2), pocma_allocator_type(3));
for (auto const& v : values) {
x.insert(v);
}
auto const old_size = x.size();
auto const old_cc = +raii::copy_constructor;
auto const old_mc = +raii::move_constructor;
std::atomic<unsigned> num_transfers{0};
thread_runner(values, [&x, &values, &num_transfers, &reference_cont](
boost::span<value_type> s) {
(void)s;
pocma_container_type y(
values.size(), hasher(2), key_equal(1), pocma_allocator_type(13));
for (auto const& v : values) {
y.insert(v);
}
BOOST_TEST(!y.empty());
BOOST_TEST(x.get_allocator() != y.get_allocator());
y = std::move(x);
if (y.hash_function() == hasher(1)) {
++num_transfers;
test_matches_reference(y, reference_cont);
BOOST_TEST_EQ(y.key_eq(), key_equal(2));
} else {
BOOST_TEST_EQ(y.hash_function(), hasher(2));
BOOST_TEST_EQ(y.key_eq(), key_equal(1));
}
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.hash_function(), hasher(2));
BOOST_TEST_EQ(x.key_eq(), key_equal(1));
BOOST_TEST(x.get_allocator() == y.get_allocator());
});
BOOST_TEST_EQ(num_transfers, 1u);
BOOST_TEST_EQ(
raii::destructor,
value_type_cardinality * old_size +
num_threads * value_type_cardinality * old_size);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(raii::move_constructor, old_mc);
BOOST_TEST_EQ(
raii::copy_constructor,
old_cc + (num_threads * value_type_cardinality * reference_cont.size()));
}
check_raii_counts();
// self-assign
{
raii::reset_counts();
X x(values.size(), hasher(1), key_equal(2), allocator_type(3));
for (auto const& v : values) {
x.insert(v);
}
auto const old_cc = +raii::copy_constructor;
auto const old_mc = +raii::move_constructor;
thread_runner(
values, [&x, &reference_cont](boost::span<value_type> s) {
(void)s;
x = std::move(x);
BOOST_TEST(!x.empty());
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST(x.get_allocator() == allocator_type(3));
test_matches_reference(x, reference_cont);
});
BOOST_TEST_EQ(raii::destructor, 0u);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(raii::move_constructor, old_mc);
BOOST_TEST_EQ(raii::copy_constructor, old_cc);
}
check_raii_counts();
}
template <class X, class IL>
void initializer_list_assign(std::pair<X*, IL> p)
{
using value_type = typename X::value_type;
static constexpr auto value_type_cardinality =
value_cardinality<value_type>::value;
using allocator_type = typename X::allocator_type;
auto init_list = p.second;
auto reference_cont = reference_container<X>(
init_list.begin(), init_list.end());
auto v = std::vector<value_type>(init_list.begin(), init_list.end());
{
raii::reset_counts();
X x(0, hasher(1), key_equal(2), allocator_type(3));
thread_runner(v, [&x, &init_list](boost::span<value_type> s) {
(void)s;
x = init_list;
});
test_matches_reference(x, reference_cont);
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST(x.get_allocator() == allocator_type(3));
BOOST_TEST_EQ(
raii::copy_constructor,
num_threads * value_type_cardinality * x.size());
BOOST_TEST_EQ(
raii::destructor,
(num_threads - 1) * value_type_cardinality * x.size());
BOOST_TEST_EQ(raii::move_constructor, 0u);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
check_raii_counts();
}
template <class X, class GF>
void initializer_list_assign_gh276(
X*, GF gen_factory, test::random_generator rg)
{
// https://github.com/boostorg/unordered/issues/276
using replaced_allocator_container = test::replace_allocator<
X, test::non_default_ctble_allocator<int> >;
using replaced_allocator_type =
typename replaced_allocator_container::allocator_type;
auto gen = gen_factory.template get<X>();
auto values = make_random_values(4, [&] { return gen(rg); });
replaced_allocator_container
x(replaced_allocator_type(0)),
y(values.begin(), values.end(), replaced_allocator_type(0));
x = {values[0], values[1], values[2], values[3]};
BOOST_TEST(x == y);
}
template <class X, class GF>
void insert_and_assign(X*, GF gen_factory, test::random_generator rg)
{
using allocator_type = typename X::allocator_type;
auto gen = gen_factory.template get<X>();
std::thread t1, t2, t3;
boost::compat::latch start_latch(2), end_latch(2);
auto v1 = make_random_values(1024 * 16, [&] { return gen(rg); });
auto v2 = v1;
shuffle_values(v2);
auto reference_cont = reference_container<X>(v1.begin(), v1.end());
raii::reset_counts();
{
X c1(v1.size(), hasher(1), key_equal(2), allocator_type(3));
X c2(v2.size(), hasher(1), key_equal(2), allocator_type(3));
t1 = std::thread([&v1, &c1, &start_latch, &end_latch] {
start_latch.arrive_and_wait();
for (auto const& v : v1) {
c1.insert(v);
}
end_latch.arrive_and_wait();
});
t2 = std::thread([&v2, &c2, &end_latch, &start_latch] {
start_latch.arrive_and_wait();
for (auto const& v : v2) {
c2.insert(v);
}
end_latch.arrive_and_wait();
});
std::atomic<unsigned> num_assignments{0};
t3 = std::thread([&c1, &c2, &end_latch, &num_assignments] {
while (c1.empty() && c2.empty()) {
std::this_thread::sleep_for(std::chrono::microseconds(10));
}
do {
c1 = c2;
std::this_thread::sleep_for(std::chrono::milliseconds(100));
c2 = c1;
std::this_thread::sleep_for(std::chrono::milliseconds(100));
++num_assignments;
} while (!end_latch.try_wait());
});
t1.join();
t2.join();
t3.join();
BOOST_TEST_GT(num_assignments, 0u);
test_fuzzy_matches_reference(c1, reference_cont, rg);
test_fuzzy_matches_reference(c2, reference_cont, rg);
}
check_raii_counts();
}
template <class X, class GF>
void nonconcurrent_move_assign(X*, GF gen_factory, test::random_generator rg)
{
using value_type = typename X::value_type;
static constexpr auto value_type_cardinality =
value_cardinality<value_type>::value;
using allocator_type = typename X::allocator_type;
auto gen = gen_factory.template get<X>();
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
/*
* basically test that a temporary container is materialized and we
* move-assign from that
*
* we don't need to be super rigorous here because we already have tests for
* container assignment, we're just testing that a temporary is materialized
*/
{
raii::reset_counts();
nonconcurrent_container<X> nonc(
values.begin(), values.end(), values.size(),
hasher(1), key_equal(2), allocator_type(3));
X x(0, hasher(2), key_equal(1), allocator_type(3));
BOOST_TEST(nonc.get_allocator() == x.get_allocator());
x = std::move(nonc);
BOOST_TEST(nonc.empty());
BOOST_TEST_EQ(x.size(), reference_cont.size());
test_fuzzy_matches_reference(x, reference_cont, rg);
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST_EQ(
raii::copy_constructor, value_type_cardinality * reference_cont.size());
BOOST_TEST_EQ(raii::destructor, 0u);
BOOST_TEST_EQ(raii::move_constructor, 0u);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
check_raii_counts();
{
raii::reset_counts();
X x(values.begin(), values.end(), values.size(), hasher(1),
key_equal(2), allocator_type(3));
nonconcurrent_container<X> nonc(
0, hasher(2), key_equal(1), allocator_type(3));
BOOST_TEST(nonc.get_allocator() == x.get_allocator());
nonc = std::move(x);
BOOST_TEST(x.empty());
BOOST_TEST_EQ(nonc.size(), reference_cont.size());
BOOST_TEST_EQ(nonc.hash_function(), hasher(1));
BOOST_TEST_EQ(nonc.key_eq(), key_equal(2));
BOOST_TEST_EQ(
raii::copy_constructor, value_type_cardinality * reference_cont.size());
BOOST_TEST_EQ(raii::destructor, 0u);
BOOST_TEST_EQ(raii::move_constructor, 0u);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
check_raii_counts();
{
raii::reset_counts();
nonconcurrent_container<X> nonc(
values.begin(), values.end(), values.size(),
hasher(1), key_equal(2), allocator_type(3));
X x(0, hasher(2), key_equal(1), allocator_type(4));
BOOST_TEST(nonc.get_allocator() != x.get_allocator());
x = std::move(nonc);
BOOST_TEST(nonc.empty());
BOOST_TEST_EQ(x.size(), reference_cont.size());
test_fuzzy_matches_reference(x, reference_cont, rg);
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST_EQ(
raii::copy_constructor, value_type_cardinality * reference_cont.size());
BOOST_TEST_EQ(
raii::destructor, value_type_cardinality * reference_cont.size());
BOOST_TEST_EQ(
raii::move_constructor, value_type_cardinality * reference_cont.size());
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
check_raii_counts();
{
raii::reset_counts();
X x(values.begin(), values.end(), values.size(), hasher(1),
key_equal(2), allocator_type(3));
nonconcurrent_container<X> nonc(
0, hasher(2), key_equal(1), allocator_type(4));
BOOST_TEST(nonc.get_allocator() != x.get_allocator());
nonc = std::move(x);
BOOST_TEST(x.empty());
BOOST_TEST_EQ(nonc.size(), reference_cont.size());
BOOST_TEST_EQ(nonc.hash_function(), hasher(1));
BOOST_TEST_EQ(nonc.key_eq(), key_equal(2));
BOOST_TEST_EQ(
raii::copy_constructor, value_type_cardinality * reference_cont.size());
BOOST_TEST_EQ(
raii::destructor, value_type_cardinality * reference_cont.size());
BOOST_TEST_EQ(
raii::move_constructor, value_type_cardinality * reference_cont.size());
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
check_raii_counts();
}
} // namespace
// clang-format off
UNORDERED_TEST(
copy_assign,
((test_map)(test_node_map)(test_set)(test_node_set))
((value_type_generator_factory))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
move_assign,
((test_map)(test_node_map)(test_set)(test_node_set))
((value_type_generator_factory))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
initializer_list_assign,
((test_map_and_init_list)(test_node_map_and_init_list)
(test_set_and_init_list)(test_node_set_and_init_list)))
UNORDERED_TEST(
initializer_list_assign_gh276,
((test_map)(test_node_map)(test_set)(test_node_set))
((value_type_generator_factory))
((default_generator)))
UNORDERED_TEST(
insert_and_assign,
((test_map)(test_node_map)(test_set)(test_node_set))
((init_type_generator_factory))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
nonconcurrent_move_assign,
((test_map)(test_node_map)(test_set)(test_node_set)
(fancy_test_map)(fancy_test_node_map)(fancy_test_set)(fancy_test_node_set))
((init_type_generator_factory))
((default_generator)(sequential)(limited_range)))
// clang-format on
RUN_TESTS()