Daniel James df1e1598a5 Import latest changes to the unordered containers. Includes:
Copyright update.
Switch back to the version where the sentinel points to itself.
Remove alternative versions of swap.
Workaround a borland bug or two.
More consistent use of class/swap/template.
Avoid a few warnings.
Add a no-throw swap to the allocator for exception testing.


[SVN r3793]
2007-03-18 20:00:59 +00:00

365 lines
11 KiB
C++

// Copyright 2006-2007 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_UNORDERED_TEST_OBJECTS_HEADER)
#define BOOST_UNORDERED_TEST_OBJECTS_HEADER
#include <boost/config.hpp>
#include <boost/limits.hpp>
#include <cstddef>
#include "../helpers/fwd.hpp"
#include <iostream>
#include <map>
namespace test
{
// Note that the default hash function will work for any equal_to (but not
// very well).
class object;
class hash;
class less;
class equal_to;
template <class T> class allocator;
class object
{
friend class hash;
friend class equal_to;
friend class less;
int tag1_, tag2_;
public:
explicit object(int t1 = 0, int t2 = 0) : tag1_(t1), tag2_(t2) {}
~object() {
tag1_ = -1;
tag2_ = -1;
}
friend bool operator==(object const& x1, object const& x2) {
return x1.tag1_ == x2.tag1_ && x1.tag2_ == x2.tag2_;
}
friend bool operator!=(object const& x1, object const& x2) {
return x1.tag1_ != x2.tag1_ || x1.tag2_ != x2.tag2_;
}
friend bool operator<(object const& x1, object const& x2) {
return x1.tag1_ < x2.tag1_ ||
(x1.tag1_ == x2.tag1_ && x1.tag2_ < x2.tag2_);
}
friend object generate(object const*) {
int* x = 0;
return object(generate(x), generate(x));
}
friend std::ostream& operator<<(std::ostream& out, object const& o)
{
return out<<"("<<o.tag1_<<","<<o.tag2_<<")";
}
};
class hash
{
int type_;
public:
explicit hash(int t = 0) : type_(t) {}
std::size_t operator()(object const& x) const {
switch(type_) {
case 1:
return x.tag1_;
case 2:
return x.tag2_;
default:
return x.tag1_ + x.tag2_;
}
}
std::size_t operator()(int x) const {
return x;
}
friend bool operator==(hash const& x1, hash const& x2) {
return x1.type_ == x2.type_;
}
friend bool operator!=(hash const& x1, hash const& x2) {
return x1.type_ != x2.type_;
}
};
class less
{
int type_;
public:
explicit less(int t = 0) : type_(t) {}
bool operator()(object const& x1, object const& x2) const {
switch(type_) {
case 1:
return x1.tag1_ < x2.tag1_;
case 2:
return x1.tag2_ < x2.tag2_;
default:
return x1 < x2;
}
}
std::size_t operator()(int x1, int x2) const {
return x1 < x2;
}
friend bool operator==(less const& x1, less const& x2) {
return x1.type_ == x2.type_;
}
};
class equal_to
{
int type_;
public:
explicit equal_to(int t = 0) : type_(t) {}
bool operator()(object const& x1, object const& x2) const {
switch(type_) {
case 1:
return x1.tag1_ == x2.tag1_;
case 2:
return x1.tag2_ == x2.tag2_;
default:
return x1 == x2;
}
}
std::size_t operator()(int x1, int x2) const {
return x1 == x2;
}
friend bool operator==(equal_to const& x1, equal_to const& x2) {
return x1.type_ == x2.type_;
}
friend bool operator!=(equal_to const& x1, equal_to const& x2) {
return x1.type_ != x2.type_;
}
friend less create_compare(equal_to x) {
return less(x.type_);
}
};
namespace detail
{
// This annoymous namespace won't cause ODR violations as I won't
// be linking multiple translation units together. I'll probably
// move this into a cpp file before a full release, but for now it's
// the most convenient way.
namespace {
struct memory_area {
void const* start;
void const* end;
memory_area(void const* s, void const* e)
: start(s), end(e)
{
}
// This is a bit dodgy as it defines overlapping
// areas as 'equal', so this isn't a total ordering.
// But it is for non-overlapping memory regions - which
// is what'll be stored.
//
// All searches will be for areas entirely contained by
// a member of the set - so it should find the area that contains
// the region that is searched for.
bool operator<(memory_area const& other) const {
return end < other.start;
}
};
struct memory_track {
explicit memory_track(int tag = -1) :
constructed_(0),
tag_(tag) {}
int constructed_;
int tag_;
};
typedef std::map<memory_area, memory_track> allocated_memory_type;
allocated_memory_type allocated_memory;
unsigned int count_allocators = 0;
unsigned int count_allocations = 0;
unsigned int count_constructions = 0;
}
void allocator_ref()
{
if(count_allocators == 0) {
count_allocations = 0;
count_constructions = 0;
allocated_memory.clear();
}
++count_allocators;
}
void allocator_unref()
{
BOOST_TEST(count_allocators > 0);
if(count_allocators > 0) {
--count_allocators;
if(count_allocators == 0) {
bool no_allocations_left = (count_allocations == 0);
bool no_constructions_left = (count_constructions == 0);
bool allocated_memory_empty = allocated_memory.empty();
// Clearing the data before the checks terminate the tests.
count_allocations = 0;
count_constructions = 0;
allocated_memory.clear();
BOOST_TEST(no_allocations_left);
BOOST_TEST(no_constructions_left);
BOOST_TEST(allocated_memory_empty);
}
}
}
void track_allocate(void *ptr, std::size_t n, std::size_t size, int tag)
{
if(n == 0) {
BOOST_ERROR("Allocating 0 length array.");
}
else {
++count_allocations;
allocated_memory[memory_area(ptr, (char*) ptr + n * size)] =
memory_track(tag);
}
}
void track_deallocate(void* ptr, std::size_t n, std::size_t size, int tag)
{
allocated_memory_type::iterator pos
= allocated_memory.find(memory_area(ptr, ptr));
if(pos == allocated_memory.end()) {
BOOST_ERROR("Deallocating unknown pointer.");
} else {
BOOST_TEST(pos->first.start == ptr);
BOOST_TEST(pos->first.end == (char*) ptr + n * size);
BOOST_TEST(pos->second.tag_ == tag);
BOOST_TEST(pos->second.constructed_ == 0);
allocated_memory.erase(pos);
}
BOOST_TEST(count_allocations > 0);
if(count_allocations > 0) --count_allocations;
}
void track_construct(void* ptr, std::size_t /*size*/, int tag)
{
allocated_memory_type::iterator pos
= allocated_memory.find(memory_area(ptr, ptr));
if(pos == allocated_memory.end())
BOOST_ERROR("Constructing unknown pointer.");
BOOST_TEST(pos->second.tag_ == tag);
++count_constructions;
++pos->second.constructed_;
}
void track_destroy(void* ptr, std::size_t /*size*/, int tag)
{
allocated_memory_type::iterator pos
= allocated_memory.find(memory_area(ptr, ptr));
if(pos == allocated_memory.end())
BOOST_ERROR("Destroying unknown pointer.");
BOOST_TEST(count_constructions > 0);
BOOST_TEST(pos->second.tag_ == tag);
BOOST_TEST(pos->second.constructed_ > 0);
if(count_constructions > 0) --count_constructions;
if(pos->second.constructed_ > 0) --pos->second.constructed_;
}
}
template <class T>
class allocator
{
# ifdef BOOST_NO_MEMBER_TEMPLATE_FRIENDS
public:
# else
template <class> friend class allocator;
# endif
int tag_;
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef T const* const_pointer;
typedef T& reference;
typedef T const& const_reference;
typedef T value_type;
template <class U> struct rebind { typedef allocator<U> other; };
explicit allocator(int t = 0) : tag_(t) { detail::allocator_ref(); }
template <class Y> allocator(allocator<Y> const& x) : tag_(x.tag_) { detail::allocator_ref(); }
allocator(allocator const& x) : tag_(x.tag_) { detail::allocator_ref(); }
~allocator() { detail::allocator_unref(); }
pointer address(reference r) { return pointer(&r); }
const_pointer address(const_reference r) { return const_pointer(&r); }
pointer allocate(size_type n) {
pointer ptr(static_cast<T*>(::operator new(n * sizeof(T))));
detail::track_allocate((void*) ptr, n, sizeof(T), tag_);
return ptr;
}
pointer allocate(size_type n, const_pointer u)
{
pointer ptr(static_cast<T*>(::operator new(n * sizeof(T))));
detail::track_allocate((void*) ptr, n, sizeof(T), tag_);
return ptr;
}
void deallocate(pointer p, size_type n)
{
detail::track_deallocate((void*) p, n, sizeof(T), tag_);
::operator delete((void*) p);
}
void construct(pointer p, T const& t) {
detail::track_construct((void*) p, sizeof(T), tag_);
new(p) T(t);
}
void destroy(pointer p) {
detail::track_destroy((void*) p, sizeof(T), tag_);
p->~T();
}
size_type max_size() const {
return (std::numeric_limits<size_type>::max)();
}
bool operator==(allocator const& x) const
{
return tag_ == x.tag_;
}
bool operator!=(allocator const& x) const
{
return tag_ != x.tag_;
}
};
template <class T>
bool equivalent_impl(allocator<T> const& x, allocator<T> const& y, test::derived_type) {
return x == y;
}
}
#endif