Initial HTML commit

[SVN r7634]
This commit is contained in:
Beman Dawes 2000-07-27 13:38:51 +00:00
parent 777c931b5d
commit d83ea9e52e
7 changed files with 2339 additions and 0 deletions

738
call_traits.htm Normal file
View File

@ -0,0 +1,738 @@
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="Template"
content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot">
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
<title>Call Traits</title>
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF"
vlink="#800080">
<h1><img src="../../c++boost.gif" width="276" height="86">Header
&lt;<a href="../../boost/detail/call_traits.hpp">boost/call_traits.hpp</a>&gt;</h1>
<p>All of the contents of &lt;boost/call_traits.hpp&gt; are
defined inside namespace boost.</p>
<p>The template class call_traits&lt;T&gt; encapsulates the
&quot;best&quot; method to pass a parameter of some type T to or
from a function, and consists of a collection of typedefs defined
as in the table below. The purpose of call_traits is to ensure
that problems like &quot;<a href="#refs">references to references</a>&quot;
never occur, and that parameters are passed in the most efficient
manner possible (see <a href="#examples">examples</a>). In each
case if your existing practice is to use the type defined on the
left, then replace it with the call_traits defined type on the
right. Note that for compilers that do not support partial
specialization, no benefit will occur from using call_traits: the
call_traits defined types will always be the same as the existing
practice in this case.</p>
<table border="0" cellpadding="7" cellspacing="1" width="797">
<tr>
<td valign="top" width="17%" bgcolor="#008080"><p
align="center">Existing practice</p>
</td>
<td valign="top" width="35%" bgcolor="#008080"><p
align="center">call_traits equivalent</p>
</td>
<td valign="top" width="32%" bgcolor="#008080"><p
align="center">Description</p>
</td>
<td valign="top" width="16%" bgcolor="#008080"><p
align="center">Notes</p>
</td>
</tr>
<tr>
<td valign="top" width="17%"><p align="center">T<br>
(return by value)</p>
</td>
<td valign="top" width="35%"><p align="center"><code>call_traits&lt;T&gt;::value_type</code></p>
</td>
<td valign="top" width="32%">Defines a type that
represents the &quot;value&quot; of type T. Use this for
functions that return by value, or possibly for stored
values of type T.</td>
<td valign="top" width="16%"><p align="center">2</p>
</td>
</tr>
<tr>
<td valign="top" width="17%"><p align="center">T&amp;<br>
(return value)</p>
</td>
<td valign="top" width="35%"><p align="center"><code>call_traits&lt;T&gt;::reference</code></p>
</td>
<td valign="top" width="32%">Defines a type that
represents a reference to type T. Use for functions that
would normally return a T&amp;.</td>
<td valign="top" width="16%"><p align="center">1</p>
</td>
</tr>
<tr>
<td valign="top" width="17%"><p align="center">const T&amp;<br>
(return value)</p>
</td>
<td valign="top" width="35%"><p align="center"><code>call_traits&lt;T&gt;::const_reference</code></p>
</td>
<td valign="top" width="32%">Defines a type that
represents a constant reference to type T. Use for
functions that would normally return a const T&amp;.</td>
<td valign="top" width="16%"><p align="center">1</p>
</td>
</tr>
<tr>
<td valign="top" width="17%"><p align="center">const T&amp;<br>
(function parameter)</p>
</td>
<td valign="top" width="35%"><p align="center"><code>call_traits&lt;T&gt;::param_type</code></p>
</td>
<td valign="top" width="32%">Defines a type that
represents the &quot;best&quot; way to pass a parameter
of type T to a function.</td>
<td valign="top" width="16%"><p align="center">1,3</p>
</td>
</tr>
</table>
<p>Notes:</p>
<ol>
<li>If T is already reference type, then call_traits is
defined such that <a href="#refs">references to
references</a> do not occur (requires partial
specialization).</li>
<li>If T is an array type, then call_traits defines <code>value_type</code>
as a &quot;constant pointer to type&quot; rather than an
&quot;array of type&quot; (requires partial
specialization). Note that if you are using value_type as
a stored value then this will result in storing a &quot;constant
pointer to an array&quot; rather than the array itself.
This may or may not be a good thing depending upon what
you actually need (in other words take care!).</li>
<li>If T is a small built in type or a pointer, then <code>param_type</code>
is defined as <code>T const</code>, instead of <code>T
const&amp;</code>. This can improve the ability of the
compiler to optimize loops in the body of the function if
they depend upon the passed parameter, the semantics of
the passed parameter is otherwise unchanged (requires
partial specialization).</li>
</ol>
<p>&nbsp;</p>
<h3>Copy constructibility</h3>
<p>The following table defines which call_traits types can always
be copy-constructed from which other types, those entries marked
with a '?' are true only if and only if T is copy constructible:</p>
<table border="0" cellpadding="7" cellspacing="1" width="766">
<tr>
<td valign="top" width="17%">&nbsp;</td>
<td valign="top" colspan="5" width="85%"
bgcolor="#008080"><p align="center">To:</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#008080">From:</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">T</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">value_type</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">reference</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">const_reference</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">param_type</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">T</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">value_type</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">N</p>
</td>
<td valign="top" width="17%"><p align="center">N</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">reference</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">const_reference</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">N</p>
</td>
<td valign="top" width="17%"><p align="center">N</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">param_type</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">N</p>
</td>
<td valign="top" width="17%"><p align="center">N</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<p>If T is an assignable type the following assignments are
possible:</p>
<table border="0" cellpadding="7" cellspacing="1" width="766">
<tr>
<td valign="top" width="17%">&nbsp;</td>
<td valign="top" colspan="5" width="85%"
bgcolor="#008080"><p align="center">To:</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#008080">From:</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">T</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">value_type</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">reference</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">const_reference</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">param_type</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">T</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">value_type</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">reference</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">const_reference</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">param_type</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h3><a name="examples"></a>Examples</h3>
<p>The following table shows the effect that call_traits has on
various types, the table assumes that the compiler supports
partial specialization: if it doesn't then all types behave in
the same way as the entry for &quot;myclass&quot;, and call_traits
can not be used with reference or array types.</p>
<table border="0" cellpadding="7" cellspacing="1" width="766">
<tr>
<td valign="top" width="17%">&nbsp;</td>
<td valign="top" colspan="5" width="85%"
bgcolor="#008080"><p align="center">Call_traits type:</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#008080"><p
align="center">Original type T</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">value_type</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">reference</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">const_reference</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">param_type</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">Applies to:</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">myclass</p>
</td>
<td valign="top" width="17%"><p align="center">myclass</p>
</td>
<td valign="top" width="17%"><p align="center">myclass&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const
myclass&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">myclass
const&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">All user
defined types.</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">int</p>
</td>
<td valign="top" width="17%"><p align="center">int</p>
</td>
<td valign="top" width="17%"><p align="center">int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int const</p>
</td>
<td valign="top" width="17%"><p align="center">All small
built-in types.</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">int*</p>
</td>
<td valign="top" width="17%"><p align="center">int*</p>
</td>
<td valign="top" width="17%"><p align="center">int*&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int*const&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int* const</p>
</td>
<td valign="top" width="17%"><p align="center">All
pointer types.</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">All
reference types.</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">All
constant-references.</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">int[3]</p>
</td>
<td valign="top" width="17%"><p align="center">const int*</p>
</td>
<td valign="top" width="17%"><p align="center">int(&amp;)[3]</p>
</td>
<td valign="top" width="17%"><p align="center">const int(&amp;)[3]</p>
</td>
<td valign="top" width="17%"><p align="center">const int*
const</p>
</td>
<td valign="top" width="17%"><p align="center">All array
types.</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">const int[3]</p>
</td>
<td valign="top" width="17%"><p align="center">const int*</p>
</td>
<td valign="top" width="17%"><p align="center">const int(&amp;)[3]</p>
</td>
<td valign="top" width="17%"><p align="center">const int(&amp;)[3]</p>
</td>
<td valign="top" width="17%"><p align="center">const int*
const</p>
</td>
<td valign="top" width="17%"><p align="center">All
constant-array types.</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h4>Example 1:</h4>
<p>The following class is a trivial class that stores some type T
by value (see the <a href="call_traits_test.cpp">call_traits_test.cpp</a>
file), the aim is to illustrate how each of the available call_traits
typedefs may be used:</p>
<pre>template &lt;class T&gt;
struct contained
{
// define our typedefs first, arrays are stored by value
// so value_type is not the same as result_type:
typedef typename boost::call_traits&lt;T&gt;::param_type param_type;
typedef typename boost::call_traits&lt;T&gt;::reference reference;
typedef typename boost::call_traits&lt;T&gt;::const_reference const_reference;
typedef T value_type;
typedef typename boost::call_traits&lt;T&gt;::value_type result_type;
// stored value:
value_type v_;
// constructors:
contained() {}
contained(param_type p) : v_(p){}
// return byval:
result_type value() { return v_; }
// return by_ref:
reference get() { return v_; }
const_reference const_get()const { return v_; }
// pass value:
void call(param_type p){}
};</pre>
<h4><a name="refs"></a>Example 2 (the reference to reference
problem):</h4>
<p>Consider the definition of std::binder1st:</p>
<pre>template &lt;class Operation&gt;
class binder1st :
public unary_function&lt;Operation::second_argument_type, Operation::result_type&gt;
{
protected:
Operation op;
Operation::first_argument_type value;
public:
binder1st(const Operation&amp; x, const Operation::first_argument_type&amp; y);
Operation::result_type operator()(const Operation::second_argument_type&amp; x) const;
}; </pre>
<p>Now consider what happens in the relatively common case that
the functor takes its second argument as a reference, that
implies that <code>Operation::second_argument_type</code> is a
reference type, <code>operator()</code> will now end up taking a
reference to a reference as an argument, and that is not
currently legal. The solution here is to modify <code>operator()</code>
to use call_traits:</p>
<pre>Operation::result_type operator()(call_traits&lt;Operation::second_argument_type&gt;::param_type x) const;</pre>
<p>Now in the case that <code>Operation::second_argument_type</code>
is a reference type, the argument is passed as a reference, and
the no &quot;reference to reference&quot; occurs.</p>
<h4><a name="ex3"></a>Example 3 (the make_pair problem):</h4>
<p>If we pass the name of an array as one (or both) arguments to <code>std::make_pair</code>,
then template argument deduction deduces the passed parameter as
&quot;const reference to array of T&quot;, this also applies to
string literals (which are really array literals). Consequently
instead of returning a pair of pointers, it tries to return a
pair of arrays, and since an array type is not copy-constructible
the code fails to compile. One solution is to explicitly cast the
arguments to make_pair to pointers, but call_traits provides a
better (i.e. automatic) solution (and one that works safely even
in generic code where the cast might do the wrong thing):</p>
<pre>template &lt;class T1, class T2&gt;
std::pair&lt;
typename boost::call_traits&lt;T1&gt;::value_type,
typename boost::call_traits&lt;T2&gt;::value_type&gt;
make_pair(const T1&amp; t1, const T2&amp; t2)
{
return std::pair&lt;
typename boost::call_traits&lt;T1&gt;::value_type,
typename boost::call_traits&lt;T2&gt;::value_type&gt;(t1, t2);
}</pre>
<p>Here, the deduced argument types will be automatically
degraded to pointers if the deduced types are arrays, similar
situations occur in the standard binders and adapters: in
principle in any function that &quot;wraps&quot; a temporary
whose type is deduced.</p>
<h4><a name="ex4"></a>Example 4 (optimising fill):</h4>
<p>The call_traits template will &quot;optimize&quot; the passing
of a small built-in type as a function parameter, this mainly has
an effect when the parameter is used within a loop body. In the
following example (see <a href="algo_opt_examples.cpp">algo_opt_examples.cpp</a>),
a version of std::fill is optimized in two ways: if the type
passed is a single byte built-in type then std::memset is used to
effect the fill, otherwise a conventional C++ implemention is
used, but with the passed parameter &quot;optimized&quot; using
call_traits:</p>
<pre>namespace detail{
template &lt;bool opt&gt;
struct filler
{
template &lt;typename I, typename T&gt;
static void do_fill(I first, I last, typename boost::call_traits&lt;T&gt;::param_type val);
{
while(first != last)
{
*first = val;
++first;
}
}
};
template &lt;&gt;
struct filler&lt;true&gt;
{
template &lt;typename I, typename T&gt;
static void do_fill(I first, I last, T val)
{
memset(first, val, last-first);
}
};
}
template &lt;class I, class T&gt;
inline void fill(I first, I last, const T&amp; val)
{
enum{ can_opt = boost::is_pointer&lt;I&gt;::value
&amp;&amp; boost::is_arithmetic&lt;T&gt;::value
&amp;&amp; (sizeof(T) == 1) };
typedef detail::filler&lt;can_opt&gt; filler_t;
filler_t::template do_fill&lt;I,T&gt;(first, last, val);
}</pre>
<p>Footnote: the reason that this is &quot;optimal&quot; for
small built-in types is that with the value passed as &quot;T
const&quot; instead of &quot;const T&amp;&quot; the compiler is
able to tell both that the value is constant and that it is free
of aliases. With this information the compiler is able to cache
the passed value in a register, unroll the loop, or use
explicitly parallel instructions: if any of these are supported.
Exactly how much mileage you will get from this depends upon your
compiler - we could really use some accurate benchmarking
software as part of boost for cases like this.</p>
<h3>Rationale</h3>
<p>The following notes are intended to briefly describe the
rational behind choices made in call_traits.</p>
<p>All user-defined types follow &quot;existing practice&quot;
and need no comment.</p>
<p>Small built-in types (what the standard calls fundamental
types [3.9.1]) differ from existing practice only in the <i>param_type</i>
typedef. In this case passing &quot;T const&quot; is compatible
with existing practice, but may improve performance in some cases
(see <a href="#ex4">Example 4</a>), in any case this should never
be any worse than existing practice.</p>
<p>Pointers follow the same rational as small built-in types.</p>
<p>For reference types the rational follows <a href="#refs">Example
2</a> - references to references are not allowed, so the call_traits
members must be defined such that these problems do not occur.
There is a proposal to modify the language such that &quot;a
reference to a reference is a reference&quot; (issue #106,
submitted by Bjarne Stroustrup), call_traits&lt;T&gt;::value_type
and call_traits&lt;T&gt;::param_type both provide the same effect
as that proposal, without the need for a language change (in
other words it's a workaround).</p>
<p>For array types, a function that takes an array as an argument
will degrade the array type to a pointer type: this means that
the type of the actual parameter is different from its declared
type, something that can cause endless problems in template code
that relies on the declared type of a parameter. For example:</p>
<pre>template &lt;class T&gt;
struct A
{
void foo(T t);
};</pre>
<p><font face="Times New Roman">In this case if we instantiate A&lt;int[2]&gt;
then the declared type of the parameter passed to member function
foo is int[2], but it's actual type is const int*, if we try to
use the type T within the function body, then there is a strong
likelyhood that our code will not compile:</font></p>
<pre>template &lt;class T&gt;
void A&lt;T&gt;::foo(T t)
{
T dup(t); // doesn't compile for case that T is an array.
}</pre>
<p>By using call_traits the degradation from array to pointer is
explicit, and the type of the parameter is the same as it's
declared type:</p>
<pre>template &lt;class T&gt;
struct A
{
void foo(call_traits&lt;T&gt;::value_type t);
};
template &lt;class T&gt;
void A&lt;T&gt;::foo(call_traits&lt;T&gt;::value_type t)
{
call_traits&lt;T&gt;::value_type dup(t); // OK even if T is an array type.
}</pre>
<p>For value_type (return by value), again only a pointer may be
returned, not a copy of the whole array, and again call_traits
makes the degradation explicit. The value_type member is useful
whenever an array must be explicitly degraded to a pointer - <a
href="#ex3">Example 3</a> provides the test case (Footnote: the
array specialisation for call_traits is the least well understood
of all the call_traits specialisations, if the given semantics
cause specific problems for you, or don't solve a particular
array-related problem, then I would be interested to hear about
it. Most people though will probably never need to use this
specialisation).</p>
<hr>
<p>Revised 18 June 2000</p>
<p>© Copyright boost.org 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided
&quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose.</p>
<p>Based on contributions by Steve Cleary, Beman Dawes, Howard
Hinnant and John Maddock.</p>
<p>Maintained by <a href="mailto:John_Maddock@compuserve.com">John
Maddock</a>, the latest version of this file can be found at <a
href="http://www.boost.org/">www.boost.org</a>, and the boost
discussion list at <a href="http://www.egroups.com/list/boost">www.egroups.com/list/boost</a>.</p>
<p>.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
</body>
</html>

148
cast.htm Normal file
View File

@ -0,0 +1,148 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Header boost/cast.hpp Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center" width="277" height="86">Header
<a href="../../boost/cast.hpp">boost/cast.hpp</a></h1>
<h2><a name="Cast Functions">Cast Functions</a></h2>
<p>The <code>header <a href="../../boost/cast.hpp">boost/cast.hpp</a></code>
provides <a href="#Polymorphic_cast"><b>polymorphic_cast</b></a>, <a href="#Polymorphic_cast"><b>polymorphic_downcast</b></a>,
and <a href="#numeric_cast"><b>numeric_cast</b></a> template functions designed
to complement the C++ Standard's built-in casts.</p>
<p>The program&nbsp;<a href="cast_test.cpp">cast_test.cpp</a> can be used to
verify these function templates work as expected.</p>
<p><b>polymorphic_cast</b> was suggested by Bjarne Stroustrup in &quot;The C++
Programming Language&quot;.<br>
<b>polymorphic_downcast</b> was contributed by <a href="../../people/dave_abrahams.htm">Dave
Abrahams</a>.<b><br>
numeric_cast</b> was contributed by <a href="../../people/kevlin_henney.htm">Kevlin
Henney</a>.</p>
<h3>Namespace synopsis</h3>
<blockquote>
<pre>namespace boost {
namespace cast {
// all synopsis below included here
}
using ::boost::cast::polymorphic_cast;
using ::boost::cast::polymorphic_downcast;
using ::boost::cast::bad_numeric_cast;
using ::boost::cast::numeric_cast;
}</pre>
</blockquote>
<h3><a name="Polymorphic_cast">Polymorphic casts</a></h3>
<p>Pointers to polymorphic objects (objects of classes which define at least one
virtual function) are sometimes downcast or crosscast.&nbsp; Downcasting means
casting from a base class to a derived class.&nbsp; Crosscasting means casting
across an inheritance hierarchy diagram, such as from one base to the other in a
<b>Y</b> diagram hierarchy.</p>
<p>Such casts can be done with old-style casts, but this approach is never to be
recommended.&nbsp; Old-style casts are sorely lacking in type safety, suffer
poor readability, and are difficult to locate with search tools.</p>
<p>The C++ built-in <b>static_cast</b> can be used for efficiently downcasting
pointers to polymorphic objects, but provides no error detection for the case
where the pointer being cast actually points to the wrong derived class. The <b>polymorphic_downcast</b>
template retains the efficiency of <b>static_cast</b> for non-debug
compilations, but for debug compilations adds safety via an assert() that a <b>dynamic_cast</b>
succeeds.&nbsp;<b>&nbsp;</b></p>
<p>The C++ built-in <b>dynamic_cast</b> can be used for downcasts and crosscasts
of pointers to polymorphic objects, but error notification in the form of a
returned value of 0 is inconvenient to test, or worse yet, easy to forget to
test.&nbsp; The <b>polymorphic_cast</b> template performs a <b>dynamic_cast</b>,
and throws an exception if the <b>dynamic_cast</b> returns 0.</p>
<p>A <b>polymorphic_downcast</b> is preferred when debug-mode tests will cover
100% of the object types possibly cast and when non-debug-mode efficiency is an
issue. If these two conditions are not present, <b>polymorphic_cast</b> is
preferred.&nbsp; It must also be used for crosscasts.&nbsp; It does an assert(
dynamic_cast&lt;Derived&gt;(x) == x ) where x is the base pointer, ensuring that
not only is a non-zero pointer returned, but also that it correct in the
presence of multiple inheritance. .<b> Warning:</b>: Because <b>polymorphic_downcast</b>
uses assert(), it violates the One Definition Rule if NDEBUG is inconsistently
defined across translation units.</p>
<p>The C++ built-in <b>dynamic_cast</b> must be used to cast references rather
than pointers.&nbsp; It is also the only cast that can be used to check whether
a given interface is supported; in that case a return of 0 isn't an error
condition.</p>
<h3>polymorphic_cast and polymorphic_downcast synopsis</h3>
<blockquote>
<pre>template &lt;class Derived, class Base&gt;
inline Derived polymorphic_cast(Base* x);
// Throws: std::bad_cast if ( dynamic_cast&lt;Derived&gt;(x) == 0 )
// Returns: dynamic_cast&lt;Derived&gt;(x)
template &lt;class Derived, class Base&gt;
inline Derived polymorphic_downcast(Base* x);
// Effects: assert( dynamic_cast&lt;Derived&gt;(x) == x );
// Returns: static_cast&lt;Derived&gt;(x)</pre>
</blockquote>
<h3>polymorphic_downcast example</h3>
<blockquote>
<pre>#include &lt;boost/cast.hpp&gt;
...
class Fruit { public: virtual ~Fruit(){}; ... };
class Banana : public Fruit { ... };
...
void f( Fruit * fruit ) {
// ... logic which leads us to believe it is a Banana
Banana * banana = boost::polymorphic_downcast&lt;Banana*&gt;(fruit);
...</pre>
</blockquote>
<h3><a name="numeric_cast">numeric_cast</a></h3>
<p>A <b>static_cast</b>, <b>implicit_cast</b> or implicit conversion will not
detect failure to preserve range for numeric casts. The <b>numeric_cast</b>
template function are similar to <b>static_cast</b> and certain (dubious)
implicit conversions in this respect, except that they detect loss of numeric
range. An exception is thrown when a runtime value preservation check fails.</p>
<p>The requirements on the argument and result types are:</p>
<blockquote>
<ul>
<li>Both argument and result types are CopyConstructible [20.1.3].</li>
<li>Both argument and result types are Numeric, defined by <code>std::numeric_limits&lt;&gt;::is_specialized</code>
being true.</li>
<li>The argument can be converted to the result type using <b>static_cast</b>.</li>
</ul>
</blockquote>
<h3>numeric_cast synopsis</h3>
<blockquote>
<pre>class bad_numeric_cast : public std::bad_cast {...};
template&lt;typename Target, typename Source&gt;
inline Target numeric_cast(Source arg);
// Throws: bad_numeric_cast unless, in converting arg from Source to Target,
// there is no loss of negative range, and no underflow, and no
// overflow, as determined by std::numeric_limits
// Returns: static_cast&lt;Target&gt;(arg)</pre>
</blockquote>
<h3>numeric_cast example</h3>
<blockquote>
<pre>#include &lt;boost/cast.hpp&gt;
using namespace boost::cast;
void ariane(double vx)
{
...
unsigned short dx = numeric_cast&lt;unsigned short&gt;(vx);
...
}</pre>
</blockquote>
<h3>numeric_cast rationale</h3>
<p>The form of the throws condition is specified so that != is not a required
operation.</p>
<hr>
<p>Revised&nbsp; <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan
-->28 June, 2000<!--webbot bot="Timestamp" endspan i-checksum="19846"
--></p>
<p>© Copyright boost.org 1999. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided &quot;as is&quot; without express or
implied warranty, and with no claim as to its suitability for any purpose.</p>
</body>
</html>

92
compressed_pair.htm Normal file
View File

@ -0,0 +1,92 @@
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="Template"
content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot">
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
<title>Header <boost/compressed_pair.hpp></title>
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF"
vlink="#800080">
<h2><img src="../../c++boost.gif" width="276" height="86">Header
&lt;<a href="../../boost/detail/call_traits.hpp">boost/compressed_pair.hpp</a>&gt;</h2>
<p>All of the contents of &lt;boost/compressed_pair.hpp&gt; are
defined inside namespace boost.</p>
<p>The class compressed pair is very similar to std::pair, but if
either of the template arguments are empty classes, then the
&quot;empty member optimisation&quot; is applied to compress the
size of the pair.</p>
<pre>template &lt;class T1, class T2&gt;
class compressed_pair
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits&lt;first_type&gt;::param_type first_param_type;
typedef typename call_traits&lt;second_type&gt;::param_type second_param_type;
typedef typename call_traits&lt;first_type&gt;::reference first_reference;
typedef typename call_traits&lt;second_type&gt;::reference second_reference;
typedef typename call_traits&lt;first_type&gt;::const_reference first_const_reference;
typedef typename call_traits&lt;second_type&gt;::const_reference second_const_reference;
compressed_pair() : base() {}
compressed_pair(first_param_type x, second_param_type y);
explicit compressed_pair(first_param_type x);
explicit compressed_pair(second_param_type y);
first_reference first();
first_const_reference first() const;
second_reference second();
second_const_reference second() const;
void swap(compressed_pair&amp; y);
};</pre>
<p>The two members of the pair can be accessed using the member
functions first() and second(). Note that not all member
functions can be instantiated for all template parameter types.
In particular compressed_pair can be instantiated for reference
and array types, however in these cases the range of constructors
that can be used are limited. If types T1 and T2 are the same
type, then there is only one version of the single-argument
constructor, and this constructor initialises both values in the
pair to the passed value.</p>
<p>Note that compressed_pair can not be instantiated if either of
the template arguments is an enumerator type, unless there is
compiler support for boost::is_enum, or if boost::is_enum is
specialised for the enumerator type.</p>
<p>Finally, compressed_pair requires compiler support for partial
specialisation of class templates - without that support
compressed_pair behaves just like std::pair.</p>
<hr>
<p>Revised 08 March 2000</p>
<p>© Copyright boost.org 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided
&quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose.</p>
<p>Based on contributions by Steve Cleary, Beman Dawes, Howard
Hinnant and John Maddock.</p>
<p>Maintained by <a href="mailto:John_Maddock@compuserve.com">John
Maddock</a>, the latest version of this file can be found at <a
href="http://www.boost.org">www.boost.org</a>, and the boost
discussion list at <a href="http://www.egroups.com/list/boost">www.egroups.com/list/boost</a>.</p>
<p>&nbsp;</p>
</body>
</html>

72
index.htm Normal file
View File

@ -0,0 +1,72 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Boost Utility Library</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<table border="1" cellpadding="2" bgcolor="#007F7F">
<tr>
<td bgcolor="#FFFFFF"><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277" height="86"></td>
<td><a href="../../index.htm"><font color="#FFFFFF" size="4" face="Arial">Home</font></a></td>
<td><a href="../../libraries.htm"><font color="#FFFFFF" size="4" face="Arial">Libraries</font></a></td>
<td><a href="../../people.htm"><font color="#FFFFFF" size="4" face="Arial">People</font></a></td>
<td><a href="../../more/faq.htm"><font color="#FFFFFF" size="4" face="Arial">FAQ</font></a></td>
<td><a href="../../more/index.htm"><font color="#FFFFFF" size="4" face="Arial">More</font></a></td>
</tr>
</table>
<h1>Boost Utility Library</h1>
<table border="1" cellpadding="5">
<tr>
<td><b><i>Header</i></b></td>
<td><b><i>Contents</i></b></td>
</tr>
<tr>
<td><a href="../../boost/utility.hpp"><code>boost/utility.hpp<br>
</code></a><a href="utility.htm">[Documentation]</a></td>
<td>Class <b>noncopyable</b> plus <b>next()</b> and <b>prior()</b> template
functions.</td>
</tr>
<tr>
<td><a href="../../boost/cast.hpp"><code>boost/cast.hpp</code></a><br>
<a href="cast.htm">[Documentation]</a></td>
<td><b>polymorphic_cast</b>, <b>implicit_cast</b>, and <b>numeric_cast</b>
function templates.
<p><i>[Beta.]</i></p>
</td>
</tr>
<tr>
<td><a href="../../boost/operators.hpp">boost/operators.hpp</a><br>
<a href="operators.htm">[Documentation]</a></td>
<td>Templates <b>equality_comparable</b>, <b>less_than_comparable</b>, <b>addable</b>,
and the like ease the task of defining comparison and arithmetic
operators, and iterators.</td>
</tr>
<tr>
<td><a href="../../boost/detail/type_traits.hpp">boost/type_traits.hpp</a><br>
[<a href="type_traits.htm">Documentation</a>]<br>
[<a href="c++_type_traits.htm">DDJ Article &quot;C++ type traits&quot;</a>]</td>
<td>Template classes that describe the fundamental properties of a type.</td>
</tr>
<tr>
<td><a href="../../boost/detail/call_traits.hpp">boost/call_traits.hpp</a><br>
[<a href="call_traits.htm">Documentation</a>]</td>
<td>Template class call_traits&lt;T&gt;, that defines types used for passing
parameters to and from a proceedure.</td>
</tr>
<tr>
<td><a href="../../boost/detail/compressed_pair.hpp">boost/compressed_pair.hpp</a><br>
[<a href="compressed_pair.htm">Documentation</a>]</td>
<td>Template class compressed_pait&lt;T1, T2&gt; which pairs two values
using the empty member optimisation where appropriate.</td>
</tr>
</table>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan -->24 July 2000<!--webbot bot="Timestamp" endspan i-checksum="18764" --></p>
</body>
</html>

598
operators.htm Normal file
View File

@ -0,0 +1,598 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Header boost/operators.hpp Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center" width="277" height="86">Header
<a href="../../boost/operators.hpp">boost/operators.hpp</a></h1>
<p>Header <a href="http://www.boost.org/boost/operators.hpp">boost/operators.hpp</a>
supplies (in namespace boost) several sets of templates:</p>
<ul>
<li><a href="#Arithmetic">Arithmetic operators</a>.
<li><a href="#deref and helpers">Dereference operators and iterator helpers.</a></li>
</ul>
<p>These templates define many global operators in terms of a minimal number of
fundamental operators.</p>
<h1><a name="Arithmetic">Arithmetic</a> Operators</h1>
<p>If, for example, you declare a class like this:</p>
<blockquote>
<pre>class MyInt : boost::operators&lt;MyInt&gt;
{
bool operator&lt;(const MyInt&amp; x) const;
bool operator==(const MyInt&amp; x) const;
MyInt&amp; operator+=(const MyInt&amp; x);
MyInt&amp; operator-=(const MyInt&amp; x);
MyInt&amp; operator*=(const MyInt&amp; x);
MyInt&amp; operator/=(const MyInt&amp; x);
MyInt&amp; operator%=(const MyInt&amp; x);
MyInt&amp; operator|=(const MyInt&amp; x);
MyInt&amp; operator&amp;=(const MyInt&amp; x);
MyInt&amp; operator^=(const MyInt&amp; x);
MyInt&amp; operator++();
MyInt&amp; operator--();
};</pre>
</blockquote>
<p>then the <code>operators&lt;&gt;</code> template adds more than a dozen
additional operators, such as operator&gt;, &lt;=, &gt;=, and +.&nbsp; <a href="#two_arg">Two-argument
forms</a> of the templates are also provided to allow interaction with other
types.</p>
<p><a href="http://www.boost.org/people/dave_abrahams.htm">Dave Abrahams</a>
started the library and contributed the arithmetic operators in <a href="http://www.boost.org/boost/operators.hpp">boost/operators.hpp</a>.<br>
<a href="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</a>
contributed the <a href="#deref and helpers">dereference operators and iterator
helpers</a> in <a href="http://www.boost.org/boost/operators.hpp">boost/operators.hpp</a>.<br>
<a href="http://www.boost.org/people/aleksey_gurtovoy.htm">Aleksey Gurtovoy</a>
contributed the code to support <a href="#chaining">base class chaining</a>
while remaining backward-compatible with old versions of the library.<br>
<a href="http://www.boost.org/people/beman_dawes.html">Beman Dawes</a>
contributed <a href="http://www.boost.org/libs/utility/operators_test.cpp">test_operators.cpp</a>.</p>
<h2>Rationale</h2>
<p>Overloaded operators for class types typically occur in groups. If you can
write <code>x + y</code>, you probably also want to be able to write <code>x +=
y</code>. If you can write <code>x &lt; y,</code> you also want <code>x &gt; y,
x &gt;= y,</code> and <code>x &lt;= y</code>. Moreover, unless your class has
really surprising behavior, some of these related operators can be defined in
terms of others (e.g. <code>x &gt;= y <b>&lt;=&gt;</b> !(x &lt; y)</code>).
Replicating this boilerplate for multiple classes is both tedious and
error-prone. The <a href="http://www.boost.org/boost/operators.hpp">boost/operators.hpp</a>
templates help by generating operators for you at namespace scope based on other
operators you've defined in your class.</p>
<a name="two_arg">
<h2>Two-Argument Template Forms</h2>
</a>
<p>The arguments to a binary operator commonly have identical types, but it is
not unusual to want to define operators which combine different types. For <a href="#usage">example</a>,
one might want to multiply a mathematical vector by a scalar. The two-argument
template forms of the arithmetic operator templates are supplied for this
purpose. When applying the two-argument form of a template, the desired return
type of the operators typically determines which of the two types in question
should be derived from the operator template. For example, if the result of <code>T&nbsp;+&nbsp;U</code>
is of type <code>T</code>, then <code>T</code> (not <code>U</code>) should be
derived from <code>addable&lt;T,U&gt;</code>. The comparison templates <code><a href="#less_than_comparable">less_than_comparable&lt;&gt;</a></code>
and <code><a href="#equality_comparable">equality_comparable&lt;&gt;</a></code>
are exceptions to this guideline, since the return type of the operators they
define is <code>bool</code>.</p>
<p>On compilers which do not support partial specialization, the two-argument
forms must be specified by using the names shown below with the trailing <code>'2'</code>.
The single-argument forms with the trailing <code>'1'</code> are provided for
symmetry and to enable certain applications of the <a href="#chaining">base
class chaining</a> technique.</p>
<h2>Arithmetic operators table</h2>
<p>The requirements for the types used to instantiate operator templates are
specified in terms of expressions which must be valid and by the return type of
the expression. In the following table <code>t</code> and <code>t1</code> are
values of type <code>T</code>, and <code>u</code> is a value of type <code>U</code>.
Every template in the library other than <a href="#operators"><code>operators&lt;&gt;</code></a>
and <a href="#operators"><code>operators2&lt;&gt;</code></a> has an additional
optional template parameter <code>B</code> which is not shown in the table, but
is explained <a href="#chaining">below</a></p>
<table cellpadding="5" border="1">
<tbody>
<tr>
<td><b>template</b></td>
<td><b>template will supply</b></td>
<td><b>Requirements</b></td>
</tr>
<a name="operators">
<tr>
<td><code>operators&lt;T&gt;</code></td>
<td>All the other &lt;T&gt; templates in this table.</td>
<td>All the &lt;T&gt; requirements in this table.</td>
<tr>
<td><code>operators&lt;T,U&gt;<br>
operators2&lt;T,U&gt;</code></td>
<td>All the other &lt;T,U&gt; templates in this table, plus incrementable&lt;T&gt;
and decrementable&lt;T&gt;.</td>
<td><b>All</b> the &lt;T,U&gt; requirements in this table</a><a href="#portability">*</a>,
plus incrementable&lt;T&gt; and decrementable&lt;T&gt;.</td>
</tr>
<a name="less_than_comparable">
<tr>
<td><code>less_than_comparable&lt;T&gt;<br>
less_than_comparable1&lt;T&gt;</code></td>
<td><code>bool operator&gt;(const T&amp;, const T&amp;)&nbsp;<br>
bool operator&lt;=(const T&amp;, const T&amp;)<br>
bool operator&gt;=(const T&amp;, const T&amp;)</code></td>
<td><code>t&lt;t1</code>. Return convertible to bool</td>
<tr>
<td><code>less_than_comparable&lt;T,U&gt;<br>
less_than_comparable2&lt;T,U&gt;</code></td>
<td><code>bool operator&lt;=(const T&amp;, const U&amp;)<br>
bool operator&gt;=(const T&amp;, const U&amp;)<br>
bool operator&gt;(const U&amp;, const T&amp;)&nbsp;<br>
bool operator&lt;(const U&amp;, const T&amp;)&nbsp;<br>
bool operator&lt;=(const U&amp;, const T&amp;)<br>
bool operator&gt;=(const U&amp;, const T&amp;)</code></td>
<td><code>t&lt;u</code>. Return convertible to bool<br>
<code>t&gt;u</code>. Return convertible to bool</td>
</tr>
</a><a name="equality_comparable">
<tr>
<td><code>equality_comparable&lt;T&gt;<br>
equality_comparable1&lt;T&gt;</code></td>
<td><code>bool operator!=(const T&amp;, const T&amp;)</code></td>
<td><code>t==t1</code>. Return convertible to bool</td>
<tr>
<td><code>equality_comparable&lt;T,U&gt;<br>
equality_comparable2&lt;T,U&gt;</code></td>
<td><code>friend bool operator==(const U&amp;, const T&amp;)<br>
friend bool operator!=(const U&amp;, const T&amp;)<br>
friend bool operator!=( const T&amp;, const U&amp;)</code></td>
<td><code>t==u</code>. Return convertible to bool</td>
</tr>
</a>
<tr>
<td><code>addable&lt;T&gt;<br>
addable1&lt;T&gt;</code></td>
<td><code>T operator+(T, const T&amp;)</code></td>
<td><code>t+=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>addable&lt;T,U&gt;<br>
addable2&lt;T,U&gt;</code></td>
<td><code>T operator+(T, const U&amp;)<br>
T operator+(const U&amp;, T )</code></td>
<td><code>t+=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>subtractable&lt;T&gt;<br>
subtractable1&lt;T&gt;</code></td>
<td><code>T operator-(T, const T&amp;)</code></td>
<td><code>t-=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>subtractable&lt;T,U&gt;<br>
subtractable2&lt;T,U&gt;</code></td>
<td><code>T operator-(T, const U&amp;)</code></td>
<td><code>t-=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>multipliable&lt;T&gt;<br>
multipliable1&lt;T&gt;</code></td>
<td><code>T operator*(T, const T&amp;)</code></td>
<td><code>t*=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>multipliable&lt;T,U&gt;<br>
multipliable2&lt;T,U&gt;</code></td>
<td><code>T operator*(T, const U&amp;)<br>
T operator*(const U&amp;, T )</code></td>
<td><code>t*=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>dividable&lt;T&gt;<br>
dividable1&lt;T&gt;</code></td>
<td><code>T operator/(T, const T&amp;)</code></td>
<td><code>t/=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>dividable&lt;T,U&gt;<br>
dividable2&lt;T,U&gt;</code></td>
<td><code>T operator/(T, const U&amp;)</code></td>
<td><code>t/=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>modable&lt;T&gt;<br>
modable1&lt;T&gt;</code></td>
<td><code>T operator%(T, const T&amp;)</code></td>
<td><code>t%=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>modable&lt;T,U&gt;<br>
modable2&lt;T,U&gt;</code></td>
<td><code>T operator%(T, const U&amp;)</code></td>
<td><code>t%=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>orable&lt;T&gt;<br>
orable1&lt;T&gt;</code></td>
<td><code>T operator|(T, const T&amp;)</code></td>
<td><code>t|=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>orable&lt;T,U&gt;<br>
orable2&lt;T,U&gt;</code></td>
<td><code>T operator|(T, const U&amp;)<br>
T operator|(const U&amp;, T )</code></td>
<td><code>t|=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>andable&lt;T&gt;<br>
andable1&lt;T&gt;</code></td>
<td><code>T operator&amp;(T, const T&amp;)</code></td>
<td><code>t&amp;=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>andable&lt;T,U&gt;<br>
andable2&lt;T,U&gt;</code></td>
<td><code>T operator&amp;(T, const U&amp;)<br>
T operator&amp;(const U&amp;, T)</code></td>
<td><code>t&amp;=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>xorable&lt;T&gt;<br>
xorable1&lt;T&gt;</code></td>
<td><code>T operator^(T, const T&amp;)</code></td>
<td><code>t^=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>xorable&lt;T,U&gt;<br>
xorable2&lt;T,U&gt;</code></td>
<td><code>T operator^(T, const U&amp;)<br>
T operator^(const U&amp;, T )</code></td>
<td><code>t^=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>incrementable&lt;T&gt;<br>
incrementable1&lt;T&gt;</code></td>
<td><code>T operator++(T&amp; x, int)</code></td>
<td><code>T temp(x); ++x; return temp;</code><br>
Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>decrementable&lt;T&gt;<br>
decrementable1&lt;T&gt;</code></td>
<td><code>T operator--(T&amp; x, int)</code></td>
<td><code>T temp(x); --x; return temp;</code><br>
Return convertible to <code>T</code></td>
</tr>
</tbody>
</table>
<br>
<b><a name="portability">Portability Note:</a></b> many compilers (e.g. MSVC6.3,
GCC 2.95.2) will not enforce the requirements in this table unless the
operations which depend on them are actually used. This is not
standard-conforming behavior. If you are trying to write portable code it is
important not to rely on this bug. In particular, it would be convenient to
derive all your classes which need binary operators from the <a href="#operators"><code>operators&lt;&gt;</code></a>
and <a href="#operators"><code>operators2&lt;&gt;</code></a> templates,
regardless of whether they implement all the requirements in the table. Even if
this works with your compiler today, it may not work tomorrow.
<h2><a name="chaining">Base Class Chaining</a> and Object Size</h2>
<p>Every template listed in the table except <a href="#operators"><code>operators&lt;&gt;</code></a>
and <a href="#operators"><code>operators2&lt;&gt;</code></a> has an additional
optional template parameter <code>B</code>.&nbsp; If supplied, <code>B</code>
must be a class type; the resulting class will be publicly derived from B. This
can be used to avoid the object size bloat commonly associated with multiple
empty base classes (see the <a href="#old_lib_note">note for users of older
versions</a> below for more details). To provide support for several groups of
operators, use the additional parameter to chain operator templates into a
single-base class hierarchy, as in the following <a href="#usage">example</a>.</p>
<p><b>Caveat:</b> to chain to a base class which is <i>not</i> a boost operator
template when using the <a href="#two_arg">single-argument form</a><a> of a
boost operator template, you must specify the operator template with the
trailing <code>'1'</code> in its name. Otherwise the library will assume you
mean to define a binary operation combining the class you intend to use as a
base class and the class you're deriving.</p>
<p><b>Borland users</b>: even single-inheritance seems to cause an increase in
object size in some cases. If you are not defining a template, you may get
better object-size performance by avoiding derivation altogether, and instead
explicitly instantiating the operator template as follows:
<pre>
class myclass // lose the inheritance...
{
//...
};
// explicitly instantiate the operators I need.
template class less_than_comparable&lt;myclass&gt;;
template class equality_comparable&lt;myclass&gt;;
template class incrementable&lt;myclass&gt;;
template class decrementable&lt;myclass&gt;;
template class addable&lt;myclass,long&gt;;
template class subtractable&lt;myclass,long&gt;;
</pre>
</a><a name="usage">
<h2>Usage example</h2>
</a>
<pre>template &lt;class T&gt;
class point // note: private inheritance is OK here!
: boost::addable&lt; point&lt;T&gt; // point + point
, boost::subtractable&lt; point&lt;T&gt; // point - point
, boost::dividable2&lt; point&lt;T&gt;, T // point / T
, boost::multipliable2&lt; point&lt;T&gt;, T // point * T, T * point
&gt; &gt; &gt; &gt;
{
public:
point(T, T);
T x() const;
T y() const;
point operator+=(const point&amp;);
// point operator+(point, const point&amp;) automatically
// generated by addable.
point operator-=(const point&amp;);
// point operator-(point, const point&amp;) automatically
// generated by subtractable.
point operator*=(T);
// point operator*(point, const T&amp;) and
// point operator*(const T&amp;, point) auto-generated
// by multipliable.
point operator/=(T);
// point operator/(point, const T&amp;) auto-generated
// by dividable.
private:
T x_;
T y_;
};
// now use the point&lt;&gt; class:
template &lt;class T&gt;
T length(const point&lt;T&gt; p)
{
return sqrt(p.x()*p.x() + p.y()*p.y());
}
const point&lt;float&gt; right(0, 1);
const point&lt;float&gt; up(1, 0);
const point&lt;float&gt; pi_over_4 = up + right;
const point&lt;float&gt; pi_over_4_normalized = pi_over_4 / length(pi_over_4);</pre>
<h2>Arithmetic operators demonstration and test program</h2>
<p>The <a href="http://www.boost.org/libs/utility/operators_test.cpp">operators_test.cpp</a>
program demonstrates the use of the arithmetic operator templates, and can also
be used to verify correct operation.</p>
<p>The test program has been compiled and run successfully with:&nbsp;</p>
<ul>
<li>GCC 2.95.2
<li>GCC 2.95.2 / STLport 4.0b8.
<li>Metrowerks Codewarrior 5.3
<li>KAI C++ 3.3
<li>Microsoft Visual C++ 6.0 SP3.
<li>Microsoft Visual C++ 6.0 SP3 / STLport 4.0b8.</li>
</ul>
<h1><a name="deref and helpers">Dereference</a> operators and iterator helpers</h1>
<p>The <a href="#Iterator helpers">iterator helper</a> templates ease the task
of creating a custom iterator. Similar to arithmetic types, a complete iterator
has many operators that are &quot;redundant&quot; and can be implemented in
terms of the core set of operators.</p>
<p>The <a href="#dereference">dereference operators</a> were motivated by the <a href="#Iterator helpers">iterator
helpers</a>, but are often useful in non-iterator contexts as well. Many of the
redundant iterator operators are also arithmetic operators, so the iterator
helper classes borrow many of the operators defined above. In fact, only two new
operators need to be defined! (the pointer-to-member <code>operator-&gt;</code>
and the subscript <code>operator[]</code>). </PP>
<h3>Notation</h3>
<table>
<tbody>
<tr>
<td valign="top"><code>T</code></td>
<td valign="top">is the user-defined type for which the operations are
being supplied.</td>
</tr>
<tr>
<td valign="top"><code>V</code></td>
<td valign="top">is the type which the resulting <code>dereferenceable</code>
type &quot;points to&quot;, or the <code>value_type</code> of the custom
iterator.</td>
</tr>
<tr>
<td valign="top"><code>D</code></td>
<td valign="top">is the type used to index the resulting <code>indexable</code>
type or the <code>difference_type</code> of the custom iterator.</td>
</tr>
<tr>
<td valign="top"><code>P</code></td>
<td valign="top">is a type which can be dereferenced to access <code>V</code>,
or the <code>pointer</code> type of the custom iterator.</td>
</tr>
<tr>
<td valign="top"><code>R</code></td>
<td valign="top">is the type returned by indexing the <code>indexable</code>
type or the <code>reference</code> type of the custom iterator.</td>
</tr>
<tr>
<td valign="top"><code>i</code></td>
<td valign="top">is short for <code>static_cast&lt;const T&amp;&gt;(*this)</code>,
where <code>this</code> is a pointer to the helper class.<br>
Another words, <code>i</code> should be an object of the custom iterator
type.</td>
</tr>
<tr>
<td valign="top"><code>x,x1,x2</code></td>
<td valign="top">are objects of type <code>T</code>.</td>
</tr>
<tr>
<td valign="top"><code>n</code></td>
<td valign="top">is an object of type <code>D</code>.</td>
</tr>
</tbody>
</table>
<p>The requirements for the types used to instantiate the dereference operators
and iterator helpers are specified in terms of expressions which must be valid
and their return type.&nbsp;</p>
<h2><a name="dereference">Dereference operators</a></h2>
<p>The dereference operator templates in this table all accept an optional
template parameter (not shown) to be used for <a href="#chaining">base class
chaining</a>.
<table cellpadding="5" border="1">
<tbody>
<tr>
<td><b>template</b></td>
<td><b>template will supply</b></td>
<td><b>Requirements</b></td>
</tr>
<tr>
<td><code>dereferenceable&lt;T,P&gt;</code></td>
<td><code>P operator-&gt;() const</code></td>
<td><code>(&amp;*i.)</code>. Return convertible to <code>P</code>.</td>
</tr>
<tr>
<td><code>indexable&lt;T,D,R&gt;</code></td>
<td><code>R operator[](D n) const</code></td>
<td><code>*(i + n)</code>. Return of type <code>R</code>.</td>
</tr>
</tbody>
</table>
<h2><a name="Iterator helpers">Iterator</a> helpers</h2>
<p>There are three separate iterator helper classes, each for a different
category of iterator. Here is a summary of the core set of operators that the
custom iterator must define, and the extra operators that are created by the
helper classes. For convenience, the helper classes also fill in all of the
typedef's required of iterators by the C++ standard (<code>iterator_category</code>,
<code>value_type</code>, etc.).</p>
<table cellpadding="5" border="1" valign="top">
<tbody>
<tr>
<td><b>template</b></td>
<td><b>template will supply</b></td>
<td><b>Requirements</b></td>
</tr>
<tr>
<td><code>forward_iterator_helper</code><br>
<code>&lt;T,V,D,P,R&gt;</code></td>
<td><code>bool operator!=(const T&amp; x1, const T&amp; x2)</code><br>
<code>T operator++(T&amp; x, int)</code><br>
<code>V* operator-&gt;() const</code><br>
</td>
<td><code>x1==x2</code>. Return convertible to bool<br>
<code>T temp(x); ++x; return temp;</code><br>
<code>(&amp;*i.)</code>. Return convertible to <code>V*</code>.</td>
</tr>
<tr>
<td><code>bidirectional_iterator_helper</code><br>
<code>&lt;T,V,D,P,R&gt;</code></td>
<td>Same as above, plus<br>
<code>T operator--(T&amp; x, int)</code></td>
<td>Same as above, plus<br>
<code>T temp(x); --x; return temp;</code></td>
</tr>
<tr>
<td><code>random_access_iterator_helper</code><br>
<code>&lt;T,V,D,P,R&gt;</code></td>
<td>Same as above, plus<br>
<code>T operator+(T x, const D&amp;)<br>
T operator+(const D&amp; n, T x)<br>
T operator-(T x, const D&amp; n)<br>
R operator[](D n) const<br>
bool operator&gt;(const T&amp; x1, const T&amp; x2)&nbsp;<br>
bool operator&lt;=(const T&amp; x1, const T&amp; x2)<br>
bool operator&gt;=(const T&amp; x1, const T&amp; x2)</code></td>
<td>Same as above, plus<br>
<code>x+=n</code>. Return convertible to <code>T</code><br>
<code>x-=n</code>. Return convertible to <code>T</code><br>
<code>x1&lt;x2</code>. Return convertible to bool<br>
And to satisfy <a href="http://www.sgi.com/Technology/STL/RandomAccessIterator.html">RandomAccessIterator</a>:<br>
<code>x1-x2</code>. Return convertible to <code>D</code></td>
</tr>
</tbody>
</table>
<h2>Iterator demonstration and test program</h2>
<p>The <a href="http://www.boost.org/libs/utility/iterators_test.cpp">iterators_test.cpp</a>
program demonstrates the use of the iterator templates, and can also be used to
verify correct operation. The following is the custom iterator defined in the
test program. It demonstrates a correct (though trivial) implementation of the
core operations that must be defined in order for the iterator helpers to
&quot;fill in&quot; the rest of the iterator operations.</p>
<blockquote>
<pre>template &lt;class T, class R, class P&gt;
struct test_iter
: public boost::random_access_iterator_helper&lt;
test_iter&lt;T,R,P&gt;, T, std::ptrdiff_t, P, R&gt;
{
typedef test_iter self;
typedef R Reference;
typedef std::ptrdiff_t Distance;
public:
test_iter(T* i) : _i(i) { }
test_iter(const self&amp; x) : _i(x._i) { }
self&amp; operator=(const self&amp; x) { _i = x._i; return *this; }
Reference operator*() const { return *_i; }
self&amp; operator++() { ++_i; return *this; }
self&amp; operator--() { --_i; return *this; }
self&amp; operator+=(Distance n) { _i += n; return *this; }
self&amp; operator-=(Distance n) { _i -= n; return *this; }
bool operator==(const self&amp; x) const { return _i == x._i; }
bool operator&lt;(const self&amp; x) const { return _i &lt; x._i; }
friend Distance operator-(const self&amp; x, const self&amp; y) {
return x._i - y._i;
}
protected:
T* _i;
};</pre>
</blockquote>
<p>It has been compiled and run successfully with:</p>
<ul>
<li>GCC 2.95.2
<li>Metrowerks Codewarrior 5.2
<li>Microsoft Visual C++ 6.0 SP3</li>
</ul>
<p><a href="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</a>
contributed the iterator operators and helpers.&nbsp; He also contributed <a href="http://www.boost.org/libs/utility/iterators_test.cpp">iterators_test.cpp</a>.&nbsp;</p>
<hr>
<h2><a name="old_lib_note">Note for users of older versions</a></h2>
<p>The <a href="#chaining">changes in the library interface and recommended
usage</a> were motivated by some practical issues described below. The new
version of the library is still backward-compatible with the former one (so
you're not <i>forced</i> change any existing code), but the old usage is
deprecated. Though it was arguably simpler and more intuitive than using <a href="#chaining">base
class chaining</a>, it has been discovered that the old practice of deriving
from multiple operator templates can cause the resulting classes to be much
larger than they should be. Most modern C++ compilers significantly bloat the
size of classes derived from multiple empty base classes, even though the base
classes themselves have no state. For instance, the size of <code>point&lt;int&gt;</code>
from the <a href="#usage">example</a> above was 12-24 bytes on various compilers
for the Win32 platform, instead of the expected 8 bytes.
<p>Strictly speaking, it was not the library's fault - the language rules allow
the compiler to apply the empty base class optimization in that situation. In
principle an arbitrary number of empty base classes can be allocated at the same
offset, provided that none of them have a common ancestor (see section 10.5 [class.derived],
par. 5 of the standard). But the language definition also doesn't <i>require</i>
implementations to do the optimization, and few if any of today's compilers
implement it when multiple inheritance is involved. What's worse, it is very
unlikely that implementors will adopt it as a future enhancement to existing
compilers, because it would break binary compatibility between code generated by
two different versions of the same compiler. As Matt Austern said, &quot;One of
the few times when you have the freedom to do this sort of thing is when you're
targeting a new architecture...&quot;. On the other hand, many common compilers
will use the empty base optimization for single inheritance hierarchies.</p>
<p>Given the importance of the issue for the users of the library (which aims to
be useful for writing light-weight classes like <code>MyInt</code> or <code>point&lt;&gt;</code>),
and the forces described above, we decided to change the library interface so
that the object size bloat could be eliminated even on compilers that support
only the simplest form of the empty base class optimization. The current library
interface is the result of those changes. Though the new usage is a bit more
complicated than the old one, we think it's worth it to make the library more
useful in real world. Alexy Gurtovoy contributed the code which supports the new
usage idiom while allowing the library remain backward-compatible.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->28 Jun 2000<!--webbot bot="Timestamp" endspan i-checksum="15058" -->
</p>
<p>© Copyright David Abrahams and Beman Dawes 1999-2000. Permission to copy,
use, modify, sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided &quot;as
is&quot; without express or implied warranty, and with no claim as to its
suitability for any purpose.</p>
</body>
</html>

588
type_traits.htm Normal file
View File

@ -0,0 +1,588 @@
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="Template"
content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot">
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
<title>Type Traits</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<h1><img src="../../c++boost.gif" width="276" height="86">Header
&lt;<a href="../../boost/detail/type_traits.hpp">boost/type_traits.hpp</a>&gt;</h1>
<p>The contents of &lt;boost/type_traits.hpp&gt; are declared in
namespace boost.</p>
<p>The file &lt;<a href="../../boost/detail/type_traits.hpp">boost/type_traits.hpp</a>&gt;
contains various template classes that describe the fundamental
properties of a type; each class represents a single type
property or a single type transformation. This documentation is
divided up into the following sections:</p>
<pre><a href="#fop">Fundamental type operations</a>
<a href="#fp">Fundamental type properties</a>
<code> </code><a href="#cv">cv-Qualifiers</a>
<code> </code><a href="#ft">Fundamental Types</a>
<code> </code><a href="#ct">Compound Types</a>
<code> </code><a href="#ot">Object/Scalar Types</a>
<a href="#cs">Compiler Support Information</a>
<a href="#ec">Example Code</a></pre>
<h2><a name="fop"></a>Fundamental type operations</h2>
<p>Usage: &quot;class_name&lt;T&gt;::type&quot; performs
indicated transformation on type T.</p>
<table border="1" cellpadding="7" cellspacing="1" width="624">
<tr>
<td valign="top" width="45%"><p align="center">Expression.</p>
</td>
<td valign="top" width="45%"><p align="center">Description.</p>
</td>
<td valign="top" width="33%"><p align="center">Compiler.</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_volatile&lt;T&gt;::type</code></td>
<td valign="top" width="45%">Creates a type the same as T
but with any top level volatile qualifier removed. For
example &quot;volatile int&quot; would become &quot;int&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_const&lt;T&gt;::type</code></td>
<td valign="top" width="45%">Creates a type the same as T
but with any top level const qualifier removed. For
example &quot;const int&quot; would become &quot;int&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_cv&lt;T&gt;::type</code></td>
<td valign="top" width="45%">Creates a type the same as T
but with any top level cv-qualifiers removed. For example
&quot;const int&quot; would become &quot;int&quot;, and
&quot;volatile double&quot; would become &quot;double&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_reference&lt;T&gt;::type</code></td>
<td valign="top" width="45%">If T is a reference type
then removes the reference, otherwise leaves T unchanged.
For example &quot;int&amp;&quot; becomes &quot;int&quot;
but &quot;int*&quot; remains unchanged.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>add_reference&lt;T&gt;::type</code></td>
<td valign="top" width="45%">If T is a reference type
then leaves T unchanged, otherwise converts T to a
reference type. For example &quot;int&amp;&quot; remains
unchanged, but &quot;double&quot; becomes &quot;double&amp;&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_bounds&lt;T&gt;::type</code></td>
<td valign="top" width="45%">If T is an array type then
removes the top level array qualifier from T, otherwise
leaves T unchanged. For example &quot;int[2][3]&quot;
becomes &quot;int[3]&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h2><a name="fp"></a>Fundamental type properties</h2>
<p>Usage: &quot;class_name&lt;T&gt;::value&quot; is true if
indicated property is true, false otherwise. (Note that class_name&lt;T&gt;::value
is always defined as a compile time constant).</p>
<h3><a name="cv"></a>cv-Qualifiers</h3>
<p>The following classes determine what cv-qualifiers are present
on a type (see 3.93).</p>
<table border="1" cellpadding="7" cellspacing="1" width="624">
<tr>
<td valign="top" width="45%"><p align="center">Expression.</p>
</td>
<td valign="top" width="45%"><p align="center">Description.</p>
</td>
<td valign="top" width="33%"><p align="center">Compiler.</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_const&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if type T is top-level
const qualified.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_volatile&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if type T is top-level
volatile qualified.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_same&lt;T,U&gt;::value</code></td>
<td valign="top" width="45%">True if T and U are the same
type.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h3><a name="ft"></a>Fundamental Types</h3>
<p>The following will only ever be true for cv-unqualified types;
these are closely based on the section 3.9 of the C++ Standard.</p>
<table border="1" cellpadding="7" cellspacing="1" width="624">
<tr>
<td valign="top" width="45%"><p align="center">Expression.</p>
</td>
<td valign="top" width="45%"><p align="center">Description.</p>
</td>
<td valign="top" width="33%"><p align="center">Compiler.</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_void&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True only if T is void.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_unsigned_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True only if T is one of the
standard unsigned integral types (3.9.1 p3) - unsigned
char, unsigned short, unsigned int, and unsigned long.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_signed_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True only if T is one of the
standard signed integral types (3.9.1 p2) - signed char,
short, int, and long.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a standard
integral type(3.9.1 p7) - T is either char, wchar_t, bool
or either is_standard_signed_integral&lt;T&gt;::value or
is_standard_integral&lt;T&gt;::value is true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_float&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is one of the
standard floating point types(3.9.1 p8) - float, double
or long double.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_arithmetic&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a standard
arithmetic type(3.9.1 p8) - implies is_standard_integral
or is_standard_float is true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_fundamental&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a standard
arithmetic type or if T is void.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_unsigned_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True for compiler specific
unsigned integral types.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_signed_integral&lt;T&gt;&gt;:value</code></td>
<td valign="top" width="45%">True for compiler specific
signed integral types.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_extension_unsigned_integral&lt;T&gt;::value
or is_extension_signed_integral&lt;T&gt;::value is true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_float&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True for compiler specific
floating point types.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_arithmetic&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_extension_integral&lt;T&gt;::value
or is_extension_float&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>&nbsp;is_extension_fundamental&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_extension_arithmetic&lt;T&gt;::value
or is_void&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>&nbsp;is_unsigned_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_standard_unsigned_integral&lt;T&gt;::value
or is_extention_unsigned_integral&lt;T&gt;::value are
true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_signed_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_standard_signed_integral&lt;T&gt;::value
or is_extention_signed_integral&lt;T&gt;&gt;::value are
true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_standard_integral&lt;T&gt;::value
or is_extention_integral&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_float&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_standard_float&lt;T&gt;::value
or is_extention_float&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_arithmetic&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_integral&lt;T&gt;::value
or is_float&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_fundamental&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_arithmetic&lt;T&gt;::value
or is_void&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
</table>
<p>&nbsp;</p>
<h3><a name="ct"></a>Compound Types</h3>
<p>The following will only ever be true for cv-unqualified types,
as defined by the Standard.&nbsp;</p>
<table border="1" cellpadding="7" cellspacing="1" width="624">
<tr>
<td valign="top" width="45%"><p align="center">Expression</p>
</td>
<td valign="top" width="45%"><p align="center">Description</p>
</td>
<td valign="top" width="33%"><p align="center">Compiler</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_array&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an array type.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_pointer&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a regular
pointer type - including function pointers - but
excluding pointers to member functions (3.9.2 p1 and 8.3.1).</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_member_pointer&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a pointer to a
non-static class member (3.9.2 p1 and 8.3.1).</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_reference&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a reference
type (3.9.2 p1 and 8.3.2).</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_class&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a class or
struct type.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_union&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a union type.</td>
<td valign="top" width="33%"><p align="center">C</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_enum&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an enumerator
type.</td>
<td valign="top" width="33%"><p align="center">C</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_compound&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is any of the
above compound types.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h3><a name="ot"></a>Object/Scalar Types</h3>
<p>The following ignore any top level cv-qualifiers: if <code>class_name&lt;T&gt;::value</code>
is true then <code>class_name&lt;cv-qualified-T&gt;::value</code>
will also be true.</p>
<table border="1" cellpadding="7" cellspacing="1" width="624">
<tr>
<td valign="top" width="45%"><p align="center">Expression</p>
</td>
<td valign="top" width="45%"><p align="center">Description</p>
</td>
<td valign="top" width="33%"><p align="center">Compiler</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_object&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is not a reference
type, or a (possibly cv-qualified) void type.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_scalar&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a standard
arithmetic type, an enumerated type, a pointer or a
member pointer.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_scalar&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an extentions
arithmetic type, an enumerated type, a pointer or a
member pointer.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_scalar&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an arithmetic
type, an enumerated type, a pointer or a member pointer.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_POD&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a &quot;Plain
Old Data&quot; type (see 3.9 p2&amp;p3). Note that
although this requires compiler support to be correct in
all cases, if T is a scalar or an array of scalars then
we can correctly define T as a POD.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_empty&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an empty struct
or class. If the compiler implements the &quot;zero sized
empty base classes&quot; optimisation, then is_empty will
correctly guess whether T is empty. Relies upon is_class
to determine whether T is a class type - as a result will
not compile when passed an enumerated type unless there
is compiler support for is_enum.</td>
<td valign="top" width="33%"><p align="center">PCD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>has_trivial_constructor&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T has a trivial
default constructor - that is T() is equivalent to memset.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>has_trivial_copy&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T has a trivial copy
constructor - that is T(const T&amp;) is equivalent to
memcpy.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>has_trivial_assign&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T has a trivial
assignment operator - that is if T::operator=(const T&amp;)
is equivalent to memcpy.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>has_trivial_destructor&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T has a trivial
destructor - that is if T::~T() has no effect.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h2><a name="cs"></a>Compiler Support Information</h2>
<p>The legends used in the tables above have the following
meanings:</p>
<table border="0" cellpadding="7" cellspacing="0" width="480">
<tr>
<td valign="top" width="50%"><p align="center">P</p>
</td>
<td valign="top" width="90%">Denotes that the class
requires support for partial specialisation of class
templates to work correctly.</td>
</tr>
<tr>
<td valign="top" width="50%"><p align="center">C</p>
</td>
<td valign="top" width="90%">Denotes that direct compiler
support for that traits class is required.</td>
</tr>
<tr>
<td valign="top" width="50%"><p align="center">D</p>
</td>
<td valign="top" width="90%">Denotes that the traits
class is dependent upon a class that requires direct
compiler support.</td>
</tr>
</table>
<p>&nbsp;</p>
<p>For those classes that are marked with a D or C, if compiler
support is not provided, this type trait may return &quot;false&quot;
when the correct value is actually &quot;true&quot;. The single
exception to this rule is &quot;is_class&quot;, which attempts to
guess whether or not T is really a class, and may return &quot;true&quot;
when the correct value is actually &quot;false&quot;. This can
happen if: T is a union, T is an enum, or T is a compiler-supplied
scalar type that is not specialised for in these type traits.</p>
<p><i>If there is no compiler support</i>, to ensure that these
traits <i>always</i> return the correct values, specialise 'is_enum'
for each user-defined enumeration type, 'is_union' for each user-defined
union type, 'is_empty' for each user-defined empty composite type,
and 'is_POD' for each user-defined POD type. The 'has_*' traits
should also be specialized if the user-defined type has those
traits and is <i>not</i> a POD.</p>
<p>The following rules are automatically enforced:</p>
<p>is_enum implies is_POD</p>
<p>is_POD implies has_*</p>
<p>This means, for example, if you have an empty POD-struct, just
specialize is_empty and is_POD, which will cause all the has_* to
also return true.</p>
<h2><a name="ec"></a>Example code</h2>
<p>Type-traits comes with two sample programs: <a
href="type_traits_test.cpp">type_traits_test.cpp</a> tests the
type traits classes - mostly this is a test of your compiler's
support for the concepts used in the type traits implementation,
while <a href="algo_opt_examples.cpp">algo_opt_examples.cpp</a>
uses the type traits classes to &quot;optimise&quot; some
familiar standard library algorithms.</p>
<p>There are four algorithm examples in algo_opt_examples.cpp:</p>
<table border="0" cellpadding="7" cellspacing="0" width="638">
<tr>
<td valign="top" width="50%"><pre>opt::copy</pre>
</td>
<td valign="top" width="50%">If the copy operation can be
performed using memcpy then does so, otherwise uses a
regular element by element copy (<i>c.f.</i> std::copy).</td>
</tr>
<tr>
<td valign="top" width="50%"><pre>opt::fill</pre>
</td>
<td valign="top" width="50%">If the fill operation can be
performed by memset, then does so, otherwise uses a
regular element by element assign. Also uses call_traits
to optimise how the parameters can be passed (<i>c.f.</i>
std::fill).</td>
</tr>
<tr>
<td valign="top" width="50%"><pre>opt::destroy_array</pre>
</td>
<td valign="top" width="50%">If the type in the array has
a trivial destructor then does nothing, otherwise calls
destructors for all elements in the array - this
algorithm is the reverse of std::uninitialized_copy / std::uninitialized_fill.</td>
</tr>
<tr>
<td valign="top" width="50%"><pre>opt::iter_swap</pre>
</td>
<td valign="top" width="50%">Determines whether the
iterator is a proxy-iterator: if it is then does a &quot;slow
and safe&quot; swap, otherwise calls std::swap on the
assumption that std::swap may be specialised for the
iterated type.</td>
</tr>
</table>
<p>&nbsp;</p>
<hr>
<p>Revised 08<sup>th</sup> March 2000</p>
<p>© Copyright boost.org 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided
&quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose.</p>
<p>Based on contributions by Steve Cleary, Beman Dawes, Howard
Hinnant and John Maddock.</p>
<p>Maintained by <a href="mailto:John_Maddock@compuserve.com">John
Maddock</a>, the latest version of this file can be found at <a
href="http://www.boost.org">www.boost.org</a>, and the boost
discussion list at <a href="http://www.egroups.com/list/boost">www.egroups.com/list/boost</a>.</p>
</body>
</html>

103
utility.htm Normal file
View File

@ -0,0 +1,103 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Header boost/utility.hpp Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center" WIDTH="277" HEIGHT="86">Header
<a href="../../boost/utility.hpp">boost/utility.hpp</a></h1>
<p>The entire contents of the header <code><a href="../../boost/utility.hpp">&lt;boost/utility.hpp&gt;</a></code>
are in <code>namespace boost</code>.</p>
<h2>Contents</h2>
<ul>
<li>Template functions <a href="#functions next">next() and prior()</a></li>
<li>Class <a href="#Class noncopyable">noncopyable</a></li>
</ul>
<h2>Template <a name="functions next">functions next</a>() and prior()</h2>
<p>Certain data types, such as the C++ Standard Library's forward and
bidirectional iterators, do not provide addition and subtraction via operator+()
or operator-().&nbsp; This means that non-modifying computation of the next or
prior value requires a temporary, even though operator++() or operator--() is
provided.&nbsp; It also means that writing code like <code>itr+1</code> inside a
template restricts the iterator category to random access iterators.</p>
<p>The next() and prior() functions provide a simple way around these problems:</p>
<blockquote>
<pre>template &lt;class T&gt;
T next(T x) { return ++x; }
template &lt;class X&gt;
T prior(T x) { return --x; }</pre>
</blockquote>
<p>Usage is simple:</p>
<blockquote>
<pre>const std::list&lt;T&gt;::iterator p = get_some_iterator();
const std::list&lt;T&gt;::iterator prev = boost::prior(p);</pre>
</blockquote>
<p>Contributed by <a href="../../people/dave_abrahams.htm">Dave Abrahams</a>.</p>
<h2><a name="Class noncopyable">Class noncopyable</a></h2>
<p>Class <strong>noncopyable</strong> is a base class.&nbsp; Derive your own class from <strong>noncopyable</strong>
when you want to prohibit copy construction and copy assignment.</p>
<p>Some objects, particularly those which hold complex resources like files or
network connections, have no sensible copy semantics.&nbsp; Sometimes there are
possible copy semantics, but these would be of very limited usefulness and be
very difficult to implement correctly.&nbsp; Sometimes you're implementing a class that doesn't need to be copied
just yet and you don't want to take the time to write the appropriate functions.&nbsp;
Deriving from <b> noncopyable</b> will prevent the otherwise implicitly-generated
functions (which don't have the proper semantics) from becoming a trap for other programmers.</p>
<p>The traditional way to deal with these is to declare a private copy constructor and copy assignment, and then
document why this is done.&nbsp; But deriving from <b>noncopyable</b> is simpler
and clearer, and doesn't require additional documentation.</p>
<p>The program <a href="noncopyable_test.cpp">noncopyable_test.cpp</a> can be
used to verify class <b>noncopyable</b> works as expected. It has have been run successfully under
GCC 2.95, Metrowerks
CodeWarrior 5.0, and Microsoft Visual C++ 6.0 sp 3.</p>
<p>Contributed by <a href="../../people/dave_abrahams.htm">Dave Abrahams</a>.</p>
<h3>Example</h3>
<blockquote>
<pre>// inside one of your own headers ...
#include &lt;boost/utility.hpp&gt;
class ResourceLadenFileSystem : noncopyable {
...</pre>
</blockquote>
<h3>Rationale</h3>
<p>Class noncopyable has protected constructor and destructor members to
emphasize that it is to be used only as a base class.&nbsp; Dave Abrahams notes
concern about the effect on compiler optimization of adding (even trivial inline)
destructor declarations. He says &quot;Probably this concern is misplaced, because
noncopyable will be used mostly for classes which own resources and thus have non-trivial destruction semantics.&quot;</p>
<hr>
<p>Revised&nbsp; <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan
-->26 January, 2000<!--webbot bot="Timestamp" endspan i-checksum="38194"
-->
</p>
<p>© Copyright boost.org 1999. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided &quot;as is&quot; without express or
implied warranty, and with no claim as to its suitability for any purpose.</p>
</body>
</html>