unordered/test/cfoa/swap_tests.cpp
joaquintides f734e399e3
Feature/concurrent node containers (#271)
* added concurrent node containers

* removed spurious typename

* added missing includes

* avoided unused param warning

* worked around Clang bug

* s/{}/() to work around GCC4.8 problems with aggregate initialization

* used /bigobj for cfoa/visit_tests.cpp

* suppressed localized maybe-uninitialized warnings

* fixed comments

* added /bigobj to cfoa/insert_tests.cpp

* instrumented double exact comparison to spot a spurious error

* fixed pedantic error

* refactored byte_span machinery

* compromised on sub-epsilon equality for doubles that should be identical

* documented boost::concurrent_node_(map|set)

* added concurrent_node_set

* added missing AlternativeType

* tested empty node insertion

* tested node_handle allocator management

* added nonassignable_allocator and node_handle_allocator_swap_tests

* fixed warning disabling

* silenced spurious GCC warning

* broadened scope of previous pragma

* broadened even more

* worked around spurious constexpr-related msvc-14.0 bug
https://godbolt.org/z/v78545Ebf

* added workaround back

* replaced previous workaround with built-in one

* added workaround back on top of built-in solution (which doesn't work 100% of the time)
2024-08-25 18:34:58 +02:00

332 lines
9.3 KiB
C++

// Copyright (C) 2023 Christian Mazakas
// Copyright (C) 2023-2024 Joaquin M Lopez Munoz
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "helpers.hpp"
#include <boost/unordered/concurrent_flat_map.hpp>
#include <boost/unordered/concurrent_flat_set.hpp>
#include <boost/unordered/concurrent_node_map.hpp>
#include <boost/unordered/concurrent_node_set.hpp>
test::seed_t initialize_seed{996130204};
using test::default_generator;
using test::limited_range;
using test::sequential;
template <class T> struct pocs_allocator
{
using propagate_on_container_swap = std::true_type;
int x_ = -1;
using value_type = T;
pocs_allocator() = default;
pocs_allocator(pocs_allocator const&) = default;
pocs_allocator(pocs_allocator&&) = default;
pocs_allocator(int const x) : x_{x} {}
pocs_allocator& operator=(pocs_allocator const& rhs)
{
if (this != &rhs) {
x_ = rhs.x_;
}
return *this;
}
template <class U> pocs_allocator(pocs_allocator<U> const& rhs) : x_{rhs.x_}
{
}
T* allocate(std::size_t n)
{
return static_cast<T*>(::operator new(n * sizeof(T)));
}
void deallocate(T* p, std::size_t) { ::operator delete(p); }
bool operator==(pocs_allocator const& rhs) const { return x_ == rhs.x_; }
bool operator!=(pocs_allocator const& rhs) const { return x_ != rhs.x_; }
friend void swap(pocs_allocator& lhs, pocs_allocator& rhs) noexcept
{
std::swap(lhs.x_, rhs.x_);
}
};
using hasher = stateful_hash;
using key_equal = stateful_key_equal;
using map_type = boost::unordered::concurrent_flat_map<raii, raii, hasher,
key_equal, stateful_allocator<std::pair<raii const, raii> > >;
using node_map_type = boost::unordered::concurrent_node_map<raii, raii, hasher,
key_equal, stateful_allocator<std::pair<raii const, raii> > >;
using set_type = boost::unordered::concurrent_flat_set<raii, hasher,
key_equal, stateful_allocator<raii> >;
using node_set_type = boost::unordered::concurrent_node_set<raii, hasher,
key_equal, stateful_allocator<raii> >;
template <class T> struct is_nothrow_member_swappable
{
static bool const value =
noexcept(std::declval<T&>().swap(std::declval<T&>()));
};
BOOST_STATIC_ASSERT(is_nothrow_member_swappable<
replace_allocator<map_type, std::allocator> >::value);
BOOST_STATIC_ASSERT(is_nothrow_member_swappable<
replace_allocator<map_type, pocs_allocator> >::value);
BOOST_STATIC_ASSERT(!is_nothrow_member_swappable<map_type>::value);
BOOST_STATIC_ASSERT(is_nothrow_member_swappable<
replace_allocator<set_type, std::allocator> >::value);
BOOST_STATIC_ASSERT(is_nothrow_member_swappable<
replace_allocator<set_type, pocs_allocator> >::value);
BOOST_STATIC_ASSERT(!is_nothrow_member_swappable<set_type>::value);
namespace {
struct
{
template <class T> void operator()(T& x1, T& x2) const { x1.swap(x2); }
} member_fn_swap;
struct
{
template <class T> void operator()(T& x1, T& x2) const
{
using boost::unordered::swap;
swap(x1, x2);
}
} free_fn_swap;
template <class X, class F, class GF>
void swap_tests(X*, F swapper, GF gen_factory, test::random_generator rg)
{
using value_type = typename X::value_type;
using allocator_type = typename X::allocator_type;
bool const pocs =
boost::allocator_propagate_on_container_swap<
allocator_type>::type::value;
auto gen = gen_factory.template get<X>();
auto vals1 = make_random_values(1024 * 8, [&] { return gen(rg); });
auto vals2 = make_random_values(1024 * 4, [&] { return gen(rg); });
auto reference_cont1 = reference_container<X>(vals1.begin(), vals1.end());
auto reference_cont2 = reference_container<X>(vals2.begin(), vals2.end());
{
raii::reset_counts();
X x1(vals1.begin(), vals1.end(), vals1.size(), hasher(1), key_equal(2),
allocator_type(3));
X x2(vals2.begin(), vals2.end(), vals2.size(), hasher(2), key_equal(1),
pocs ? allocator_type(4) : allocator_type(3));
if (pocs) {
BOOST_TEST(x1.get_allocator() != x2.get_allocator());
} else {
BOOST_TEST(x1.get_allocator() == x2.get_allocator());
}
auto const old_cc = +raii::copy_constructor;
auto const old_mc = +raii::move_constructor;
thread_runner(vals1, [&x1, &x2, swapper](boost::span<value_type> s) {
(void)s;
swapper(x1, x2);
swapper(x2, x1);
});
BOOST_TEST_EQ(raii::copy_constructor, old_cc);
BOOST_TEST_EQ(raii::move_constructor, old_mc);
if (pocs) {
if (x1.get_allocator() == allocator_type(3)) {
BOOST_TEST(x2.get_allocator() == allocator_type(4));
} else {
BOOST_TEST(x1.get_allocator() == allocator_type(4));
BOOST_TEST(x2.get_allocator() == allocator_type(3));
}
} else {
BOOST_TEST(x1.get_allocator() == allocator_type(3));
BOOST_TEST(x1.get_allocator() == x2.get_allocator());
}
if (x1.size() == reference_cont1.size()) {
test_matches_reference(x1, reference_cont1);
test_matches_reference(x2, reference_cont2);
BOOST_TEST_EQ(x1.hash_function(), hasher(1));
BOOST_TEST_EQ(x1.key_eq(), key_equal(2));
BOOST_TEST_EQ(x2.hash_function(), hasher(2));
BOOST_TEST_EQ(x2.key_eq(), key_equal(1));
} else {
test_matches_reference(x2, reference_cont1);
test_matches_reference(x1, reference_cont2);
BOOST_TEST_EQ(x1.hash_function(), hasher(2));
BOOST_TEST_EQ(x1.key_eq(), key_equal(1));
BOOST_TEST_EQ(x2.hash_function(), hasher(1));
BOOST_TEST_EQ(x2.key_eq(), key_equal(2));
}
}
check_raii_counts();
}
template <class X, class F, class GF>
void insert_and_swap(
X*, F swapper, GF gen_factory, test::random_generator rg)
{
using allocator_type = typename X::allocator_type;
auto gen = gen_factory.template get<X>();
auto vals1 = make_random_values(1024 * 8, [&] { return gen(rg); });
auto vals2 = make_random_values(1024 * 4, [&] { return gen(rg); });
{
raii::reset_counts();
X x1(vals1.size(), hasher(1), key_equal(2), allocator_type(3));
X x2(vals2.size(), hasher(2), key_equal(1), allocator_type(3));
std::thread t1, t2, t3;
boost::compat::latch l(2);
std::mutex m;
std::condition_variable cv;
std::atomic_bool done1{false}, done2{false};
std::atomic<unsigned> num_swaps{0};
bool ready = false;
t1 = std::thread([&x1, &vals1, &l, &done1, &cv, &ready, &m] {
l.arrive_and_wait();
for (std::size_t idx = 0; idx < vals1.size(); ++idx) {
auto const& val = vals1[idx];
x1.insert(val);
if (idx % (vals1.size() / 128) == 0) {
{
std::unique_lock<std::mutex> lk(m);
ready = true;
}
cv.notify_all();
}
std::this_thread::yield();
}
done1 = true;
{
std::unique_lock<std::mutex> lk(m);
ready = true;
}
cv.notify_all();
});
t2 = std::thread([&x2, &vals2, &l, &done2, &ready, &cv, &m] {
l.arrive_and_wait();
for (std::size_t idx = 0; idx < vals2.size(); ++idx) {
auto const& val = vals2[idx];
x2.insert(val);
if (idx % 100 == 0) {
std::this_thread::yield();
}
}
done2 = true;
{
std::unique_lock<std::mutex> lk(m);
ready = true;
}
cv.notify_all();
});
t3 = std::thread(
[&x1, &x2, &m, &cv, &done1, &done2, &num_swaps, swapper, &ready] {
do {
{
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, [&ready] { return ready; });
ready = false;
}
swapper(x1, x2);
++num_swaps;
std::this_thread::yield();
} while (!done1 || !done2);
BOOST_TEST(done1);
BOOST_TEST(done2);
});
t1.join();
t2.join();
t3.join();
BOOST_TEST_GT(num_swaps, 0u);
if (x1.hash_function() == hasher(1)) {
BOOST_TEST_EQ(x1.key_eq(), key_equal(2));
BOOST_TEST_EQ(x2.hash_function(), hasher(2));
BOOST_TEST_EQ(x2.key_eq(), key_equal(1));
} else {
BOOST_TEST_EQ(x1.hash_function(), hasher(2));
BOOST_TEST_EQ(x1.key_eq(), key_equal(1));
BOOST_TEST_EQ(x2.hash_function(), hasher(1));
BOOST_TEST_EQ(x2.key_eq(), key_equal(2));
}
}
check_raii_counts();
}
map_type* map;
replace_allocator<map_type, pocs_allocator>* pocs_map;
node_map_type* node_map;
replace_allocator<node_map_type, pocs_allocator>* pocs_node_map;
set_type* set;
replace_allocator<set_type, pocs_allocator>* pocs_set;
node_set_type* node_set;
replace_allocator<node_set_type, pocs_allocator>* pocs_node_set;
} // namespace
// clang-format off
UNORDERED_TEST(
swap_tests,
((map)(pocs_map)(node_map)(pocs_node_map)
(set)(pocs_set)(node_set)(pocs_node_set))
((member_fn_swap)(free_fn_swap))
((value_type_generator_factory))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(insert_and_swap,
((map)(node_map)(set)(node_set))
((member_fn_swap)(free_fn_swap))
((value_type_generator_factory))
((default_generator)(sequential)(limited_range)))
// clang-format on
RUN_TESTS()