unordered/test/cfoa/helpers.hpp
joaquintides f734e399e3
Feature/concurrent node containers (#271)
* added concurrent node containers

* removed spurious typename

* added missing includes

* avoided unused param warning

* worked around Clang bug

* s/{}/() to work around GCC4.8 problems with aggregate initialization

* used /bigobj for cfoa/visit_tests.cpp

* suppressed localized maybe-uninitialized warnings

* fixed comments

* added /bigobj to cfoa/insert_tests.cpp

* instrumented double exact comparison to spot a spurious error

* fixed pedantic error

* refactored byte_span machinery

* compromised on sub-epsilon equality for doubles that should be identical

* documented boost::concurrent_node_(map|set)

* added concurrent_node_set

* added missing AlternativeType

* tested empty node insertion

* tested node_handle allocator management

* added nonassignable_allocator and node_handle_allocator_swap_tests

* fixed warning disabling

* silenced spurious GCC warning

* broadened scope of previous pragma

* broadened even more

* worked around spurious constexpr-related msvc-14.0 bug
https://godbolt.org/z/v78545Ebf

* added workaround back

* replaced previous workaround with built-in one

* added workaround back on top of built-in solution (which doesn't work 100% of the time)
2024-08-25 18:34:58 +02:00

693 lines
17 KiB
C++

// Copyright (C) 2023 Christian Mazakas
// Copyright (C) 2023-2024 Joaquin M Lopez Munoz
// Copyright (C) 2024 Braden Ganetsky
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_TEST_CFOA_HELPERS_HPP
#define BOOST_UNORDERED_TEST_CFOA_HELPERS_HPP
#include "../helpers/generators.hpp"
#include "../helpers/helpers.hpp"
#include "../helpers/pmr.hpp"
#include "../helpers/test.hpp"
#include "common_helpers.hpp"
#include <boost/compat/latch.hpp>
#include <boost/container_hash/hash.hpp>
#include <boost/core/span.hpp>
#include <boost/unordered/concurrent_flat_map_fwd.hpp>
#include <boost/unordered/concurrent_flat_set_fwd.hpp>
#include <boost/unordered/unordered_flat_map.hpp>
#include <boost/unordered/unordered_flat_set.hpp>
#include <algorithm>
#include <atomic>
#include <cmath>
#include <condition_variable>
#include <cstddef>
#include <iostream>
#include <mutex>
#include <random>
#include <thread>
#include <type_traits>
#include <vector>
static std::size_t const num_threads =
std::max(2u, std::thread::hardware_concurrency());
struct transp_hash
{
using is_transparent = void;
template <class T> std::size_t operator()(T const& t) const noexcept
{
return boost::hash<T>()(t);
}
};
struct transp_key_equal
{
using is_transparent = void;
template <class T, class U> bool operator()(T const& lhs, U const& rhs) const
{
return lhs == rhs;
}
};
struct stateful_hash
{
int x_ = -1;
stateful_hash() = default;
stateful_hash(stateful_hash const&) = default;
stateful_hash(stateful_hash&& rhs) noexcept
{
auto tmp = x_;
x_ = rhs.x_;
rhs.x_ = tmp;
}
stateful_hash(int const x) : x_{x} {}
template <class T> std::size_t operator()(T const& t) const noexcept
{
std::size_t h = static_cast<std::size_t>(x_);
boost::hash_combine(h, t);
return h;
}
bool operator==(stateful_hash const& rhs) const { return x_ == rhs.x_; }
friend std::ostream& operator<<(std::ostream& os, stateful_hash const& rhs)
{
os << "{ x_: " << rhs.x_ << " }";
return os;
}
friend void swap(stateful_hash& lhs, stateful_hash& rhs) noexcept
{
if (&lhs != &rhs) {
std::swap(lhs.x_, rhs.x_);
}
}
};
struct stateful_key_equal
{
int x_ = -1;
stateful_key_equal() = default;
stateful_key_equal(stateful_key_equal const&) = default;
stateful_key_equal(stateful_key_equal&& rhs) noexcept
{
auto tmp = x_;
x_ = rhs.x_;
rhs.x_ = tmp;
}
stateful_key_equal(int const x) : x_{x} {}
template <class T, class U> bool operator()(T const& t, U const& u) const
{
return t == u;
}
bool operator==(stateful_key_equal const& rhs) const { return x_ == rhs.x_; }
friend std::ostream& operator<<(
std::ostream& os, stateful_key_equal const& rhs)
{
os << "{ x_: " << rhs.x_ << " }";
return os;
}
friend void swap(stateful_key_equal& lhs, stateful_key_equal& rhs) noexcept
{
if (&lhs != &rhs) {
std::swap(lhs.x_, rhs.x_);
}
}
};
template <class T> struct cfoa_ptr
{
private:
template <class> friend struct stateful_allocator2;
T* p_ = nullptr;
cfoa_ptr(T* p) : p_(p) {}
public:
using element_type = T;
cfoa_ptr() = default;
cfoa_ptr(std::nullptr_t) : p_(nullptr){};
template <class U> using rebind = cfoa_ptr<U>;
operator bool() const { return !!p_; }
template <typename Q = T>
Q& operator*() const noexcept { return *p_; }
T* operator->() const noexcept { return p_; }
template<typename Q = T>
static cfoa_ptr<Q> pointer_to(Q& r) { return {std::addressof(r)}; }
};
template <class T> struct stateful_allocator
{
int x_ = -1;
using value_type = T;
stateful_allocator() = default;
stateful_allocator(stateful_allocator const&) = default;
stateful_allocator(stateful_allocator&&) = default;
stateful_allocator(int const x) : x_{x} {}
template <class U>
stateful_allocator(stateful_allocator<U> const& rhs) : x_{rhs.x_}
{
}
T* allocate(std::size_t n)
{
return static_cast<T*>(::operator new(n * sizeof(T)));
}
void deallocate(T* p, std::size_t) { ::operator delete(p); }
bool operator==(stateful_allocator const& rhs) const { return x_ == rhs.x_; }
bool operator!=(stateful_allocator const& rhs) const { return x_ != rhs.x_; }
};
template <class T> struct stateful_allocator2
{
int x_ = -1;
using value_type = T;
using pointer = cfoa_ptr<T>;
stateful_allocator2() = default;
stateful_allocator2(stateful_allocator2 const&) = default;
stateful_allocator2(stateful_allocator2&&) = default;
stateful_allocator2(int const x) : x_{x} {}
template <class U>
stateful_allocator2(stateful_allocator2<U> const& rhs) : x_{rhs.x_}
{
}
pointer allocate(std::size_t n)
{
return {static_cast<T*>(::operator new(n * sizeof(T)))};
}
void deallocate(pointer p, std::size_t) { ::operator delete(p.p_); }
bool operator==(stateful_allocator2 const& rhs) const { return x_ == rhs.x_; }
bool operator!=(stateful_allocator2 const& rhs) const { return x_ != rhs.x_; }
};
template <class Tag>
struct basic_raii
{
static std::atomic<std::uint32_t> default_constructor;
static std::atomic<std::uint32_t> copy_constructor;
static std::atomic<std::uint32_t> move_constructor;
static std::atomic<std::uint32_t> destructor;
static std::atomic<std::uint32_t> copy_assignment;
static std::atomic<std::uint32_t> move_assignment;
int x_ = -1;
basic_raii() { ++default_constructor; }
basic_raii(int const x) : x_{x} { ++default_constructor; }
basic_raii(basic_raii const& rhs) : x_{rhs.x_} { ++copy_constructor; }
basic_raii(basic_raii&& rhs) noexcept : x_{rhs.x_}
{
rhs.x_ = -1;
++move_constructor;
}
~basic_raii() { ++destructor; }
basic_raii& operator=(basic_raii const& rhs)
{
++copy_assignment;
if (this != &rhs) {
x_ = rhs.x_;
}
return *this;
}
basic_raii& operator=(basic_raii&& rhs) noexcept
{
++move_assignment;
if (this != &rhs) {
x_ = rhs.x_;
rhs.x_ = -1;
}
return *this;
}
friend bool operator==(basic_raii const& lhs, basic_raii const& rhs)
{
return lhs.x_ == rhs.x_;
}
friend bool operator!=(basic_raii const& lhs, basic_raii const& rhs)
{
return !(lhs == rhs);
}
friend bool operator==(basic_raii const& lhs, int const x) { return lhs.x_ == x; }
friend bool operator!=(basic_raii const& lhs, int const x)
{
return !(lhs.x_ == x);
}
friend bool operator==(int const x, basic_raii const& rhs) { return rhs.x_ == x; }
friend bool operator!=(int const x, basic_raii const& rhs)
{
return !(rhs.x_ == x);
}
friend std::ostream& operator<<(std::ostream& os, basic_raii const& rhs)
{
os << "{ x_: " << rhs.x_ << " }";
return os;
}
friend std::ostream& operator<<(
std::ostream& os, std::pair<basic_raii const, basic_raii> const& rhs)
{
os << "pair<" << rhs.first << ", " << rhs.second << ">";
return os;
}
static void reset_counts()
{
default_constructor = 0;
copy_constructor = 0;
move_constructor = 0;
destructor = 0;
copy_assignment = 0;
move_assignment = 0;
}
friend void swap(basic_raii& lhs, basic_raii& rhs) { std::swap(lhs.x_, rhs.x_); }
};
template <class Tag> std::atomic<std::uint32_t> basic_raii<Tag>::default_constructor(0);
template <class Tag> std::atomic<std::uint32_t> basic_raii<Tag>::copy_constructor(0);
template <class Tag> std::atomic<std::uint32_t> basic_raii<Tag>::move_constructor(0);
template <class Tag> std::atomic<std::uint32_t> basic_raii<Tag>::destructor(0);
template <class Tag> std::atomic<std::uint32_t> basic_raii<Tag>::copy_assignment(0);
template <class Tag> std::atomic<std::uint32_t> basic_raii<Tag>::move_assignment(0);
struct raii_tag_
{
};
class raii : public basic_raii<raii_tag_>
{
using basic_raii::basic_raii;
};
template <class Tag>
std::size_t hash_value(basic_raii<Tag> const& r) noexcept
{
boost::hash<int> hasher;
return hasher(r.x_);
}
std::size_t hash_value(raii const& r) noexcept
{
boost::hash<int> hasher;
return hasher(r.x_);
}
namespace std {
template <class Tag> struct hash<basic_raii<Tag>>
{
std::size_t operator()(basic_raii<Tag> const& r) const noexcept
{
return hash_value(r);
}
};
template <> struct hash<raii>
{
std::size_t operator()(raii const& r) const noexcept
{
return hash_value(r);
}
};
} // namespace std
template <class F>
auto make_random_values(std::size_t count, F f) -> std::vector<decltype(f())>
{
using vector_type = std::vector<decltype(f())>;
vector_type v;
v.reserve(count);
for (std::size_t i = 0; i < count; ++i) {
v.emplace_back(f());
}
return v;
}
template <typename K>
struct value_generator
{
using value_type = raii;
value_type operator()(test::random_generator rg)
{
int* p = nullptr;
int a = generate(p, rg);
return value_type(a);
}
};
template <typename K, typename V>
struct value_generator<std::pair<K, V> >
{
static constexpr bool const_key = std::is_const<K>::value;
static constexpr bool const_mapped = std::is_const<V>::value;
using value_type = std::pair<
typename std::conditional<const_key, raii const, raii>::type,
typename std::conditional<const_mapped, raii const, raii>::type>;
value_type operator()(test::random_generator rg)
{
int* p = nullptr;
int a = generate(p, rg);
int b = generate(p, rg);
return std::make_pair(raii{a}, raii{b});
}
};
struct value_type_generator_factory_type
{
template <typename Container>
value_generator<typename Container::value_type> get() { return {}; }
} value_type_generator_factory;
struct init_type_generator_factory_type
{
template <typename Container>
value_generator<typename Container::init_type> get() { return {}; }
} init_type_generator_factory;
template <class T>
std::vector<boost::span<T> > split(
boost::span<T> s, std::size_t const nt /* num threads*/)
{
std::vector<boost::span<T> > subslices;
subslices.reserve(nt);
auto a = s.size() / nt;
auto b = a;
if (s.size() % nt != 0) {
++b;
}
auto num_a = nt;
auto num_b = std::size_t{0};
if (nt * b > s.size()) {
num_a = nt * b - s.size();
num_b = nt - num_a;
}
auto sub_b = s.subspan(0, num_b * b);
auto sub_a = s.subspan(num_b * b);
for (std::size_t i = 0; i < num_b; ++i) {
subslices.push_back(sub_b.subspan(i * b, b));
}
for (std::size_t i = 0; i < num_a; ++i) {
auto const is_last = i == (num_a - 1);
subslices.push_back(
sub_a.subspan(i * a, is_last ? boost::dynamic_extent : a));
}
return subslices;
}
template <class T, class F> void thread_runner(std::vector<T>& values, F f)
{
boost::compat::latch latch(static_cast<std::ptrdiff_t>(num_threads));
std::vector<std::thread> threads;
auto subslices = split<T>(values, num_threads);
for (std::size_t i = 0; i < num_threads; ++i) {
threads.emplace_back([&f, &subslices, i, &latch] {
latch.arrive_and_wait();
auto s = subslices[i];
f(s);
});
}
for (auto& t : threads) {
t.join();
}
}
template <class T> using span_value_type = typename T::value_type;
void check_raii_counts()
{
BOOST_TEST_GT(raii::destructor, 0u);
BOOST_TEST_EQ(
raii::default_constructor + raii::copy_constructor + raii::move_constructor,
raii::destructor);
}
template <class T> void shuffle_values(std::vector<T>& v)
{
std::random_device rd;
std::mt19937 g(rd());
std::shuffle(v.begin(), v.end(), g);
}
template <class T> class ptr;
template <class T> class const_ptr;
template <class T> class fancy_allocator;
struct void_ptr
{
template <typename T> friend class ptr;
private:
void* ptr_;
public:
void_ptr() : ptr_(0) {}
template <typename T> explicit void_ptr(ptr<T> const& x) : ptr_(x.ptr_) {}
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(void_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(void_ptr const& x) const { return ptr_ != x.ptr_; }
};
class void_const_ptr
{
template <typename T> friend class const_ptr;
private:
void* ptr_;
public:
void_const_ptr() : ptr_(0) {}
template <typename T>
explicit void_const_ptr(const_ptr<T> const& x) : ptr_(x.ptr_)
{
}
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(void_const_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(void_const_ptr const& x) const { return ptr_ != x.ptr_; }
};
template <class T> class ptr
{
friend class fancy_allocator<T>;
friend class const_ptr<T>;
friend struct void_ptr;
T* ptr_;
ptr(T* x) : ptr_(x) {}
public:
ptr() : ptr_(0) {}
ptr(std::nullptr_t) : ptr_(nullptr) {}
explicit ptr(void_ptr const& x) : ptr_((T*)x.ptr_) {}
T& operator*() const { return *ptr_; }
T* operator->() const { return ptr_; }
ptr& operator++()
{
++ptr_;
return *this;
}
ptr operator++(int)
{
ptr tmp(*this);
++ptr_;
return tmp;
}
ptr operator+(std::ptrdiff_t s) const { return ptr<T>(ptr_ + s); }
friend ptr operator+(std::ptrdiff_t s, ptr p) { return ptr<T>(s + p.ptr_); }
std::ptrdiff_t operator-(ptr p) const { return ptr_ - p.ptr_; }
ptr operator-(std::ptrdiff_t s) const { return ptr(ptr_ - s); }
T& operator[](std::ptrdiff_t s) const { return ptr_[s]; }
bool operator!() const { return !ptr_; }
static ptr pointer_to(T& p) { return ptr(std::addressof(p)); }
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(ptr const& x) const { return ptr_ != x.ptr_; }
bool operator<(ptr const& x) const { return ptr_ < x.ptr_; }
bool operator>(ptr const& x) const { return ptr_ > x.ptr_; }
bool operator<=(ptr const& x) const { return ptr_ <= x.ptr_; }
bool operator>=(ptr const& x) const { return ptr_ >= x.ptr_; }
};
template <class T> class const_ptr
{
friend class fancy_allocator<T>;
friend struct const_void_ptr;
T const* ptr_;
const_ptr(T const* ptr) : ptr_(ptr) {}
public:
const_ptr() : ptr_(0) {}
const_ptr(ptr<T> const& x) : ptr_(x.ptr_) {}
explicit const_ptr(void_const_ptr const& x) : ptr_((T const*)x.ptr_) {}
T const& operator*() const { return *ptr_; }
T const* operator->() const { return ptr_; }
const_ptr& operator++()
{
++ptr_;
return *this;
}
const_ptr operator++(int)
{
const_ptr tmp(*this);
++ptr_;
return tmp;
}
const_ptr operator+(std::ptrdiff_t s) const { return const_ptr(ptr_ + s); }
friend const_ptr operator+(std::ptrdiff_t s, const_ptr p)
{
return ptr<T>(s + p.ptr_);
}
T const& operator[](int s) const { return ptr_[s]; }
bool operator!() const { return !ptr_; }
operator bool() const { return !!ptr_; }
bool operator==(const_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(const_ptr const& x) const { return ptr_ != x.ptr_; }
bool operator<(const_ptr const& x) const { return ptr_ < x.ptr_; }
bool operator>(const_ptr const& x) const { return ptr_ > x.ptr_; }
bool operator<=(const_ptr const& x) const { return ptr_ <= x.ptr_; }
bool operator>=(const_ptr const& x) const { return ptr_ >= x.ptr_; }
};
template <class T> class fancy_allocator
{
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef void_ptr void_pointer;
typedef void_const_ptr const_void_pointer;
typedef ptr<T> pointer;
typedef const_ptr<T> const_pointer;
typedef T& reference;
typedef T const& const_reference;
typedef T value_type;
template <class U> struct rebind
{
typedef fancy_allocator<U> other;
};
fancy_allocator() {}
template <class Y> fancy_allocator(fancy_allocator<Y> const&) {}
fancy_allocator(fancy_allocator const&) {}
~fancy_allocator() {}
pointer address(reference r) { return pointer(&r); }
const_pointer address(const_reference r) { return const_pointer(&r); }
pointer allocate(size_type n)
{
return pointer(static_cast<T*>(::operator new(n * sizeof(T))));
}
template <class Y> pointer allocate(size_type n, const_ptr<Y>)
{
return pointer(static_cast<T*>(::operator new(n * sizeof(T))));
}
void deallocate(pointer p, size_type) { ::operator delete((void*)p.ptr_); }
template <class U, class... Args> void construct(U* p, Args&&... args)
{
new ((void*)p) U(std::forward<Args>(args)...);
}
template <class U> void destroy(U* p) { p->~U(); }
size_type max_size() const { return 1000; }
public:
fancy_allocator& operator=(fancy_allocator const&) { return *this; }
};
namespace boost {
template <> struct pointer_traits<void_ptr>
{
template <class U> struct rebind_to
{
typedef ptr<U> type;
};
template<class U>
using rebind=typename rebind_to<U>::type;
};
} // namespace boost
#endif // BOOST_UNORDERED_TEST_CFOA_HELPERS_HPP