utility/LessThanComparable.html
Jeremy Siek db45013339 fixed sgi stl link
[SVN r9631]
2001-03-22 16:06:15 +00:00

213 lines
5.1 KiB
HTML

<HTML>
<!--
-- Copyright (c) Jeremy Siek 2000
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
-->
<!--
-- Copyright (c) 1996-1999
-- Silicon Graphics Computer Systems, Inc.
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
--
-- Copyright (c) 1994
-- Hewlett-Packard Company
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Hewlett-Packard Company makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
--
-->
<Head>
<Title>LessThanComparable</Title>
</Head>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
<!--end header-->
<BR Clear>
<H1>LessThanComparable</H1>
<h3>Description</h3>
A type is LessThanComparable if it is ordered: it must
be possible to compare two objects of that type using <tt>operator&lt;</tt>, and
<tt>operator&lt;</tt> must be a strict weak ordering relation.
<h3>Refinement of</h3>
<h3>Associated types</h3>
<h3>Notation</h3>
<Table>
<TR>
<TD VAlign=top>
<tt>X</tt>
</TD>
<TD VAlign=top>
A type that is a model of LessThanComparable
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>x</tt>, <tt>y</tt>, <tt>z</tt>
</TD>
<TD VAlign=top>
Object of type <tt>X</tt>
</TD>
</tr>
</table>
<h3>Definitions</h3>
Consider the relation <tt>!(x &lt; y) &amp;&amp; !(y &lt; x)</tt>. If this relation is
transitive (that is, if <tt>!(x &lt; y) &amp;&amp; !(y &lt; x) &amp;&amp; !(y &lt; z) &amp;&amp; !(z &lt; y)</tt>
implies <tt>!(x &lt; z) &amp;&amp; !(z &lt; x)</tt>), then it satisfies the mathematical
definition of an equivalence relation. In this case, <tt>operator&lt;</tt>
is a <i>strict weak ordering</i>.
<P>
If <tt>operator&lt;</tt> is a strict weak ordering, and if each equivalence class
has only a single element, then <tt>operator&lt;</tt> is a <i>total ordering</i>.
<h3>Valid expressions</h3>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Type requirements
</TH>
<TH>
Return type
</TH>
</TR>
<TR>
<TD VAlign=top>
Less
</TD>
<TD VAlign=top>
<tt>x &lt; y</tt>
</TD>
<TD VAlign=top>
&nbsp;
</TD>
<TD VAlign=top>
Convertible to <tt>bool</tt>
</TD>
</TR>
</table>
<h3>Expression semantics</h3>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Precondition
</TH>
<TH>
Semantics
</TH>
<TH>
Postcondition
</TH>
</TR>
<TR>
<TD VAlign=top>
Less
</TD>
<TD VAlign=top>
<tt>x &lt; y</tt>
</TD>
<TD VAlign=top>
<tt>x</tt> and <tt>y</tt> are in the domain of <tt>&lt;</tt>
</TD>
<TD VAlign=top>
&nbsp;
</TD>
</table>
<h3>Complexity guarantees</h3>
<h3>Invariants</h3>
<Table border>
<TR>
<TD VAlign=top>
Irreflexivity
</TD>
<TD VAlign=top>
<tt>x &lt; x</tt> must be false.
</TD>
</TR>
<TR>
<TD VAlign=top>
Antisymmetry
</TD>
<TD VAlign=top>
<tt>x &lt; y</tt> implies !(y &lt; x) <A href="#2">[2]</A>
</TD>
</TR>
<TR>
<TD VAlign=top>
Transitivity
</TD>
<TD VAlign=top>
<tt>x &lt; y</tt> and <tt>y &lt; z</tt> implies <tt>x &lt; z</tt> <A href="#3">[3]</A>
</TD>
</tr>
</table>
<h3>Models</h3>
<UL>
<LI>
int
</UL>
<h3>Notes</h3>
<P><A name="1">[1]</A>
Only <tt>operator&lt;</tt> is fundamental; the other inequality operators
are essentially syntactic sugar.
<P><A name="2">[2]</A>
Antisymmetry is a theorem, not an axiom: it follows from
irreflexivity and transitivity.
<P><A name="3">[3]</A>
Because of irreflexivity and transitivity, <tt>operator&lt;</tt> always
satisfies the definition of a <i>partial ordering</i>. The definition of
a <i>strict weak ordering</i> is stricter, and the definition of a
<i>total ordering</i> is stricter still.
<h3>See also</h3>
<A href="http://www.sgi.com/tech/stl/EqualityComparable.html">EqualityComparable</A>, <A href="http://www.sgi.com/tech/stl/StrictWeakOrdering.html">StrictWeakOrdering</A>
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright &copy 2000</TD><TD>
<A HREF=http://www.lsc.nd.edu/~jsiek>Jeremy Siek</A>, Univ.of Notre Dame (<A HREF="mailto:jsiek@lsc.nd.edu">jsiek@lsc.nd.edu</A>)
</TD></TR></TABLE>
</BODY>
</HTML>