mirror of
https://github.com/catchorg/Catch2.git
synced 2025-05-03 05:23:52 +00:00
414 lines
18 KiB
C++
414 lines
18 KiB
C++
|
|
// Copyright Catch2 Authors
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE.txt or copy at
|
|
// https://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// SPDX-License-Identifier: BSL-1.0
|
|
// Adapted from donated nonius code.
|
|
|
|
#include <catch2/benchmark/detail/catch_stats.hpp>
|
|
|
|
#include <catch2/internal/catch_compiler_capabilities.hpp>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <numeric>
|
|
#include <random>
|
|
|
|
|
|
#if defined(CATCH_CONFIG_USE_ASYNC)
|
|
#include <future>
|
|
#endif
|
|
|
|
namespace Catch {
|
|
namespace Benchmark {
|
|
namespace Detail {
|
|
namespace {
|
|
|
|
template <typename URng, typename Estimator>
|
|
static sample
|
|
resample( URng& rng,
|
|
unsigned int resamples,
|
|
double const* first,
|
|
double const* last,
|
|
Estimator& estimator ) {
|
|
auto n = static_cast<size_t>( last - first );
|
|
std::uniform_int_distribution<decltype( n )> dist( 0,
|
|
n - 1 );
|
|
|
|
sample out;
|
|
out.reserve( resamples );
|
|
// We allocate the vector outside the loop to avoid realloc
|
|
// per resample
|
|
std::vector<double> resampled;
|
|
resampled.reserve( n );
|
|
for ( size_t i = 0; i < resamples; ++i ) {
|
|
resampled.clear();
|
|
for ( size_t s = 0; s < n; ++s ) {
|
|
resampled.push_back(
|
|
first[static_cast<std::ptrdiff_t>(
|
|
dist( rng ) )] );
|
|
}
|
|
const auto estimate =
|
|
estimator( resampled.data(), resampled.data() + resampled.size() );
|
|
out.push_back( estimate );
|
|
}
|
|
std::sort( out.begin(), out.end() );
|
|
return out;
|
|
}
|
|
|
|
static double outlier_variance( Estimate<double> mean,
|
|
Estimate<double> stddev,
|
|
int n ) {
|
|
double sb = stddev.point;
|
|
double mn = mean.point / n;
|
|
double mg_min = mn / 2.;
|
|
double sg = (std::min)( mg_min / 4., sb / std::sqrt( n ) );
|
|
double sg2 = sg * sg;
|
|
double sb2 = sb * sb;
|
|
|
|
auto c_max = [n, mn, sb2, sg2]( double x ) -> double {
|
|
double k = mn - x;
|
|
double d = k * k;
|
|
double nd = n * d;
|
|
double k0 = -n * nd;
|
|
double k1 = sb2 - n * sg2 + nd;
|
|
double det = k1 * k1 - 4 * sg2 * k0;
|
|
return static_cast<int>( -2. * k0 /
|
|
( k1 + std::sqrt( det ) ) );
|
|
};
|
|
|
|
auto var_out = [n, sb2, sg2]( double c ) {
|
|
double nc = n - c;
|
|
return ( nc / n ) * ( sb2 - nc * sg2 );
|
|
};
|
|
|
|
return (std::min)( var_out( 1 ),
|
|
var_out(
|
|
(std::min)( c_max( 0. ),
|
|
c_max( mg_min ) ) ) ) /
|
|
sb2;
|
|
}
|
|
|
|
static double erf_inv( double x ) {
|
|
// Code accompanying the article "Approximating the erfinv
|
|
// function" in GPU Computing Gems, Volume 2
|
|
double w, p;
|
|
|
|
w = -log( ( 1.0 - x ) * ( 1.0 + x ) );
|
|
|
|
if ( w < 6.250000 ) {
|
|
w = w - 3.125000;
|
|
p = -3.6444120640178196996e-21;
|
|
p = -1.685059138182016589e-19 + p * w;
|
|
p = 1.2858480715256400167e-18 + p * w;
|
|
p = 1.115787767802518096e-17 + p * w;
|
|
p = -1.333171662854620906e-16 + p * w;
|
|
p = 2.0972767875968561637e-17 + p * w;
|
|
p = 6.6376381343583238325e-15 + p * w;
|
|
p = -4.0545662729752068639e-14 + p * w;
|
|
p = -8.1519341976054721522e-14 + p * w;
|
|
p = 2.6335093153082322977e-12 + p * w;
|
|
p = -1.2975133253453532498e-11 + p * w;
|
|
p = -5.4154120542946279317e-11 + p * w;
|
|
p = 1.051212273321532285e-09 + p * w;
|
|
p = -4.1126339803469836976e-09 + p * w;
|
|
p = -2.9070369957882005086e-08 + p * w;
|
|
p = 4.2347877827932403518e-07 + p * w;
|
|
p = -1.3654692000834678645e-06 + p * w;
|
|
p = -1.3882523362786468719e-05 + p * w;
|
|
p = 0.0001867342080340571352 + p * w;
|
|
p = -0.00074070253416626697512 + p * w;
|
|
p = -0.0060336708714301490533 + p * w;
|
|
p = 0.24015818242558961693 + p * w;
|
|
p = 1.6536545626831027356 + p * w;
|
|
} else if ( w < 16.000000 ) {
|
|
w = sqrt( w ) - 3.250000;
|
|
p = 2.2137376921775787049e-09;
|
|
p = 9.0756561938885390979e-08 + p * w;
|
|
p = -2.7517406297064545428e-07 + p * w;
|
|
p = 1.8239629214389227755e-08 + p * w;
|
|
p = 1.5027403968909827627e-06 + p * w;
|
|
p = -4.013867526981545969e-06 + p * w;
|
|
p = 2.9234449089955446044e-06 + p * w;
|
|
p = 1.2475304481671778723e-05 + p * w;
|
|
p = -4.7318229009055733981e-05 + p * w;
|
|
p = 6.8284851459573175448e-05 + p * w;
|
|
p = 2.4031110387097893999e-05 + p * w;
|
|
p = -0.0003550375203628474796 + p * w;
|
|
p = 0.00095328937973738049703 + p * w;
|
|
p = -0.0016882755560235047313 + p * w;
|
|
p = 0.0024914420961078508066 + p * w;
|
|
p = -0.0037512085075692412107 + p * w;
|
|
p = 0.005370914553590063617 + p * w;
|
|
p = 1.0052589676941592334 + p * w;
|
|
p = 3.0838856104922207635 + p * w;
|
|
} else {
|
|
w = sqrt( w ) - 5.000000;
|
|
p = -2.7109920616438573243e-11;
|
|
p = -2.5556418169965252055e-10 + p * w;
|
|
p = 1.5076572693500548083e-09 + p * w;
|
|
p = -3.7894654401267369937e-09 + p * w;
|
|
p = 7.6157012080783393804e-09 + p * w;
|
|
p = -1.4960026627149240478e-08 + p * w;
|
|
p = 2.9147953450901080826e-08 + p * w;
|
|
p = -6.7711997758452339498e-08 + p * w;
|
|
p = 2.2900482228026654717e-07 + p * w;
|
|
p = -9.9298272942317002539e-07 + p * w;
|
|
p = 4.5260625972231537039e-06 + p * w;
|
|
p = -1.9681778105531670567e-05 + p * w;
|
|
p = 7.5995277030017761139e-05 + p * w;
|
|
p = -0.00021503011930044477347 + p * w;
|
|
p = -0.00013871931833623122026 + p * w;
|
|
p = 1.0103004648645343977 + p * w;
|
|
p = 4.8499064014085844221 + p * w;
|
|
}
|
|
return p * x;
|
|
}
|
|
|
|
static double
|
|
standard_deviation( double const* first, double const* last ) {
|
|
auto m = Catch::Benchmark::Detail::mean( first, last );
|
|
double variance =
|
|
std::accumulate( first,
|
|
last,
|
|
0.,
|
|
[m]( double a, double b ) {
|
|
double diff = b - m;
|
|
return a + diff * diff;
|
|
} ) /
|
|
( last - first );
|
|
return std::sqrt( variance );
|
|
}
|
|
|
|
#if defined( __GNUC__ ) || defined( __clang__ )
|
|
# pragma GCC diagnostic push
|
|
# pragma GCC diagnostic ignored "-Wfloat-equal"
|
|
#endif
|
|
// Used when we know we want == comparison of two doubles
|
|
// to centralize warning suppression
|
|
static bool directCompare( double lhs, double rhs ) {
|
|
return lhs == rhs;
|
|
}
|
|
#if defined( __GNUC__ ) || defined( __clang__ )
|
|
# pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
|
|
static sample jackknife( double ( *estimator )( double const*,
|
|
double const* ),
|
|
double* first,
|
|
double* last ) {
|
|
const auto second = first + 1;
|
|
sample results;
|
|
results.reserve( static_cast<size_t>( last - first ) );
|
|
|
|
for ( auto it = first; it != last; ++it ) {
|
|
std::iter_swap( it, first );
|
|
results.push_back( estimator( second, last ) );
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
|
|
} // namespace
|
|
} // namespace Detail
|
|
} // namespace Benchmark
|
|
} // namespace Catch
|
|
|
|
namespace Catch {
|
|
namespace Benchmark {
|
|
namespace Detail {
|
|
|
|
double weighted_average_quantile( int k,
|
|
int q,
|
|
double* first,
|
|
double* last ) {
|
|
auto count = last - first;
|
|
double idx = (count - 1) * k / static_cast<double>(q);
|
|
int j = static_cast<int>(idx);
|
|
double g = idx - j;
|
|
std::nth_element(first, first + j, last);
|
|
auto xj = first[j];
|
|
if ( directCompare( g, 0 ) ) {
|
|
return xj;
|
|
}
|
|
|
|
auto xj1 = *std::min_element(first + (j + 1), last);
|
|
return xj + g * (xj1 - xj);
|
|
}
|
|
|
|
OutlierClassification
|
|
classify_outliers( double const* first, double const* last ) {
|
|
std::vector<double> copy( first, last );
|
|
|
|
auto q1 = weighted_average_quantile( 1, 4, copy.data(), copy.data() + copy.size() );
|
|
auto q3 = weighted_average_quantile( 3, 4, copy.data(), copy.data() + copy.size() );
|
|
auto iqr = q3 - q1;
|
|
auto los = q1 - ( iqr * 3. );
|
|
auto lom = q1 - ( iqr * 1.5 );
|
|
auto him = q3 + ( iqr * 1.5 );
|
|
auto his = q3 + ( iqr * 3. );
|
|
|
|
OutlierClassification o;
|
|
for ( ; first != last; ++first ) {
|
|
const double t = *first;
|
|
if ( t < los ) {
|
|
++o.low_severe;
|
|
} else if ( t < lom ) {
|
|
++o.low_mild;
|
|
} else if ( t > his ) {
|
|
++o.high_severe;
|
|
} else if ( t > him ) {
|
|
++o.high_mild;
|
|
}
|
|
++o.samples_seen;
|
|
}
|
|
return o;
|
|
}
|
|
|
|
double mean( double const* first, double const* last ) {
|
|
auto count = last - first;
|
|
double sum = 0.;
|
|
while (first != last) {
|
|
sum += *first;
|
|
++first;
|
|
}
|
|
return sum / static_cast<double>(count);
|
|
}
|
|
|
|
double normal_cdf( double x ) {
|
|
return std::erfc( -x / std::sqrt( 2.0 ) ) / 2.0;
|
|
}
|
|
|
|
double erfc_inv(double x) {
|
|
return erf_inv(1.0 - x);
|
|
}
|
|
|
|
double normal_quantile(double p) {
|
|
static const double ROOT_TWO = std::sqrt(2.0);
|
|
|
|
double result = 0.0;
|
|
assert(p >= 0 && p <= 1);
|
|
if (p < 0 || p > 1) {
|
|
return result;
|
|
}
|
|
|
|
result = -erfc_inv(2.0 * p);
|
|
// result *= normal distribution standard deviation (1.0) * sqrt(2)
|
|
result *= /*sd * */ ROOT_TWO;
|
|
// result += normal disttribution mean (0)
|
|
return result;
|
|
}
|
|
|
|
Estimate<double>
|
|
bootstrap( double confidence_level,
|
|
double* first,
|
|
double* last,
|
|
sample const& resample,
|
|
double ( *estimator )( double const*, double const* ) ) {
|
|
auto n_samples = last - first;
|
|
|
|
double point = estimator( first, last );
|
|
// Degenerate case with a single sample
|
|
if ( n_samples == 1 )
|
|
return { point, point, point, confidence_level };
|
|
|
|
sample jack = jackknife( estimator, first, last );
|
|
double jack_mean =
|
|
mean( jack.data(), jack.data() + jack.size() );
|
|
double sum_squares = 0, sum_cubes = 0;
|
|
for ( double x : jack ) {
|
|
auto difference = jack_mean - x;
|
|
auto square = difference * difference;
|
|
auto cube = square * difference;
|
|
sum_squares += square;
|
|
sum_cubes += cube;
|
|
}
|
|
|
|
double accel = sum_cubes / ( 6 * std::pow( sum_squares, 1.5 ) );
|
|
long n = static_cast<long>( resample.size() );
|
|
double prob_n =
|
|
std::count_if( resample.begin(),
|
|
resample.end(),
|
|
[point]( double x ) { return x < point; } ) /
|
|
static_cast<double>( n );
|
|
// degenerate case with uniform samples
|
|
if ( directCompare( prob_n, 0. ) ) {
|
|
return { point, point, point, confidence_level };
|
|
}
|
|
|
|
double bias = normal_quantile( prob_n );
|
|
double z1 = normal_quantile( ( 1. - confidence_level ) / 2. );
|
|
|
|
auto cumn = [n]( double x ) -> long {
|
|
return std::lround( normal_cdf( x ) *
|
|
static_cast<double>( n ) );
|
|
};
|
|
auto a = [bias, accel]( double b ) {
|
|
return bias + b / ( 1. - accel * b );
|
|
};
|
|
double b1 = bias + z1;
|
|
double b2 = bias - z1;
|
|
double a1 = a( b1 );
|
|
double a2 = a( b2 );
|
|
auto lo = static_cast<size_t>( (std::max)( cumn( a1 ), 0l ) );
|
|
auto hi =
|
|
static_cast<size_t>( (std::min)( cumn( a2 ), n - 1 ) );
|
|
|
|
return { point, resample[lo], resample[hi], confidence_level };
|
|
}
|
|
|
|
bootstrap_analysis analyse_samples(double confidence_level,
|
|
unsigned int n_resamples,
|
|
double* first,
|
|
double* last) {
|
|
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION
|
|
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS
|
|
static std::random_device entropy;
|
|
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
|
|
|
|
auto n = static_cast<int>(last - first); // seriously, one can't use integral types without hell in C++
|
|
|
|
auto mean = &Detail::mean;
|
|
auto stddev = &standard_deviation;
|
|
|
|
#if defined(CATCH_CONFIG_USE_ASYNC)
|
|
auto Estimate = [=](double(*f)(double const*, double const*)) {
|
|
auto seed = entropy();
|
|
return std::async(std::launch::async, [=] {
|
|
std::mt19937 rng(seed);
|
|
auto resampled = resample(rng, n_resamples, first, last, f);
|
|
return bootstrap(confidence_level, first, last, resampled, f);
|
|
});
|
|
};
|
|
|
|
auto mean_future = Estimate(mean);
|
|
auto stddev_future = Estimate(stddev);
|
|
|
|
auto mean_estimate = mean_future.get();
|
|
auto stddev_estimate = stddev_future.get();
|
|
#else
|
|
auto Estimate = [=](double(*f)(double const* , double const*)) {
|
|
auto seed = entropy();
|
|
std::mt19937 rng(seed);
|
|
auto resampled = resample(rng, n_resamples, first, last, f);
|
|
return bootstrap(confidence_level, first, last, resampled, f);
|
|
};
|
|
|
|
auto mean_estimate = Estimate(mean);
|
|
auto stddev_estimate = Estimate(stddev);
|
|
#endif // CATCH_USE_ASYNC
|
|
|
|
double outlier_variance = Detail::outlier_variance(mean_estimate, stddev_estimate, n);
|
|
|
|
return { mean_estimate, stddev_estimate, outlier_variance };
|
|
}
|
|
} // namespace Detail
|
|
} // namespace Benchmark
|
|
} // namespace Catch
|