1
0
mirror of https://github.com/CLIUtils/CLI11.git synced 2025-04-29 04:03:52 +00:00
CLI11/tests/NewParseTest.cpp
Christoph Bachhuber ffe5b29e1f Add cstdint and std::prefix to its symbols (#409)
* Add cstdint and std::prefix to its symbols

* Use int64_t in std::
2020-01-21 18:24:40 -06:00

526 lines
14 KiB
C++

#include "app_helper.hpp"
#include "gmock/gmock.h"
#include <complex>
#include <cstdint>
using ::testing::HasSubstr;
using cx = std::complex<double>;
CLI::Option *
add_option(CLI::App &app, std::string name, cx &variable, std::string description = "", bool defaulted = false) {
CLI::callback_t fun = [&variable](CLI::results_t res) {
double x, y;
bool worked = CLI::detail::lexical_cast(res[0], x) && CLI::detail::lexical_cast(res[1], y);
if(worked)
variable = cx(x, y);
return worked;
};
CLI::Option *opt = app.add_option(name, fun, description, defaulted);
opt->type_name("COMPLEX")->type_size(2);
if(defaulted) {
std::stringstream out;
out << variable;
opt->default_str(out.str());
}
return opt;
}
TEST_F(TApp, AddingComplexParser) {
cx comp{0, 0};
add_option(app, "-c,--complex", comp);
args = {"-c", "1.5", "2.5"};
run();
EXPECT_DOUBLE_EQ(1.5, comp.real());
EXPECT_DOUBLE_EQ(2.5, comp.imag());
}
TEST_F(TApp, DefaultComplex) {
cx comp{1, 2};
add_option(app, "-c,--complex", comp, "", true);
args = {"-c", "4", "3"};
std::string help = app.help();
EXPECT_THAT(help, HasSubstr("1"));
EXPECT_THAT(help, HasSubstr("2"));
EXPECT_DOUBLE_EQ(1, comp.real());
EXPECT_DOUBLE_EQ(2, comp.imag());
run();
EXPECT_DOUBLE_EQ(4, comp.real());
EXPECT_DOUBLE_EQ(3, comp.imag());
}
TEST_F(TApp, BuiltinComplex) {
cx comp{1, 2};
app.add_complex("-c,--complex", comp, "", true);
args = {"-c", "4", "3"};
std::string help = app.help();
EXPECT_THAT(help, HasSubstr("1"));
EXPECT_THAT(help, HasSubstr("2"));
EXPECT_THAT(help, HasSubstr("COMPLEX"));
EXPECT_DOUBLE_EQ(1, comp.real());
EXPECT_DOUBLE_EQ(2, comp.imag());
run();
EXPECT_DOUBLE_EQ(4, comp.real());
EXPECT_DOUBLE_EQ(3, comp.imag());
}
TEST_F(TApp, BuiltinComplexFloat) {
std::complex<float> comp{1, 2};
app.add_complex<std::complex<float>, float>("-c,--complex", comp, "", true);
args = {"-c", "4", "3"};
std::string help = app.help();
EXPECT_THAT(help, HasSubstr("1"));
EXPECT_THAT(help, HasSubstr("2"));
EXPECT_THAT(help, HasSubstr("COMPLEX"));
EXPECT_FLOAT_EQ(1, comp.real());
EXPECT_FLOAT_EQ(2, comp.imag());
run();
EXPECT_FLOAT_EQ(4, comp.real());
EXPECT_FLOAT_EQ(3, comp.imag());
}
TEST_F(TApp, BuiltinComplexWithDelimiter) {
cx comp{1, 2};
app.add_complex("-c,--complex", comp, "", true)->delimiter('+');
args = {"-c", "4+3i"};
std::string help = app.help();
EXPECT_THAT(help, HasSubstr("1"));
EXPECT_THAT(help, HasSubstr("2"));
EXPECT_THAT(help, HasSubstr("COMPLEX"));
EXPECT_DOUBLE_EQ(1, comp.real());
EXPECT_DOUBLE_EQ(2, comp.imag());
run();
EXPECT_DOUBLE_EQ(4, comp.real());
EXPECT_DOUBLE_EQ(3, comp.imag());
args = {"-c", "5+-3i"};
run();
EXPECT_DOUBLE_EQ(5, comp.real());
EXPECT_DOUBLE_EQ(-3, comp.imag());
args = {"-c", "6", "-4i"};
run();
EXPECT_DOUBLE_EQ(6, comp.real());
EXPECT_DOUBLE_EQ(-4, comp.imag());
}
TEST_F(TApp, BuiltinComplexIgnoreI) {
cx comp{1, 2};
app.add_complex("-c,--complex", comp);
args = {"-c", "4", "3i"};
run();
EXPECT_DOUBLE_EQ(4, comp.real());
EXPECT_DOUBLE_EQ(3, comp.imag());
}
TEST_F(TApp, BuiltinComplexSingleArg) {
cx comp{1, 2};
app.add_complex("-c,--complex", comp);
args = {"-c", "4"};
run();
EXPECT_DOUBLE_EQ(4, comp.real());
EXPECT_DOUBLE_EQ(0, comp.imag());
args = {"-c", "4-2i"};
run();
EXPECT_DOUBLE_EQ(4, comp.real());
EXPECT_DOUBLE_EQ(-2, comp.imag());
args = {"-c", "4+2i"};
run();
EXPECT_DOUBLE_EQ(4, comp.real());
EXPECT_DOUBLE_EQ(2, comp.imag());
args = {"-c", "-4+2j"};
run();
EXPECT_DOUBLE_EQ(-4, comp.real());
EXPECT_DOUBLE_EQ(2, comp.imag());
args = {"-c", "-4.2-2j"};
run();
EXPECT_DOUBLE_EQ(-4.2, comp.real());
EXPECT_DOUBLE_EQ(-2, comp.imag());
args = {"-c", "-4.2-2.7i"};
run();
EXPECT_DOUBLE_EQ(-4.2, comp.real());
EXPECT_DOUBLE_EQ(-2.7, comp.imag());
}
TEST_F(TApp, BuiltinComplexSingleImag) {
cx comp{1, 2};
app.add_complex("-c,--complex", comp);
args = {"-c", "4j"};
run();
EXPECT_DOUBLE_EQ(0, comp.real());
EXPECT_DOUBLE_EQ(4, comp.imag());
args = {"-c", "-4j"};
run();
EXPECT_DOUBLE_EQ(0, comp.real());
EXPECT_DOUBLE_EQ(-4, comp.imag());
args = {"-c", "-4"};
run();
EXPECT_DOUBLE_EQ(-4, comp.real());
EXPECT_DOUBLE_EQ(0, comp.imag());
args = {"-c", "+4"};
run();
EXPECT_DOUBLE_EQ(4, comp.real());
EXPECT_DOUBLE_EQ(0, comp.imag());
}
/// Simple class containing two strings useful for testing lexical cast and conversions
class spair {
public:
spair() = default;
spair(const std::string &s1, const std::string &s2) : first(s1), second(s2) {}
std::string first{};
std::string second{};
};
// an example of custom converter that can be used to add new parsing options
// On MSVC and possibly some other new compilers this can be a free standing function without the template
// specialization but this is compiler dependent
namespace CLI {
namespace detail {
template <> bool lexical_cast<spair>(const std::string &input, spair &output) {
auto sep = input.find_first_of(':');
if((sep == std::string::npos) && (sep > 0)) {
return false;
}
output = {input.substr(0, sep), input.substr(sep + 1)};
return true;
}
} // namespace detail
} // namespace CLI
TEST_F(TApp, custom_string_converter) {
spair val;
app.add_option("-d,--dual_string", val);
args = {"-d", "string1:string2"};
run();
EXPECT_EQ(val.first, "string1");
EXPECT_EQ(val.second, "string2");
}
TEST_F(TApp, custom_string_converterFail) {
spair val;
app.add_option("-d,--dual_string", val);
args = {"-d", "string2"};
EXPECT_THROW(run(), CLI::ConversionError);
}
// an example of custom complex number converter that can be used to add new parsing options
#if defined(__has_include)
#if __has_include(<regex>)
// an example of custom converter that can be used to add new parsing options
#define HAS_REGEX_INCLUDE
#endif
#endif
#ifdef HAS_REGEX_INCLUDE
// Gcc 4.8 and older and the corresponding standard libraries have a broken <regex> so this would
// fail. And if a clang compiler is using libstd++ then this will generate an error as well so this is just a check to
// simplify compilation and prevent a much more complicated #if expression
#include <regex>
namespace CLI {
namespace detail {
// On MSVC and possibly some other new compilers this can be a free standing function without the template
// specialization but this is compiler dependent
template <> bool lexical_cast<std::complex<double>>(const std::string &input, std::complex<double> &output) {
// regular expression to handle complex numbers of various formats
static const std::regex creg(
R"(([+-]?(\d+(\.\d+)?|\.\d+)([eE][+-]?\d+)?)\s*([+-]\s*(\d+(\.\d+)?|\.\d+)([eE][+-]?\d+)?)[ji]*)");
std::smatch m;
double x = 0.0, y = 0.0;
bool worked;
std::regex_search(input, m, creg);
if(m.size() == 9) {
worked = CLI::detail::lexical_cast(m[1], x) && CLI::detail::lexical_cast(m[6], y);
if(worked) {
if(*m[5].first == '-') {
y = -y;
}
}
} else {
if((input.back() == 'j') || (input.back() == 'i')) {
auto strval = input.substr(0, input.size() - 1);
CLI::detail::trim(strval);
worked = CLI::detail::lexical_cast(strval, y);
} else {
std::string ival = input;
CLI::detail::trim(ival);
worked = CLI::detail::lexical_cast(ival, x);
}
}
if(worked) {
output = cx{x, y};
}
return worked;
}
} // namespace detail
} // namespace CLI
TEST_F(TApp, AddingComplexParserDetail) {
bool skip_tests = false;
try { // check if the library actually supports regex, it is possible to link against a non working regex in the
// standard library
std::smatch m;
std::string input = "1.5+2.5j";
static const std::regex creg(
R"(([+-]?(\d+(\.\d+)?|\.\d+)([eE][+-]?\d+)?)\s*([+-]\s*(\d+(\.\d+)?|\.\d+)([eE][+-]?\d+)?)[ji]*)");
auto rsearch = std::regex_search(input, m, creg);
if(!rsearch) {
skip_tests = true;
} else {
EXPECT_EQ(m.size(), 9u);
}
} catch(...) {
skip_tests = true;
}
if(!skip_tests) {
cx comp{0, 0};
app.add_option("-c,--complex", comp, "add a complex number option");
args = {"-c", "1.5+2.5j"};
run();
EXPECT_DOUBLE_EQ(1.5, comp.real());
EXPECT_DOUBLE_EQ(2.5, comp.imag());
args = {"-c", "1.5-2.5j"};
run();
EXPECT_DOUBLE_EQ(1.5, comp.real());
EXPECT_DOUBLE_EQ(-2.5, comp.imag());
}
}
#endif
/// simple class to wrap another with a very specific type constructor and assignment operators to test out some of the
/// option assignments
template <class X> class objWrapper {
public:
objWrapper() = default;
explicit objWrapper(X obj) : val_{obj} {};
objWrapper(const objWrapper &ow) = default;
template <class TT> objWrapper(const TT &obj) = delete;
objWrapper &operator=(const objWrapper &) = default;
objWrapper &operator=(objWrapper &&) = default;
// delete all other assignment operators
template <typename TT> void operator=(TT &&obj) = delete;
const X &value() const { return val_; }
private:
X val_{};
};
// I think there is a bug with the is_assignable in visual studio 2015 it is fixed in later versions
// so this test will not compile in that compiler
#if !defined(_MSC_VER) || _MSC_VER >= 1910
static_assert(CLI::detail::is_direct_constructible<objWrapper<std::string>, std::string>::value,
"string wrapper isn't properly constructible");
static_assert(!std::is_assignable<objWrapper<std::string>, std::string>::value,
"string wrapper is improperly assignable");
TEST_F(TApp, stringWrapper) {
objWrapper<std::string> sWrapper;
app.add_option("-v", sWrapper);
args = {"-v", "string test"};
run();
EXPECT_EQ(sWrapper.value(), "string test");
}
static_assert(CLI::detail::is_direct_constructible<objWrapper<double>, double>::value,
"double wrapper isn't properly assignable");
static_assert(!CLI::detail::is_direct_constructible<objWrapper<double>, int>::value,
"double wrapper can be assigned from int");
static_assert(!CLI::detail::is_istreamable<objWrapper<double>>::value,
"double wrapper is input streamable and it shouldn't be");
TEST_F(TApp, doubleWrapper) {
objWrapper<double> dWrapper;
app.add_option("-v", dWrapper);
args = {"-v", "2.36"};
run();
EXPECT_EQ(dWrapper.value(), 2.36);
args = {"-v", "thing"};
EXPECT_THROW(run(), CLI::ConversionError);
}
static_assert(CLI::detail::is_direct_constructible<objWrapper<int>, int>::value,
"int wrapper is not constructible from int64");
static_assert(!CLI::detail::is_direct_constructible<objWrapper<int>, double>::value,
"int wrapper is constructible from double");
static_assert(!CLI::detail::is_istreamable<objWrapper<int>>::value,
"int wrapper is input streamable and it shouldn't be");
TEST_F(TApp, intWrapper) {
objWrapper<int> iWrapper;
app.add_option("-v", iWrapper);
args = {"-v", "45"};
run();
EXPECT_EQ(iWrapper.value(), 45);
args = {"-v", "thing"};
EXPECT_THROW(run(), CLI::ConversionError);
}
static_assert(!CLI::detail::is_direct_constructible<objWrapper<float>, int>::value,
"float wrapper is constructible from int");
static_assert(!CLI::detail::is_direct_constructible<objWrapper<float>, double>::value,
"float wrapper is constructible from double");
static_assert(!CLI::detail::is_istreamable<objWrapper<float>>::value,
"float wrapper is input streamable and it shouldn't be");
TEST_F(TApp, floatWrapper) {
objWrapper<float> iWrapper;
app.add_option<objWrapper<float>, float>("-v", iWrapper);
args = {"-v", "45.3"};
run();
EXPECT_EQ(iWrapper.value(), 45.3f);
args = {"-v", "thing"};
EXPECT_THROW(run(), CLI::ConversionError);
}
#endif
/// simple class to wrap another with a very specific type constructor to test out some of the option assignments
class dobjWrapper {
public:
dobjWrapper() = default;
explicit dobjWrapper(double obj) : dval_{obj} {};
explicit dobjWrapper(int obj) : ival_{obj} {};
double dvalue() const { return dval_; }
int ivalue() const { return ival_; }
private:
double dval_{0.0};
int ival_{0};
};
TEST_F(TApp, dobjWrapper) {
dobjWrapper iWrapper;
app.add_option("-v", iWrapper);
args = {"-v", "45"};
run();
EXPECT_EQ(iWrapper.ivalue(), 45);
EXPECT_EQ(iWrapper.dvalue(), 0.0);
args = {"-v", "thing"};
EXPECT_THROW(run(), CLI::ConversionError);
iWrapper = dobjWrapper{};
args = {"-v", "45.1"};
run();
EXPECT_EQ(iWrapper.ivalue(), 0);
EXPECT_EQ(iWrapper.dvalue(), 45.1);
}
/// simple class to wrap another with a very specific type constructor and assignment operators to test out some of the
/// option assignments
template <class X> class AobjWrapper {
public:
AobjWrapper() = default;
// delete all other constructors
template <class TT> AobjWrapper(TT &&obj) = delete;
// single assignment operator
AobjWrapper &operator=(X val) {
val_ = val;
return *this;
}
// delete all other assignment operators
template <typename TT> void operator=(TT &&obj) = delete;
const X &value() const { return val_; }
private:
X val_{};
};
static_assert(std::is_assignable<AobjWrapper<std::uint16_t> &, std::uint16_t>::value,
"AobjWrapper not assignable like it should be ");
TEST_F(TApp, uint16Wrapper) {
AobjWrapper<std::uint16_t> sWrapper;
app.add_option<AobjWrapper<std::uint16_t>, std::uint16_t>("-v", sWrapper);
args = {"-v", "9"};
run();
EXPECT_EQ(sWrapper.value(), 9u);
args = {"-v", "thing"};
EXPECT_THROW(run(), CLI::ConversionError);
args = {"-v", "72456245754"};
EXPECT_THROW(run(), CLI::ConversionError);
args = {"-v", "-3"};
EXPECT_THROW(run(), CLI::ConversionError);
}