diff --git a/client/tracy_concurrentqueue.h b/client/tracy_concurrentqueue.h index 49491622..a15d9868 100644 --- a/client/tracy_concurrentqueue.h +++ b/client/tracy_concurrentqueue.h @@ -243,7 +243,6 @@ struct ProducerToken; struct ConsumerToken; template class ConcurrentQueue; -class ConcurrentQueueTests; namespace details @@ -413,7 +412,6 @@ struct ProducerToken private: template friend class ConcurrentQueue; - friend class ConcurrentQueueTests; protected: details::ConcurrentQueueProducerTypelessBase* producer; @@ -451,7 +449,6 @@ struct ConsumerToken private: template friend class ConcurrentQueue; - friend class ConcurrentQueueTests; private: // but shared with ConcurrentQueue std::uint32_t initialOffset; @@ -562,231 +559,15 @@ public: // Disable copying and copy assignment ConcurrentQueue(ConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION; + ConcurrentQueue(ConcurrentQueue&& other) MOODYCAMEL_DELETE_FUNCTION; ConcurrentQueue& operator=(ConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION; - - // Moving is supported, but note that it is *not* a thread-safe operation. - // Nobody can use the queue while it's being moved, and the memory effects - // of that move must be propagated to other threads before they can use it. - // Note: When a queue is moved, its tokens are still valid but can only be - // used with the destination queue (i.e. semantically they are moved along - // with the queue itself). - ConcurrentQueue(ConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT - : producerListTail(other.producerListTail.load(std::memory_order_relaxed)), - producerCount(other.producerCount.load(std::memory_order_relaxed)), - initialBlockPoolIndex(other.initialBlockPoolIndex.load(std::memory_order_relaxed)), - initialBlockPool(other.initialBlockPool), - initialBlockPoolSize(other.initialBlockPoolSize), - freeList(std::move(other.freeList)), - nextExplicitConsumerId(other.nextExplicitConsumerId.load(std::memory_order_relaxed)), - globalExplicitConsumerOffset(other.globalExplicitConsumerOffset.load(std::memory_order_relaxed)) - { - other.producerListTail.store(nullptr, std::memory_order_relaxed); - other.producerCount.store(0, std::memory_order_relaxed); - other.nextExplicitConsumerId.store(0, std::memory_order_relaxed); - other.globalExplicitConsumerOffset.store(0, std::memory_order_relaxed); - - other.initialBlockPoolIndex.store(0, std::memory_order_relaxed); - other.initialBlockPoolSize = 0; - other.initialBlockPool = nullptr; - - reown_producers(); - } - - inline ConcurrentQueue& operator=(ConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT - { - return swap_internal(other); - } - - // Swaps this queue's state with the other's. Not thread-safe. - // Swapping two queues does not invalidate their tokens, however - // the tokens that were created for one queue must be used with - // only the swapped queue (i.e. the tokens are tied to the - // queue's movable state, not the object itself). - inline void swap(ConcurrentQueue& other) MOODYCAMEL_NOEXCEPT - { - swap_internal(other); - } - -private: - ConcurrentQueue& swap_internal(ConcurrentQueue& other) - { - if (this == &other) { - return *this; - } - - details::swap_relaxed(producerListTail, other.producerListTail); - details::swap_relaxed(producerCount, other.producerCount); - details::swap_relaxed(initialBlockPoolIndex, other.initialBlockPoolIndex); - std::swap(initialBlockPool, other.initialBlockPool); - std::swap(initialBlockPoolSize, other.initialBlockPoolSize); - freeList.swap(other.freeList); - details::swap_relaxed(nextExplicitConsumerId, other.nextExplicitConsumerId); - details::swap_relaxed(globalExplicitConsumerOffset, other.globalExplicitConsumerOffset); - - reown_producers(); - other.reown_producers(); - - return *this; - } + ConcurrentQueue& operator=(ConcurrentQueue&& other) MOODYCAMEL_DELETE_FUNCTION; public: - // Enqueues a single item (by copying it) using an explicit producer token. - // Allocates memory if required. Only fails if memory allocation fails (or - // Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). - // Thread-safe. - inline bool enqueue(producer_token_t const& token, T const& item) - { - return inner_enqueue(token, item); - } - - // Enqueues a single item (by moving it, if possible) using an explicit producer token. - // Allocates memory if required. Only fails if memory allocation fails (or - // Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). - // Thread-safe. - inline bool enqueue(producer_token_t const& token, T&& item) - { - return inner_enqueue(token, std::move(item)); - } - tracy_force_inline T* enqueue_begin(producer_token_t const& token, index_t& currentTailIndex) { - return inner_enqueue_begin(token, currentTailIndex); + return static_cast(token.producer)->ConcurrentQueue::ExplicitProducer::enqueue_begin(currentTailIndex); } - - // Enqueues several items using an explicit producer token. - // Allocates memory if required. Only fails if memory allocation fails - // (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). - // Note: Use std::make_move_iterator if the elements should be moved - // instead of copied. - // Thread-safe. - template - bool enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count) - { - return inner_enqueue_bulk(token, itemFirst, count); - } - - // Attempts to dequeue from the queue. - // Returns false if all producer streams appeared empty at the time they - // were checked (so, the queue is likely but not guaranteed to be empty). - // Never allocates. Thread-safe. - template - bool try_dequeue(U& item) - { - // Instead of simply trying each producer in turn (which could cause needless contention on the first - // producer), we score them heuristically. - size_t nonEmptyCount = 0; - ProducerBase* best = nullptr; - size_t bestSize = 0; - for (auto ptr = producerListTail.load(std::memory_order_acquire); nonEmptyCount < 3 && ptr != nullptr; ptr = ptr->next_prod()) { - auto size = ptr->size_approx(); - if (size > 0) { - if (size > bestSize) { - bestSize = size; - best = ptr; - } - ++nonEmptyCount; - } - } - - // If there was at least one non-empty queue but it appears empty at the time - // we try to dequeue from it, we need to make sure every queue's been tried - if (nonEmptyCount > 0) { - if (details::cqLikely(best->dequeue(item))) { - return true; - } - for (auto ptr = producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { - if (ptr != best && ptr->dequeue(item)) { - return true; - } - } - } - return false; - } - - // Attempts to dequeue from the queue. - // Returns false if all producer streams appeared empty at the time they - // were checked (so, the queue is likely but not guaranteed to be empty). - // This differs from the try_dequeue(item) method in that this one does - // not attempt to reduce contention by interleaving the order that producer - // streams are dequeued from. So, using this method can reduce overall throughput - // under contention, but will give more predictable results in single-threaded - // consumer scenarios. This is mostly only useful for internal unit tests. - // Never allocates. Thread-safe. - template - bool try_dequeue_non_interleaved(U& item) - { - for (auto ptr = producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { - if (ptr->dequeue(item)) { - return true; - } - } - return false; - } - - // Attempts to dequeue from the queue using an explicit consumer token. - // Returns false if all producer streams appeared empty at the time they - // were checked (so, the queue is likely but not guaranteed to be empty). - // Never allocates. Thread-safe. - template - bool try_dequeue(consumer_token_t& token, U& item) - { - // The idea is roughly as follows: - // Every 256 items from one producer, make everyone rotate (increase the global offset) -> this means the highest efficiency consumer dictates the rotation speed of everyone else, more or less - // If you see that the global offset has changed, you must reset your consumption counter and move to your designated place - // If there's no items where you're supposed to be, keep moving until you find a producer with some items - // If the global offset has not changed but you've run out of items to consume, move over from your current position until you find an producer with something in it - - if (token.desiredProducer == nullptr || token.lastKnownGlobalOffset != globalExplicitConsumerOffset.load(std::memory_order_relaxed)) { - if (!update_current_producer_after_rotation(token)) { - return false; - } - } - - // If there was at least one non-empty queue but it appears empty at the time - // we try to dequeue from it, we need to make sure every queue's been tried - if (static_cast(token.currentProducer)->dequeue(item)) { - if (++token.itemsConsumedFromCurrent == EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE) { - globalExplicitConsumerOffset.fetch_add(1, std::memory_order_relaxed); - } - return true; - } - - auto tail = producerListTail.load(std::memory_order_acquire); - auto ptr = static_cast(token.currentProducer)->next_prod(); - if (ptr == nullptr) { - ptr = tail; - } - while (ptr != static_cast(token.currentProducer)) { - if (ptr->dequeue(item)) { - token.currentProducer = ptr; - token.itemsConsumedFromCurrent = 1; - return true; - } - ptr = ptr->next_prod(); - if (ptr == nullptr) { - ptr = tail; - } - } - return false; - } - - // Attempts to dequeue several elements from the queue. - // Returns the number of items actually dequeued. - // Returns 0 if all producer streams appeared empty at the time they - // were checked (so, the queue is likely but not guaranteed to be empty). - // Never allocates. Thread-safe. - template - size_t try_dequeue_bulk(It itemFirst, size_t max) - { - size_t count = 0; - for (auto ptr = producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { - count += ptr->dequeue_bulk(itemFirst, max - count); - if (count == max) { - break; - } - } - return count; - } // Attempts to dequeue several elements from the queue using an explicit consumer token. // Returns the number of items actually dequeued. @@ -886,31 +667,6 @@ public: } } - // Attempts to dequeue from a specific producer's inner queue. - // If you happen to know which producer you want to dequeue from, this - // is significantly faster than using the general-case try_dequeue methods. - // Returns false if the producer's queue appeared empty at the time it - // was checked (so, the queue is likely but not guaranteed to be empty). - // Never allocates. Thread-safe. - template - inline bool try_dequeue_from_producer(producer_token_t const& producer, U& item) - { - return static_cast(producer.producer)->dequeue(item); - } - - // Attempts to dequeue several elements from a specific producer's inner queue. - // Returns the number of items actually dequeued. - // If you happen to know which producer you want to dequeue from, this - // is significantly faster than using the general-case try_dequeue methods. - // Returns 0 if the producer's queue appeared empty at the time it - // was checked (so, the queue is likely but not guaranteed to be empty). - // Never allocates. Thread-safe. - template - inline size_t try_dequeue_bulk_from_producer(producer_token_t const& producer, It itemFirst, size_t max) - { - return static_cast(producer.producer)->dequeue_bulk(itemFirst, max); - } - // Returns an estimate of the total number of elements currently in the queue. This // estimate is only accurate if the queue has completely stabilized before it is called @@ -946,31 +702,12 @@ private: friend struct ProducerToken; friend struct ConsumerToken; friend struct ExplicitProducer; - friend class ConcurrentQueueTests; - /////////////////////////////// // Queue methods /////////////////////////////// - template - inline bool inner_enqueue(producer_token_t const& token, U&& element) - { - return static_cast(token.producer)->ConcurrentQueue::ExplicitProducer::enqueue(std::forward(element)); - } - - tracy_force_inline T* inner_enqueue_begin(producer_token_t const& token, index_t& currentTailIndex) - { - return static_cast(token.producer)->ConcurrentQueue::ExplicitProducer::enqueue_begin(currentTailIndex); - } - - template - inline bool inner_enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count) - { - return static_cast(token.producer)->ConcurrentQueue::ExplicitProducer::enqueue_bulk(itemFirst, count); - } - inline bool update_current_producer_after_rotation(consumer_token_t& token) { // Ah, there's been a rotation, figure out where we should be! @@ -1274,12 +1011,6 @@ private: virtual ~ProducerBase() { }; - template - inline bool dequeue(U& element) - { - return static_cast(this)->dequeue(element); - } - template inline size_t dequeue_bulk(It& itemFirst, size_t max) { @@ -1398,106 +1129,6 @@ private: } } - template - inline bool enqueue(U&& element) - { - index_t currentTailIndex = this->tailIndex.load(std::memory_order_relaxed); - index_t newTailIndex = 1 + currentTailIndex; - if ((currentTailIndex & static_cast(BLOCK_SIZE - 1)) == 0) { - // We reached the end of a block, start a new one - auto startBlock = this->tailBlock; - auto originalBlockIndexSlotsUsed = pr_blockIndexSlotsUsed; - if (this->tailBlock != nullptr && this->tailBlock->next->ConcurrentQueue::Block::is_empty()) { - // We can re-use the block ahead of us, it's empty! - this->tailBlock = this->tailBlock->next; - this->tailBlock->ConcurrentQueue::Block::reset_empty(); - - // We'll put the block on the block index (guaranteed to be room since we're conceptually removing the - // last block from it first -- except instead of removing then adding, we can just overwrite). - // Note that there must be a valid block index here, since even if allocation failed in the ctor, - // it would have been re-attempted when adding the first block to the queue; since there is such - // a block, a block index must have been successfully allocated. - } - else { - // Whatever head value we see here is >= the last value we saw here (relatively), - // and <= its current value. Since we have the most recent tail, the head must be - // <= to it. - auto head = this->headIndex.load(std::memory_order_relaxed); - assert(!details::circular_less_than(currentTailIndex, head)); - if (!details::circular_less_than(head, currentTailIndex + BLOCK_SIZE) - || (MAX_SUBQUEUE_SIZE != details::const_numeric_max::value && (MAX_SUBQUEUE_SIZE == 0 || MAX_SUBQUEUE_SIZE - BLOCK_SIZE < currentTailIndex - head))) { - // We can't enqueue in another block because there's not enough leeway -- the - // tail could surpass the head by the time the block fills up! (Or we'll exceed - // the size limit, if the second part of the condition was true.) - return false; - } - // We're going to need a new block; check that the block index has room - if (pr_blockIndexRaw == nullptr || pr_blockIndexSlotsUsed == pr_blockIndexSize) { - // Hmm, the circular block index is already full -- we'll need - // to allocate a new index. Note pr_blockIndexRaw can only be nullptr if - // the initial allocation failed in the constructor. - - if (!new_block_index(pr_blockIndexSlotsUsed)) { - return false; - } - } - - // Insert a new block in the circular linked list - auto newBlock = this->parent->ConcurrentQueue::requisition_block(); - if (newBlock == nullptr) { - return false; - } - newBlock->ConcurrentQueue::Block::reset_empty(); - if (this->tailBlock == nullptr) { - newBlock->next = newBlock; - } - else { - newBlock->next = this->tailBlock->next; - this->tailBlock->next = newBlock; - } - this->tailBlock = newBlock; - ++pr_blockIndexSlotsUsed; - } - - if (!MOODYCAMEL_NOEXCEPT_CTOR(T, U, new (nullptr) T(std::forward(element)))) { - // The constructor may throw. We want the element not to appear in the queue in - // that case (without corrupting the queue): - MOODYCAMEL_TRY { - new ((*this->tailBlock)[currentTailIndex]) T(std::forward(element)); - } - MOODYCAMEL_CATCH (...) { - // Revert change to the current block, but leave the new block available - // for next time - pr_blockIndexSlotsUsed = originalBlockIndexSlotsUsed; - this->tailBlock = startBlock == nullptr ? this->tailBlock : startBlock; - MOODYCAMEL_RETHROW; - } - } - else { - (void)startBlock; - (void)originalBlockIndexSlotsUsed; - } - - // Add block to block index - auto& entry = blockIndex.load(std::memory_order_relaxed)->entries[pr_blockIndexFront]; - entry.base = currentTailIndex; - entry.block = this->tailBlock; - blockIndex.load(std::memory_order_relaxed)->front.store(pr_blockIndexFront, std::memory_order_release); - pr_blockIndexFront = (pr_blockIndexFront + 1) & (pr_blockIndexSize - 1); - - if (!MOODYCAMEL_NOEXCEPT_CTOR(T, U, new (nullptr) T(std::forward(element)))) { - this->tailIndex.store(newTailIndex, std::memory_order_release); - return true; - } - } - - // Enqueue - new ((*this->tailBlock)[currentTailIndex]) T(std::forward(element)); - - this->tailIndex.store(newTailIndex, std::memory_order_release); - return true; - } - inline void enqueue_begin_alloc(index_t currentTailIndex) { // We reached the end of a block, start a new one @@ -1556,287 +1187,6 @@ private: { return this->tailIndex; } - - template - bool dequeue(U& element) - { - auto tail = this->tailIndex.load(std::memory_order_relaxed); - auto overcommit = this->dequeueOvercommit.load(std::memory_order_relaxed); - if (details::circular_less_than(this->dequeueOptimisticCount.load(std::memory_order_relaxed) - overcommit, tail)) { - // Might be something to dequeue, let's give it a try - - // Note that this if is purely for performance purposes in the common case when the queue is - // empty and the values are eventually consistent -- we may enter here spuriously. - - // Note that whatever the values of overcommit and tail are, they are not going to change (unless we - // change them) and must be the same value at this point (inside the if) as when the if condition was - // evaluated. - - // We insert an acquire fence here to synchronize-with the release upon incrementing dequeueOvercommit below. - // This ensures that whatever the value we got loaded into overcommit, the load of dequeueOptisticCount in - // the fetch_add below will result in a value at least as recent as that (and therefore at least as large). - // Note that I believe a compiler (signal) fence here would be sufficient due to the nature of fetch_add (all - // read-modify-write operations are guaranteed to work on the latest value in the modification order), but - // unfortunately that can't be shown to be correct using only the C++11 standard. - // See http://stackoverflow.com/questions/18223161/what-are-the-c11-memory-ordering-guarantees-in-this-corner-case - std::atomic_thread_fence(std::memory_order_acquire); - - // Increment optimistic counter, then check if it went over the boundary - auto myDequeueCount = this->dequeueOptimisticCount.fetch_add(1, std::memory_order_relaxed); - - // Note that since dequeueOvercommit must be <= dequeueOptimisticCount (because dequeueOvercommit is only ever - // incremented after dequeueOptimisticCount -- this is enforced in the `else` block below), and since we now - // have a version of dequeueOptimisticCount that is at least as recent as overcommit (due to the release upon - // incrementing dequeueOvercommit and the acquire above that synchronizes with it), overcommit <= myDequeueCount. - assert(overcommit <= myDequeueCount); - - // Note that we reload tail here in case it changed; it will be the same value as before or greater, since - // this load is sequenced after (happens after) the earlier load above. This is supported by read-read - // coherency (as defined in the standard), explained here: http://en.cppreference.com/w/cpp/atomic/memory_order - tail = this->tailIndex.load(std::memory_order_acquire); - if (details::cqLikely(details::circular_less_than(myDequeueCount - overcommit, tail))) { - // Guaranteed to be at least one element to dequeue! - - // Get the index. Note that since there's guaranteed to be at least one element, this - // will never exceed tail. We need to do an acquire-release fence here since it's possible - // that whatever condition got us to this point was for an earlier enqueued element (that - // we already see the memory effects for), but that by the time we increment somebody else - // has incremented it, and we need to see the memory effects for *that* element, which is - // in such a case is necessarily visible on the thread that incremented it in the first - // place with the more current condition (they must have acquired a tail that is at least - // as recent). - auto index = this->headIndex.fetch_add(1, std::memory_order_acq_rel); - - - // Determine which block the element is in - - auto localBlockIndex = blockIndex.load(std::memory_order_acquire); - auto localBlockIndexHead = localBlockIndex->front.load(std::memory_order_acquire); - - // We need to be careful here about subtracting and dividing because of index wrap-around. - // When an index wraps, we need to preserve the sign of the offset when dividing it by the - // block size (in order to get a correct signed block count offset in all cases): - auto headBase = localBlockIndex->entries[localBlockIndexHead].base; - auto blockBaseIndex = index & ~static_cast(BLOCK_SIZE - 1); - auto offset = static_cast(static_cast::type>(blockBaseIndex - headBase) / BLOCK_SIZE); - auto block = localBlockIndex->entries[(localBlockIndexHead + offset) & (localBlockIndex->size - 1)].block; - - // Dequeue - auto& el = *((*block)[index]); - if (!MOODYCAMEL_NOEXCEPT_ASSIGN(T, T&&, element = std::move(el))) { - // Make sure the element is still fully dequeued and destroyed even if the assignment - // throws - struct Guard { - Block* block; - index_t index; - - ~Guard() - { - (*block)[index]->~T(); - block->ConcurrentQueue::Block::set_empty(index); - } - } guard = { block, index }; - - element = std::move(el); - } - else { - element = std::move(el); - el.~T(); - block->ConcurrentQueue::Block::set_empty(index); - } - - return true; - } - else { - // Wasn't anything to dequeue after all; make the effective dequeue count eventually consistent - this->dequeueOvercommit.fetch_add(1, std::memory_order_release); // Release so that the fetch_add on dequeueOptimisticCount is guaranteed to happen before this write - } - } - - return false; - } - - template - bool enqueue_bulk(It itemFirst, size_t count) - { - // First, we need to make sure we have enough room to enqueue all of the elements; - // this means pre-allocating blocks and putting them in the block index (but only if - // all the allocations succeeded). - index_t startTailIndex = this->tailIndex.load(std::memory_order_relaxed); - auto startBlock = this->tailBlock; - auto originalBlockIndexFront = pr_blockIndexFront; - auto originalBlockIndexSlotsUsed = pr_blockIndexSlotsUsed; - - Block* firstAllocatedBlock = nullptr; - - // Figure out how many blocks we'll need to allocate, and do so - size_t blockBaseDiff = ((startTailIndex + count - 1) & ~static_cast(BLOCK_SIZE - 1)) - ((startTailIndex - 1) & ~static_cast(BLOCK_SIZE - 1)); - index_t currentTailIndex = (startTailIndex - 1) & ~static_cast(BLOCK_SIZE - 1); - if (blockBaseDiff > 0) { - // Allocate as many blocks as possible from ahead - while (blockBaseDiff > 0 && this->tailBlock != nullptr && this->tailBlock->next != firstAllocatedBlock && this->tailBlock->next->ConcurrentQueue::Block::is_empty()) { - blockBaseDiff -= static_cast(BLOCK_SIZE); - currentTailIndex += static_cast(BLOCK_SIZE); - - this->tailBlock = this->tailBlock->next; - firstAllocatedBlock = firstAllocatedBlock == nullptr ? this->tailBlock : firstAllocatedBlock; - - auto& entry = blockIndex.load(std::memory_order_relaxed)->entries[pr_blockIndexFront]; - entry.base = currentTailIndex; - entry.block = this->tailBlock; - pr_blockIndexFront = (pr_blockIndexFront + 1) & (pr_blockIndexSize - 1); - } - - // Now allocate as many blocks as necessary from the block pool - while (blockBaseDiff > 0) { - blockBaseDiff -= static_cast(BLOCK_SIZE); - currentTailIndex += static_cast(BLOCK_SIZE); - - auto head = this->headIndex.load(std::memory_order_relaxed); - assert(!details::circular_less_than(currentTailIndex, head)); - bool full = !details::circular_less_than(head, currentTailIndex + BLOCK_SIZE) || (MAX_SUBQUEUE_SIZE != details::const_numeric_max::value && (MAX_SUBQUEUE_SIZE == 0 || MAX_SUBQUEUE_SIZE - BLOCK_SIZE < currentTailIndex - head)); - if (pr_blockIndexRaw == nullptr || pr_blockIndexSlotsUsed == pr_blockIndexSize || full) { - if (full || !new_block_index(originalBlockIndexSlotsUsed)) { - // Failed to allocate, undo changes (but keep injected blocks) - pr_blockIndexFront = originalBlockIndexFront; - pr_blockIndexSlotsUsed = originalBlockIndexSlotsUsed; - this->tailBlock = startBlock == nullptr ? firstAllocatedBlock : startBlock; - return false; - } - - // pr_blockIndexFront is updated inside new_block_index, so we need to - // update our fallback value too (since we keep the new index even if we - // later fail) - originalBlockIndexFront = originalBlockIndexSlotsUsed; - } - - // Insert a new block in the circular linked list - auto newBlock = this->parent->ConcurrentQueue::requisition_block(); - if (newBlock == nullptr) { - pr_blockIndexFront = originalBlockIndexFront; - pr_blockIndexSlotsUsed = originalBlockIndexSlotsUsed; - this->tailBlock = startBlock == nullptr ? firstAllocatedBlock : startBlock; - return false; - } - - newBlock->ConcurrentQueue::Block::set_all_empty(); - if (this->tailBlock == nullptr) { - newBlock->next = newBlock; - } - else { - newBlock->next = this->tailBlock->next; - this->tailBlock->next = newBlock; - } - this->tailBlock = newBlock; - firstAllocatedBlock = firstAllocatedBlock == nullptr ? this->tailBlock : firstAllocatedBlock; - - ++pr_blockIndexSlotsUsed; - - auto& entry = blockIndex.load(std::memory_order_relaxed)->entries[pr_blockIndexFront]; - entry.base = currentTailIndex; - entry.block = this->tailBlock; - pr_blockIndexFront = (pr_blockIndexFront + 1) & (pr_blockIndexSize - 1); - } - - // Excellent, all allocations succeeded. Reset each block's emptiness before we fill them up, and - // publish the new block index front - auto block = firstAllocatedBlock; - while (true) { - block->ConcurrentQueue::Block::reset_empty(); - if (block == this->tailBlock) { - break; - } - block = block->next; - } - - if (MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new (nullptr) T(details::deref_noexcept(itemFirst)))) { - blockIndex.load(std::memory_order_relaxed)->front.store((pr_blockIndexFront - 1) & (pr_blockIndexSize - 1), std::memory_order_release); - } - } - - // Enqueue, one block at a time - index_t newTailIndex = startTailIndex + static_cast(count); - currentTailIndex = startTailIndex; - auto endBlock = this->tailBlock; - this->tailBlock = startBlock; - assert((startTailIndex & static_cast(BLOCK_SIZE - 1)) != 0 || firstAllocatedBlock != nullptr || count == 0); - if ((startTailIndex & static_cast(BLOCK_SIZE - 1)) == 0 && firstAllocatedBlock != nullptr) { - this->tailBlock = firstAllocatedBlock; - } - while (true) { - auto stopIndex = (currentTailIndex & ~static_cast(BLOCK_SIZE - 1)) + static_cast(BLOCK_SIZE); - if (details::circular_less_than(newTailIndex, stopIndex)) { - stopIndex = newTailIndex; - } - if (MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new (nullptr) T(details::deref_noexcept(itemFirst)))) { - while (currentTailIndex != stopIndex) { - new ((*this->tailBlock)[currentTailIndex++]) T(*itemFirst++); - } - } - else { - MOODYCAMEL_TRY { - while (currentTailIndex != stopIndex) { - // Must use copy constructor even if move constructor is available - // because we may have to revert if there's an exception. - // Sorry about the horrible templated next line, but it was the only way - // to disable moving *at compile time*, which is important because a type - // may only define a (noexcept) move constructor, and so calls to the - // cctor will not compile, even if they are in an if branch that will never - // be executed - new ((*this->tailBlock)[currentTailIndex]) T(details::nomove_if<(bool)!MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new (nullptr) T(details::deref_noexcept(itemFirst)))>::eval(*itemFirst)); - ++currentTailIndex; - ++itemFirst; - } - } - MOODYCAMEL_CATCH (...) { - // Oh dear, an exception's been thrown -- destroy the elements that - // were enqueued so far and revert the entire bulk operation (we'll keep - // any allocated blocks in our linked list for later, though). - auto constructedStopIndex = currentTailIndex; - auto lastBlockEnqueued = this->tailBlock; - - pr_blockIndexFront = originalBlockIndexFront; - pr_blockIndexSlotsUsed = originalBlockIndexSlotsUsed; - this->tailBlock = startBlock == nullptr ? firstAllocatedBlock : startBlock; - - if (!details::is_trivially_destructible::value) { - auto block = startBlock; - if ((startTailIndex & static_cast(BLOCK_SIZE - 1)) == 0) { - block = firstAllocatedBlock; - } - currentTailIndex = startTailIndex; - while (true) { - stopIndex = (currentTailIndex & ~static_cast(BLOCK_SIZE - 1)) + static_cast(BLOCK_SIZE); - if (details::circular_less_than(constructedStopIndex, stopIndex)) { - stopIndex = constructedStopIndex; - } - while (currentTailIndex != stopIndex) { - (*block)[currentTailIndex++]->~T(); - } - if (block == lastBlockEnqueued) { - break; - } - block = block->next; - } - } - MOODYCAMEL_RETHROW; - } - } - - if (this->tailBlock == endBlock) { - assert(currentTailIndex == newTailIndex); - break; - } - this->tailBlock = this->tailBlock->next; - } - - if (!MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new (nullptr) T(details::deref_noexcept(itemFirst))) && firstAllocatedBlock != nullptr) { - blockIndex.load(std::memory_order_relaxed)->front.store((pr_blockIndexFront - 1) & (pr_blockIndexSize - 1), std::memory_order_release); - } - - this->tailIndex.store(newTailIndex, std::memory_order_release); - return true; - } template size_t dequeue_bulk(It& itemFirst, size_t max)