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Abstract. The iterator abstraction is one of the most commonly used in
programming, but implementing an iterator type can be challenging. The
requirements for a standard-conforming iterator are at once tedious and
subtle: tedious because much of an iterator’s rich interface is “boiler-
plate” surrounding a few core operations, and subtle because of the intri-
cate details involved in getting that interface right. This paper presents
the generalized iterator template from the Boost Iterator Adaptor Library.
In addition to automating the error-prone and redundant job of imple-
menting new iterator types, the library simplifies the creation of iterator
types that are variations on other iterators (adapted iterators) and gen-
erators of new iterator families (iterator adaptors). The Iterator Adap-
tor Library is an example of policy-based design and employs template
meta-programming. We also present the Policy Adapter implementation
pattern, a strategy which can also be used to generate new representatives
of other abstract concept families.

1 Introduction

Iterators play an important role in modern C++ programming. The iterator is the central
abstraction of the algorithms of the Standard Library, allowing algorithms to be re-used
in in a wide variety of contexts.

1.1 Iterators

The power of iterators derives from several key features:
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• Iterators form a richfamilyof concepts1 whose functionality varies along several
axes: movement, dereferencing, and associated type exposure.

• The iterator concepts of the C++ standard form a refinement hierarchy which
allows the same basic interface elements to implement diverse functionality.

• Because built-in pointer types model theRandomAccessIterator concept, iter-
ators can be both efficient and convenient to use.

The C++ Standard Library contains a wide variety of useful iterators. Every one of
the standard containers comes with constant and mutable iterators2, and alsoreverse

versions of those same iterators which traverse the container in the opposite direction.
The Standard also suppliesistream iterator and ostream iterator for read-
ing from and writing to streams,insert iterator , front insert iterator and
back insert iterator for inserting elements into containers, andraw storage -

iterator for initializing raw memory [7].
Despite the many iterators supplied by the Standard Library, many obvious itera-

tors are missing, and creating new iterator types is still a common task for C++ pro-
grammers. The literature documents several of these, for exampleline iterator [3]
Constant iterator [9]. The iterator abstraction is so powerful, however, that we
expect programmers will always need to invent new iterator types.

1.2 Adaptors

Because iterators combine traversal, indirection, and associated type exposure, it is
common to want to adapt one iterator to form a new one. This strategy allows one to
reuse some of original iterator’s axes of variation while redefining others. For example,
the Standard providesreverse iterator , which adapts anyBidirectionalIterator by
inverting its direction of traversal.

As with plain iterators, iterator adaptors defined outside the Standard have become
commonplace in the literature:

• Checked iter [13] adds bounds-checking to an existing iterator.

• The iterators of the View Template Library [14], which adapts containers, are
themselves adaptors over the underlying iterators.

• smart iterators [5] adapt an iterator’s dereferencing behavior by applying a func-
tion object to the object being referenced and returning the result.

• Custom iterators [4], in which a variety of adaptor types are enumerated.

• compound iterators [1], which access a slice out of a container of containers.

1We use the termconceptto mean a set of requirements that a type must satisfy to be used with a particular
template parameter.

2The termmutable iteratorrefers to iterators over objects that can be changed by assigning to the deref-
erenced iterator, whileconstant iteratorrefers to iterators over objects that cannot be modified.
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• Several iterator adaptors from the MTL [12]. The MTL contains a strided iterator,
where each call tooperator++() moves the iterator ahead by some constant
factor, and a scaled iterator, which multiplies the dereferenced value by some
constant.

2 The Design of the Boost Iterator Adaptor Library

To automate the repetitive work of constructing iterators, one would need a generator
of new iterator types that can accommodate all the ways in which iterators vary. One
could then make new iterators with relative ease, specifying the parts that matter and
letting the library do the rest. To that end, the Boost Iterator Adaptor Library provides a
fully-generalized iterator callediterator adaptor . The iterator adaptor class
template adapts aBase type, (usually an iterator), to produce a new adapted iterator
type.3

2.1 Core Elements of the Iterator Concept

The first step in designing such a generalized model of the iterator concept is to identify
the core elements of its interface. We have identified the following core behaviors for
iterators:

• dereferencing

• incrementing

• decrementing

• equality comparison

• random-access motion

• distance measurement

In addition to the behaviors listed above, the core interface elements include the as-
sociated types exposed throughiterator traits : value type , reference , pointer ,
and iterator category . The library supports two ways of specifying these: as tra-
ditional template parameters and also asnamedtemplate parameters (described below),
and uses a system of smart defaults which in most cases reduces the number of these
types that must be specified.

2.2 From Building Models to Building Adaptors

A generalized iterator generator is useful (helping to create new iterator types from
scratch), but a generalized iteratoradaptor is even more useful. An adaptor genera-
tor allows one to build whole families of iterator instances based on existing iterators.

3 The term“Base ” is not meant to imply the use of inheritance. We have followed the lead of the standard
library, which provides abase() function to access the underlying iterator object of areverse -
iterator adaptor.



In the Boost Iterator Adaptor Library, theiterator adaptor class template plays
the roles of both iterator generator and iterator adaptor generator. The behaviors of
iterator adaptor instances are supplied through a policies class [2] which allows
users to specialize adaptation. Users go beyond generating new iterator types to easily
generating new iterator adaptor families.

The library contains several examples of specialized adaptors which were quickly
implemented usingiterator adaptor :

• Indirect Iterator Adaptor, which iterates over iterators, pointers, or smart pointers
and applies an extra level of dereferencing.

• Reverse Iterator Adaptor, which inverts the direction of aBase iterator’s motion,
while allowing adapted constant and mutable iterators to interact in the expected
ways. We will discuss this further in Section5.2.1.

• Transform Iterator Adaptor, which applies a user-defined function object to the
underlying values when dereferenced. We will show how this adaptor is imple-
mented in Section3.1.

• Projection Iterator Adaptor, which is similar to Transform Iterator Adaptor except
that when dereferenced it returns by-reference instead of by-value.

• Filter Iterator Adaptor, which provides a view of an iterator range in which some
elements of the underlying range are skipped.

• Counting Iterator Adaptor, which adapts any incrementable type (e.g. integers,
iterators) so that incrementing/decrementing the adapted iterator and dereferenc-
ing it produces successive values of theBase type.

• Function Output Iterator Adaptor, which makes it easier to create custom output
iterators.

Based on the examples in the library, users have generated many new adaptors,
among them a permutation adaptor which applies some permutation to aRandomAc-
cessIterator, and a strided adaptor, which adapts aRandomAccessIterator by mul-
tiplying its unit of motion by a constant factor. In addition, the Boost Graph Library
(BGL) uses iterator adaptors to adapt other graph libraries, such as LEDA [10] and
Stanford GraphBase [8], to the BGL interface (which requires C++ Standard compliant
iterators).

3 The Boostiterator adaptor Class Template

The iterator adaptor class template simplifies the creation of iterators by automat-
ing the implementation of redundant operators and delegating functions and by taking
care of the complex details of iterator implementation.

The central design feature ofiterator adaptor is parameterization by a policies
class. The policies class is the primary communication mechanism between the iter-
ator implementer and theiterator adaptor ; it specifies how the new iterator type
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behaves. Unlike the policy classes in [2], we group several policies into a single class
as this proved more convenient for iterator implementation.

3.1 Iterator Policies Class

The following example shows how to implement the policies class for a transform iter-
ator adaptor: an iterator that applies some function to the value returned by dereferenc-
ing the base iterator. Thetransform iterator policies class is templated on the
function object type, and a function object is stored as a data member of the policies
class.

When adapting an underlying iterator, it is easiest to store any extra state needed
by the resulting iterator in the policies class. The alternative is to wrap the underlying
iterator in another class that contains the state, thereby incorporating the state into the
Base type. This approach is much more work since the wrapping class will have to
delegate many operations (instead of allowing theiterator adaptor to implement
the delegations).

The policies class inherits fromdefault iterator policies , which delegates
all other operations to the base iterator. The main event of thetransform iterator -

policies class is thedereference() member function, which simply applies the
function to the dereferenced value. The base iterator object is the second argument to
thedereference() function. Because the iterator type is a template parameter of the
dereference() function, the same concrete policies class can be used with any base
iterator type, which greatly simplifies adaptation.

template <class AdaptableUnaryFunction>
struct transform_iterator_policies : public default_iterator_policies
{

transform_iterator_policies() { }
transform_iterator_policies(const AdaptableUnaryFunction& f)

: m_f(f) { }

template <class Reference, class Base>
Reference dereference(type<Reference>, const Base& x) const

{ return m_f(*x); } // apply the function and return the result

AdaptableUnaryFunction m_f;
};

Notes on the policies class implementation:

• Becauseiterator adaptor stores an instance of the policies class as a data
member, and all iterators are required to have default constructors, policies classes
to be used withiterator adaptor are also required to have default construc-
tors.

• Thetype<Reference> parameter is an empty class used only to convey the ap-
propriate return type to thedereference() function. Although it might have
been more elegant to rely on the caller for explicit specification of theReference

template argument as inpolicies.dereference<reference>(base iterator) ,
that approach proved not to to be portable to all of the targeted compilers.



With the policies class complete, the iterator implementer is almost finished, and
only eleven lines of code have been written. The code consists of little more than the
main idea of the transform iterator, applying a function to the result of dereferencing
the base iterator. Next we will take a closer look at thedefault iterator policies

class and then in§3.3we will show how the transform iterator type is constructed using
iterator adaptor .

3.2 Default Iterator Policies Class

The default iterator policies class is the mechanism that automatically dele-
gates operator implementations to the base iterator, freeing the iterator implementer
from the tedious task of writing delegating functions. As above, an iterator policies
class inherits from this class and overrides any functions that should not be delegated.
The default iterator policies class also serves as an example of the iterator
policies interface. There are six member functions corresponding to the core iterator
operations and aninitialize() function which provides a hook for customized iter-
ator construction.

namespace boost {
struct default_iterator_policies
{

template <class Base>
void initialize(Base&) { }

template <class Reference, class Base>
Reference dereference(type<Reference>, const Base& x) const

{ return *x; }

template <class Base>
void increment(Base& x) { ++x; }

template <class Base>
void decrement(Base& x) { --x; }

template <class Base, class Difference>
void advance(Base& x, Difference n) { x += n; }

template <class Difference, class Base1, class Base2>
Difference distance(type<Difference>, const Base1& x,

const Base2& y) const { return y - x; }

template <class Base1, class Base2>
bool equal(const Base1& x, const Base2& y) const

{ return x == y; }
};

} // namespace boost

3.3 Iterator Type Generator

In Section3.1 we showed how to create the policy class for the transform iterator; the
next step is to use theiterator adaptor template to construct the actual iterator
type. The best way to package the construction of the transform iterator is to create a



type generator: a class template whose sole purpose is to simplify the instantiation of
some other complicated class template. It fulfills the same need as a template typedef
would, if that were part of the C++ language. The first template parameter to the type
generator is the type of the function object and the second is the base iterator type. The
following code shows the type generator for the transform iterator.

template <class AdaptableUnaryFunction, class BaseIterator>
struct transform_iterator_generator
{

typedef typename AdaptableUnaryFunction::result_type val_t;
public:

typedef iterator_adaptor<BaseIterator,
transform_iterator_policies<AdaptableUnaryFunction>,
iterator_category_is<std::input_iterator_tag>,
value_type_is<val_t>, reference_is<val_t> > type;

};

We useiterator adaptor to define the transform iterator type as a nestedtypedef

inside thetransform iterator generator class. The first parameter toiterator -

adaptor is the base iterator type and the second is the policies class. The remaining
parameters specify the iterator’s associated types and are given asnamed parameters.
We will discuss this technique in§5.1.2.

Theiterator category is set tostd::input iterator tag because the func-
tion object may return by-value. For the same reason thereference type (which
will be the return type ofoperator* ) is set toval t (and notval t& ). There are
two parameters that are left out: thepointer type defaults tovalue type* and the
difference type defaults to thedifference type of the base iterator.

It is tempting to create atransform iterator class template which is derived
from iterator adaptor instead of using the type generator. This approach does not
work, for example, because the return type ofoperator++ of an iterator is required
to be the same iterator type, while in this case the return type would beiterator -

adaptor and nottransform iterator .

3.4 Iterator Object Generator

Even though we now have a way to easily express the type of our transform iterator,
writing the type down at all is often more trouble than it is worth. TheAdaptableU-
naryFunction’s type alone could be quite complex if it were generated using standard
library facilities such asstd::bind1st , std::bind2nd , or std::ptr fun . Declar-
ing the entire transform iterator type can be much worse. For example, suppose we
wanted to multiply the elements of aset by 2, and append them to alist . The trans-
form iterator type might be declared as follows:

typedef transform_iterator_generator<
std::binder2nd<std::multiplies<int> >,
std::set<int, std::greater<int> >::const_iterator>::type

int_set_doubler;
// to be continued...
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Continuing our example, we find that the “adapting constructor” ofiterator -

adaptor is not always well-suited to easy construction of specialized adaptor types.
That constructor is declared as follows:

iterator_adaptor(const Base& it, const Policies& p = Policies())

Because we stored theAdaptableUnaryFunction object (which may have state)
inside the Policies class of our transform iterator, the user can’t rely on the default
constructor argument to generate the correct policies object. Instead the policies object
must be explicitly constructed and passed to the adaptor’s constructor:

// ...example (continued)
typedef transform_iterator_policies<

std::binder2nd<std::multiplies<int> > > policies;

policies p(std::bind2nd(std::multiplies<int>(),2));

std::copy(
int_set_doubler(my_set.begin(), p),
int_set_doubler(my_set.end(), p),
std::back_inserter(my_list));

If every use of transform iterator required this much code, users would quickly
give up on it and use handwritten loops instead. Fortunately, the C++ standard library
provides a useful precedent.

In the example above,std::back inserter is a type of function called anobject
generatorwhich returns an object of typestd::back insert iterator<my list> .
An object generator allows the user to build adapted types “on the fly” and pass them
directly to functions, so that no declaration is needed. This idiom is especially con-
venient in the case of iterators, since so many algorithms are implemented in terms of
iterator ranges. We therefore recommend that iterator implementers create an object
generator for their iterators. The object generator function for the transform iterator
adaptor,make transform iterator , is shown below.4

template <class AdaptableUnaryFunction, class BaseIterator>
typename transform_iterator_generator<

AdaptableUnaryFunction, BaseIterator>::type
make_transform_iterator(BaseIterator base,

const AdaptableUnaryFunction& f = AdaptableUnaryFunction())
{

typedef typename transform_iterator_generator<AdaptableUnaryFunction,
BaseIterator>::type result_t;

transform_iterator_policies<AdaptableUnaryFunction> policies(f);

return result_t(base, policies);
}

4 Although there is precedent in the standard for calling such an object generator, simply
“ transform iterator() ” (e.g. std::back inserter ), the standard also uses the more ex-
plicit “ make ” prefix (e.g. std::make pair() ) and occasionally also reserves the simple name for
the iterator type itself (e.g.std::reverse iterator ). In the end, the authors felt that explicit was
better than implicit and decided to use the “make ” prefix for object generators.

http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html


With the object generator in place, we can considerably simplify the code for our
previous example:

std::copy(
make_transform_iterator(my_set.begin(),

std::bind2nd(std::multiplies<int>(),2)),
make_transform_iterator(my_set.end(),

std::bind2nd(std::multiplies<int>(),2)),
std::back_inserter(my_list));

3.5 Example Use of the Transform Iterator Adaptor

This example shows how a transform iterator can be used to negate the numbers over
which it iterates.

#include <functional>
#include <algorithm>
#include <iostream>
#include <boost/iterator_adaptors.hpp>
int main(int, char*[])
{

int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
const int N = sizeof(x)/sizeof(int);
std::cout << "negating the elements of the array:" << std::endl;
std::copy(

boost::make_transform_iterator(x, std::negate<int>()),
boost::make_transform_iterator(x + N, std::negate<int>()),
std::ostream_iterator<int>(std::cout, " "));

std::cout << std::endl;
return 0;

}

This output is:

-1 -2 -3 -4 -5 -6 -7 -8

4 The Policy Adaptor Design Pattern

The Iterator Adaptor Library illustrates how a generalized Model (iterator adaptor )
of a concept family (iterators) combined with default policy delegation allows users to
easily build new Models and behavioral adaptors for existing Models. We can capture
this strategy in the Policy Adaptor design pattern:5

1. Identify the core elements of the public interface of the concept family to be mod-
eled. In our case, the Adaptor will model one of the iterator concepts:InputIter-
ator, ForwardIterator, BidirectionalIterator, or RandomAccessIterator (this
depends on the base iterator type and the parameters of the Adaptor).

2. Encapsulate core elements of the concept family in a Policies concept.

5This is not quite the same as the Policy Class pattern which has been discussed previously in the litera-
ture [2]. The construction of an adaptor which can easily transform existing Models into new ones is the key
difference
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3. Write a default policies class which delegates behavior to the public interface of
the Adaptor’s concept. This is the mechanism that supplies default adaptation
behavior.

4. Build an Adaptor class template parameterized on Policies. The Adaptor should
be a generalized model of the Adaptor Concept, providing the public interface,
but delegating functionality to the policies class.

5. Store a member of the Policies parameter in the Adaptor template so that users
can maintain additional state while taking advantage of default behavior delega-
tion.

We believe this design pattern is a powerful new tool for modeling any concept
which varies along several axes and contains significant redundancy.

5 The Implementation of iterator adaptor

The outline for the implementation of theiterator adaptor class template is as
follows. In the next few sections we will discuss aspects of the implementation in more
depth, including how the problems discussed in the introduction were solved.

namespace boost {
template <class Base, class Policies,

class Value = default_argument,
class Reference = default_argument,
class Pointer = default_argument,
class Category = default_argument,
class Distance = default_argument>

struct iterator_adaptor {
// Deduce iterator associated types (value_type, etc.) from the
// named template parameters, and resolve any defaults.

public:
// Core operators, delegate to policies class.
// Redundant operators, implemented in terms of the core operators.

private:
// If the policies class is empty, compressed_pair applies the
// empty-base class optimization to conserve space. The base is
// ‘‘first’’ and the policies are ‘‘second’’.
compressed_pair<Base, Policies> m_iter_p;

Policies& policies() { return m_iter_p.second(); }
Base& base() { return m_iter_p.first(); }
// and similarly for const...

};
// Core binary operators.
// Redundant binary operators.

} // namespace boost

5.1 Deducing the Associated Types

Iterators have five associated types:value type , reference , pointer , iterator -

category , anddifference type . Each of these types must either be supplied by the



user, using the named parameter technique described below in§5.1.2, or a default must
be computed for the type.

5.1.1 Defaults for the Associated Types

Because an iterator has so many type parameters, the order and semantics of the as-
sociated type parameters was carefully chosen so that users would be able to use as
many defaults as possible. The list of associated types begins with the most funda-
mental element, the iterator’svalue type . If no Value parameter is supplied, the
Base type is assumed to be an iterator, and the adapted iterator takes itsvalue type

from theBase iterator’siterator traits . However, if theValue parameteris sup-
plied, an adjustment is made which allows the user to more easily create a constant
iterator: if theValue parameter isconst T , thevalue type will just be T. Perhaps
strangely, a constant iterator’svalue type should never beconst , because it would
prevent algorithms from declaring modifiable temporary objects which are copied from
dereferenced iterators. For example:

template <class ForwardIterator>
typename iterator_traits<ForwardIterator>::value_type
sum(ForwardIterator start, ForwardIterator finish)
{

typedef typename
iterator_traits<ForwardIterator>::value_type value;

if (start == finish)
return value();

value x = *start;
while (++start != finish)

x += *start; // error?
return x;

}

The defaults for thepointer and reference types cooperate with theValue

parameter: if theValue parameter is supplied, thepointer and reference types
default to simplyValue* andValue& respectively (without theconst -ness stripped).
Otherwise, as above theBase type is assumed to be an iterator and thepointer and
reference types are taken from itsiterator traits .

Since these defaults correspond to the required relationships between thereference ,
pointer , value type for all constant and mutableForwardIterators, it is often suffi-
cient to supply just theValue parameter when there is noBase iterator with appropriate
iterator traits .6

The defaults for theiterator category anddifference type are straightfor-
ward: they are the respective types from theBase iterator. These work out well as
the final parameters, because one usually wants all of the capabilities supplied by the
iterator being adapted, and it is difficult to provide more capabilities.

The code used to select the appropriate defaults for the iterator’s associated types
used to look something like this:

6TheReference parameter precedes thePointer parameter because it must be often customized
for OutputIterators and other iterator types (e.g.std::vector<bool>::iterator , which uses
a proxyreference ).
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// compute default pointer and reference types.
template <class Iterator,class Value>
struct iterator_defaults : iterator_traits<Iterator>
{

// If the Value parameter is not the same as its default, the
// user supplied it.
static const bool value_type_supplied

= !is_same<Value,typename iterator_traits<Iterator>::value_type>::value;

typedef typename type_if<value_type_supplied,
Value*,

// else
typename iterator_traits<Iterator>::pointer

>::type pointer;

typedef typename type_if<value_type_supplied,
Value*,

// else
typename iterator_traits<Iterator>::reference

>::type reference;
};

template <class Base, class Policies,
class Value = typename std::iterator_traits<Base>::value_type,
class Reference = typename iterator_defaults<Base,Value>::reference,
class Pointer = typename iterator_defaults<Base,Value>::pointer,
class Category = typename std::iterator_traits<Base>::iterator_category,
class Distance = typename std::iterator_traits<Base>::difference_type

>
class iterator_adaptor
{

public:
typedef Distance difference_type;
typedef remove_const<Value>::type value_type;
typedef Pointer pointer;
typedef Reference reference;
typedef Category iterator_category;

Unfortunately, this strategy can only take us so far. It turns out that there are plenty
of iterators which don’t fit neatly into the system for ordering defaults. For example,
the specialized Transform Iterator Adaptor described in Section3.1 limits the category
of its Base iterator to InputIterator, so we’d only need to supply thevalue type ,
reference , anditerator category if the Category parameter didn’t appear last.
Iterators where theBase type is not itself an iterator also act this way, since there are
no appropriateiterator traits from which to derive thePointer andReference

parameters.

5.1.2 Named Template Parameters

Instead of matching arguments to parameters based on order, the assignment of argu-
ments to parameters can be made explicitly by name, so that the order no longer mat-
ters [6]. The Iterator Adaptors library supplies an appropriately-named wrapper class
for each parameter. For example:

http://www.sgi.com/tech/stl/InputIterator.html


template <class Value> struct value_type_is {
typedef value_type_tag tag;
typedef Value type;

};

Instead of passing the argumentValue directly toiterator adaptor the user can
passvalue type is<Value> . The iterator adaptor has five arguments for the
associated types, each of which could be used to specify any of the actual parameters.
The iterator adaptor must deduce which argument is for which parameter based
on thetag inside the wrapper.

First we take all of the parameters and place them in a lisp-style list, usingstd::pair

for cons . Each parameter wrapper has a key/value pair (thetag and type respec-
tively), so we can treat this as an associative list.

typedef pair<Param1, pair<Param2, pair<Param3, pair<Param4,
pair<Param5, list_end_type> > > > > NamedParamList;

For each parameter we perform a look-up in the associative list using a template meta-
program utility class namedfind param .

template <class AssociativeList, class Key>
struct find_param {

typedef ... type;
};

For example, to retrieve the argument for thevalue type we write the following:

typedef typename find_param<NamedParamList, value_type_tag>::type Value;

The result of this look-up will either be the argument specified by the user, or if
there is none, thedefault argument type. If it is the default, then a further step is
taken to resolve what the default should be for the parameter. The defaults for some of
the parameters depend on other parameters, so the order in which defaults are resolved
is tailored to respect these dependencies.

5.2 Core Operators

The core operators of theiterator adaptor are implemented by delegating the work
to the policies class. Each core operator passes the base object to the appropriate policy
function. Sometimes extra type information is also passed in, as is the case with the
reference type in the implementation ofoperator* .

reference operator*() const {
return policies().dereference(type<reference>(), base());

}

The binary operators of the iterator are implemented as free functions (not member
functions) to allow both the left and right hand operands to be treated symmetrically,
and to implement constant and mutable iterator interactions (more about this in the fol-
lowing Subsection). The implementation ofoperator==() is shown below. We use
separate template parameters for the twoiterator adaptor arguments. This allows



a single operator to implement all of the combinations of constant/mutable iterator in-
teractions, avoiding the combinatorial explosion discussed in§5.2.1. Note that we only
use a singlePolicies template parameter: this restricts iterator interaction to those
iterators with the same policies class. This is not as restrictive as it probably should
be, but most iterator interaction errors will be caught anyway, when the policies are ap-
plied. The disadvantage of not being restrictive enough is in the kind of error message
the user will see when misusing two unrelated iterators. Instead of an “operator not
found” message they will see an error message from inside the iterator adaptor.

template <class Base1, class Base2, class Policies, class V1, class V2,
class R1, class R2, class P1, class P2, class C1, class C2,
class D1, class D2>

bool operator==(
const iterator_adaptor<Base1,Policies,V1,R1,P1,C1,D1>& x,
const iterator_adaptor<Base2,Policies,V2,R2,P2,C2,D2>& y)

{
return x.policies().equal(x.base(), y.base());

}

5.2.1 Constant/Mutable Iterator Interactions

Iterators over containers and other sequences of stored objects usually come in pairs:
a constant iterator type and a mutable iterator type. It is desirable to allow the con-
stant and mutable iterators to interoperate through comparison and subtraction. For
example, suppose that you are implementing a container typeC. Then you ought to de-
fine the following four versions ofoperator== , along with corresponding versions of
operator!= , and (forRandomAccessIterator), operators<, >, <=, >=, and- .

bool operator==(const C::iterator& x, const C::iterator& y);
bool operator==(const C::const_iterator& x, const C::iterator& y);
bool operator==(const C::iterator& x, const C::const_iterator& y);
bool operator==(const C::const_iterator& x, const C::const_iterator& y);

Implementers often forget to define the operators for constant/mutable iterator inter-
action. In addition, iterator adaptors applied to these kinds of iterators should propagate
the ability to interact. For example, a reverse iterator adaptor applied toC::iterator

andC::const iterator should result in mutable and constant reverse iterator types
that have the same ability to interact as theBase iterators do. Thereverse iterator

adaptor supplied by the Iterator Adaptor Library have this ability, although those sup-
plied by the C++ standard library do not.

The iterator adaptor binary operators are implemented using function templates (as
shown in the previous Subsection). This allows the same function template to provide
the implementation of all the combinations of constant and mutable iterator interaction.

Many of the specialized adaptors in the Boost Iterator Adaptor Library supply an
additional type generator (as described in§3.3) for matched pairs of constant and mu-
table iterators. For example, an “indirect container” using a matched pair of indirect
iterators might be declared as follows:

template <class BaseContainer>
struct indirect
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{
typedef typename BaseContainer::iterator base_iterator;
typedef indirect_iterator_pair_generator<base_iterator> iterator_generator;

typedef typename iterator_generator::iterator iterator;
typedef typename iterator_generator::const_iterator const_iterator;
...

};

5.3 Redundant Operators

Most of the redundant operators are implemented in a straightforward way based on the
core operators. For example, theoperator+ is implemented in terms ofoperator+= .
There are a total of 6 core operators and 11 redundant operators.

template <class B, class P, class V, class R, class Ptr,
class C, class D, class Distance>

iterator_adaptor<B,P,V,R,Ptr,C,D>
operator+(iterator_adaptor<B,P,V,R,Ptr,C,D> p, Distance x)
{

return p += x;
}

The implementation ofoperator-> andoperator[] are not straightforward. We
discuss them in the following two sections.

5.3.1 Implementingoperator-> for Input Iterators

When creating an iterator adaptor that produces anInputIterator some extra care must
be taken in the implementation ofoperator-> . Remember that an input iterator need
not iterate over stored objects: it can manufacture new objects when it is dereferenced as
is the case forstd::istream iterator . If the iterator’svalue type is of class type,
we need to supportoperator-> . Since the result of usingoperator-> must produce
a true pointer even when dereferencing the iterator does not yield a true reference type,
we need aconst lvalue to which a pointer can be formed.

Fortunately, the Standard makes a workaround possible: section 13.3.1.2 paragraph
8 describes a seemingly quirky rule that the-> operator will be applied to theresultof
any call tooperator-> . This is a convenient way to describe the semantics of ordi-
naryoperator-> , which returns a pointer: it just uses the pointer to perform the usual
member dereferencing. It also turns out to be what we need to make a conformingIn-
putIterator. By making the return type ofoperator-> a proxy containing an instance
of the iterator’svalue type , we can eventually form aconst pointer to the returned
temporary:

template <class T>
struct operator_arrow_proxy
{

operator_arrow_proxy(const T& x) : m_value(x) {}
const T* operator->() const { return &m_value; }
T m_value;

};
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The iterator adaptor library uses a small meta-program to select the appropriate type for
the result of an iterator’soperator-> :

template <class Category, class Value, class Pointer>
struct operator_arrow_result_generator
{

// Is it an input iterator, or something more?
static bool const is_input_iter

= is_convertible<Category*, std::input_iterator_tag*>::value
&& !is_convertible<Category*,std::forward_iterator_tag*>::value;

typedef typename type_if<is_input_iter,
operator_arrow_proxy<Value>,

// else
Pointer

>::type type;
};

The Boost Type Traits library is used to check whether the iterator’s category is
no more refined thanInputIterator. If so, the appropriateoperator arrow proxy is
selected. Convertibility is used as a criterion to allow for user-defined iterator categories
derived from the standard ones.

5.3.2 Implementation ofoperator[]

The implementation ofoperator[] would be trivial except for the question of whether
it should return a reference or a value. Although it would be more useful to return a
reference, this can cause run-time errors when adapting a certain class of legal base
iterators. Suppose the base iterator is reading in elements from a file and caching each
element as a data member of the iterator.

class file_iter {
T x;
int pos;

public:
file_iter(int pos = 0) { x = read_from_file(pos); }
T& operator*() const { return x; }
file_iter operator+(int n) const { return file_iter(pos + n); }
file_iter& operator++() { x = read_from_file(++pos); return *this; }
// ...

};

Theoperator* of this iterator returns a reference to the data member. Now consider
what happens inside theoperator[] of the adaptor:

template <class BaseIterator> class my_iterator_adaptor {
BaseIterator iter;

public:
reference operator[](difference_type n) const {

return *(iter + n);
}

// ...
};
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The iterator addition creates a temporary iterator and the dereference returns a reference
to a data member of this temporary, which is destroyed beforeoperator[] returns.
The result is a dangling reference.

The C++ Standard specifies that the return type ofoperator[] of a random access
iterator must be “convertible toT”. This opens up the possibility of returning by-value
from operator[] instead of by-reference, thereby avoiding the above problem. This
approach, though safer, has the disadvantage of being unintuitive sinceoperator*

is required to return the exact typeT& and one might expect thatoperator[] and
operator* would be same in this respect. The C++ Standards Committee is currently
debating the question of whether the random access iterator requirements should be
changed.

Boost’s iterator adaptor takes the safe route and returns the result by-value.
This meets the random access iterator requirements of the Standard, which only says
that the return type must be “convertible to T”,

value_type operator[](difference_type n) const
{ return *(*this + n); }

Under the current C++ Standard, you cannot assign into the result ofoperator[]

applied to a generic random access iterator, but instead must write*(i + n) = x .
It would be nice to return by-reference for iterators that can support it, and by-

value for the rest. However, the currentiterator traits does not provide enough
information to make the choice. The proposal in [11] would solve this problem, but of
course that will take some time to gain acceptance.

6 Conclusion

Constructing iterators and iterator adaptors is a common task for modern C++ program-
ming. Despite the conceptual simplicity of most iterators, implementing C++ Standard
conforming iterators requires a non-trivial amount of code, some of which is challeng-
ing to get right and a lot of which is tedious. Theiterator adaptor class that we’ve
presented solves these problem by providing a mechanism by which the user provides
a minimal specification (by way of the policies class) for the iterator, and then the
iterator adaptor takes care of most of the implementation details.

Taking a step back, the Policy Adaptor design pattern allowed us to easily produce
both new models of the iterator concept, and new iterator adaptors. This strategy can
be applied in situations where there is large family of components that share the same
interface. For example, we plan on applying this design approach to containers and
algebraic types.
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