utility/algo_opt_examples.cpp
Beman Dawes 06adfe9658 This commit was generated by cvs2svn to compensate for changes in r4,
which included commits to RCS files with non-trunk default branches.


[SVN r7621]
2000-07-07 16:04:40 +00:00

407 lines
11 KiB
C++

/*
*
* Copyright (c) 1999
* Dr John Maddock
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Dr John Maddock makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*
* This file provides some example of type_traits usage -
* by "optimising" various algorithms:
*
* opt::copy - optimised for trivial copy (cf std::copy)
* opt::fill - optimised for trivial copy/small types (cf std::fill)
* opt::destroy_array - an example of optimisation based upon omitted destructor calls
* opt::iter_swap - uses type_traits to determine whether the iterator is a proxy
* in which case it uses a "safe" approach, otherwise calls swap
* on the assumption that swap may be specialised for the pointed-to type.
*
*/
#include <iostream>
#include <typeinfo>
#include <algorithm>
#include <iterator>
#include <vector>
#include <memory>
#include <boost/timer.hpp>
#include <boost/type_traits.hpp>
#include <boost/call_traits.hpp>
using std::cout;
using std::endl;
using std::cin;
namespace opt{
//
// algorithm destroy_arry:
// The reverse of std::unitialized_copy, takes a block of
// unitialized memory and calls destructors on all objects therein.
//
namespace detail{
template <bool>
struct array_destroyer
{
template <class T>
static void destroy_array(T* i, T* j){ do_destroy_array(i, j); }
};
template <>
struct array_destroyer<true>
{
template <class T>
static void destroy_array(T*, T*){}
};
template <class T>
void do_destroy_array(T* first, T* last)
{
while(first != last)
{
first->~T();
++first;
}
}
}; // namespace detail
template <class T>
inline void destroy_array(T* p1, T* p2)
{
detail::array_destroyer<boost::has_trivial_destructor<T>::value>::destroy_array(p1, p2);
}
//
// unoptimised versions of destroy_array:
//
template <class T>
void destroy_array1(T* first, T* last)
{
while(first != last)
{
first->~T();
++first;
}
}
template <class T>
void destroy_array2(T* first, T* last)
{
for(; first != last; ++first) first->~T();
}
//
// opt::copy
// same semantics as std::copy
// calls memcpy where appropiate.
//
namespace detail{
template <bool b>
struct copier
{
template<typename I1, typename I2>
static I2 do_copy(I1 first, I1 last, I2 out);
};
template <bool b>
template<typename I1, typename I2>
I2 copier<b>::do_copy(I1 first, I1 last, I2 out)
{
while(first != last)
{
*out = *first;
++out;
++first;
}
return out;
}
template <>
struct copier<true>
{
template<typename I1, typename I2>
static I2* do_copy(I1* first, I1* last, I2* out)
{
memcpy(out, first, (last-first)*sizeof(I2));
return out+(last-first);
}
};
}
template<typename I1, typename I2>
inline I2 copy(I1 first, I1 last, I2 out)
{
typedef typename boost::remove_cv<typename std::iterator_traits<I1>::value_type>::type v1_t;
typedef typename boost::remove_cv<typename std::iterator_traits<I2>::value_type>::type v2_t;
enum{ can_opt = boost::is_same<v1_t, v2_t>::value
&& boost::is_pointer<I1>::value
&& boost::is_pointer<I2>::value
&& boost::has_trivial_assign<v1_t>::value };
return detail::copier<can_opt>::do_copy(first, last, out);
}
//
// fill
// same as std::fill, uses memset where appropriate, along with call_traits
// to "optimise" parameter passing.
//
namespace detail{
template <bool opt>
struct filler
{
template <typename I, typename T>
static void do_fill(I first, I last, typename boost::call_traits<T>::param_type val);
};
template <bool b>
template <typename I, typename T>
void filler<b>::do_fill(I first, I last, typename boost::call_traits<T>::param_type val)
{
while(first != last)
{
*first = val;
++first;
}
}
template <>
struct filler<true>
{
template <typename I, typename T>
static void do_fill(I first, I last, T val)
{
memset(first, val, last-first);
}
};
}
template <class I, class T>
inline void fill(I first, I last, const T& val)
{
enum{ can_opt = boost::is_pointer<I>::value
&& boost::is_arithmetic<T>::value
&& (sizeof(T) == 1) };
typedef detail::filler<can_opt> filler_t;
filler_t::template do_fill<I,T>(first, last, val);
}
//
// iter_swap:
// tests whether iterator is a proxying iterator or not, and
// uses optimal form accordingly:
//
namespace detail{
template <bool b>
struct swapper
{
template <typename I>
static void do_swap(I one, I two)
{
typedef typename std::iterator_traits<I>::value_type v_t;
v_t v = *one;
*one = *two;
*two = v;
}
};
template <>
struct swapper<true>
{
template <typename I>
static void do_swap(I one, I two)
{
using std::swap;
swap(*one, *two);
}
};
}
template <typename I1, typename I2>
inline void iter_swap(I1 one, I2 two)
{
typedef typename std::iterator_traits<I1>::reference r1_t;
typedef typename std::iterator_traits<I2>::reference r2_t;
enum{ can_opt = boost::is_reference<r1_t>::value && boost::is_reference<r2_t>::value && boost::is_same<r1_t, r2_t>::value };
detail::swapper<can_opt>::do_swap(one, two);
}
}; // namespace opt
//
// define some global data:
//
const int array_size = 1000;
int i_array[array_size] = {0,};
const int ci_array[array_size] = {0,};
char c_array[array_size] = {0,};
const char cc_array[array_size] = { 0,};
const int iter_count = 1000000;
int main()
{
//
// test destroy_array,
// compare destruction time of an array of ints
// with unoptimised form.
//
cout << "Measuring times in micro-seconds per 1000 elements processed" << endl << endl;
cout << "testing destroy_array...\n"
"[Some compilers may be able to optimise the \"unoptimised\"\n versions as well as type_traits does.]" << endl;
/*cache load*/ opt::destroy_array(i_array, i_array + array_size);
boost::timer t;
double result;
int i;
for(i = 0; i < iter_count; ++i)
{
opt::destroy_array(i_array, i_array + array_size);
}
result = t.elapsed();
cout << "destroy_array<int>: " << result << endl;
/*cache load*/ opt::destroy_array1(i_array, i_array + array_size);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::destroy_array1(i_array, i_array + array_size);
}
result = t.elapsed();
cout << "destroy_array<int>(unoptimised#1): " << result << endl;
/*cache load*/ opt::destroy_array2(i_array, i_array + array_size);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::destroy_array2(i_array, i_array + array_size);
}
result = t.elapsed();
cout << "destroy_array<int>(unoptimised#2): " << result << endl << endl;
cout << "testing copy...\n"
"[Some standard library versions may already perform this optimisation.]" << endl;
/*cache load*/ opt::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
}
result = t.elapsed();
cout << "opt::copy<const int*, int*>: " << result << endl;
/*cache load*/ std::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
}
result = t.elapsed();
cout << "std::copy<const int*, int*>: " << result << endl;
/*cache load*/ opt::detail::copier<false>::template do_copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::detail::copier<false>::template do_copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
}
result = t.elapsed();
cout << "standard \"unoptimised\" copy: " << result << endl << endl;
/*cache load*/ opt::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
}
result = t.elapsed();
cout << "opt::copy<const char*, char*>: " << result << endl;
/*cache load*/ std::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
}
result = t.elapsed();
cout << "std::copy<const char*, char*>: " << result << endl;
/*cache load*/ opt::detail::copier<false>::template do_copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::detail::copier<false>::template do_copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
}
result = t.elapsed();
cout << "standard \"unoptimised\" copy: " << result << endl << endl;
cout << "testing fill(char)...\n"
"[Some standard library versions may already perform this optimisation.]" << endl;
/*cache load*/ opt::fill<char*, char>(c_array, c_array + array_size, (char)3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::fill<char*, char>(c_array, c_array + array_size, (char)3);
}
result = t.elapsed();
cout << "opt::fill<char*, char>: " << result << endl;
/*cache load*/ std::fill(c_array, c_array + array_size, (char)3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::fill(c_array, c_array + array_size, (char)3);
}
result = t.elapsed();
cout << "std::fill<char*, char>: " << result << endl << endl;
cout << "testing fill(int)...\n"
"[Tests the effect of call_traits pass-by-value optimisation -\nthe value of this optimisation may depend upon hardware characteristics.]" << endl;
/*cache load*/ opt::fill<int*, int>(i_array, i_array + array_size, 3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::fill<int*, int>(i_array, i_array + array_size, 3);
}
result = t.elapsed();
cout << "opt::fill<int*, int>: " << result << endl;
/*cache load*/ std::fill(i_array, i_array + array_size, 3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::fill(i_array, i_array + array_size, 3);
}
result = t.elapsed();
cout << "std::fill<int*, int>: " << result << endl << endl;
//
// testing iter_swap
// really just a check that it does in fact compile...
std::vector<int> v1;
v1.push_back(0);
v1.push_back(1);
std::vector<bool> v2;
v2.push_back(0);
v2.push_back(1);
opt::iter_swap(v1.begin(), v1.begin()+1);
opt::iter_swap(v2.begin(), v2.begin()+1);
cout << "Press any key to exit...";
cin.get();
}