mirror of
https://github.com/boostorg/unordered.git
synced 2025-05-11 13:34:06 +00:00
Copyright update. Switch back to the version where the sentinel points to itself. Remove alternative versions of swap. Workaround a borland bug or two. More consistent use of class/swap/template. Avoid a few warnings. Add a no-throw swap to the allocator for exception testing. [SVN r3793]
365 lines
11 KiB
C++
365 lines
11 KiB
C++
|
|
// Copyright 2006-2007 Daniel James.
|
|
// Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#if !defined(BOOST_UNORDERED_TEST_OBJECTS_HEADER)
|
|
#define BOOST_UNORDERED_TEST_OBJECTS_HEADER
|
|
|
|
#include <boost/config.hpp>
|
|
#include <boost/limits.hpp>
|
|
#include <cstddef>
|
|
#include "../helpers/fwd.hpp"
|
|
#include <iostream>
|
|
#include <map>
|
|
|
|
namespace test
|
|
{
|
|
// Note that the default hash function will work for any equal_to (but not
|
|
// very well).
|
|
class object;
|
|
class hash;
|
|
class less;
|
|
class equal_to;
|
|
template <class T> class allocator;
|
|
|
|
class object
|
|
{
|
|
friend class hash;
|
|
friend class equal_to;
|
|
friend class less;
|
|
int tag1_, tag2_;
|
|
public:
|
|
explicit object(int t1 = 0, int t2 = 0) : tag1_(t1), tag2_(t2) {}
|
|
|
|
~object() {
|
|
tag1_ = -1;
|
|
tag2_ = -1;
|
|
}
|
|
|
|
friend bool operator==(object const& x1, object const& x2) {
|
|
return x1.tag1_ == x2.tag1_ && x1.tag2_ == x2.tag2_;
|
|
}
|
|
|
|
friend bool operator!=(object const& x1, object const& x2) {
|
|
return x1.tag1_ != x2.tag1_ || x1.tag2_ != x2.tag2_;
|
|
}
|
|
|
|
friend bool operator<(object const& x1, object const& x2) {
|
|
return x1.tag1_ < x2.tag1_ ||
|
|
(x1.tag1_ == x2.tag1_ && x1.tag2_ < x2.tag2_);
|
|
}
|
|
|
|
|
|
friend object generate(object const*) {
|
|
int* x = 0;
|
|
return object(generate(x), generate(x));
|
|
}
|
|
|
|
friend std::ostream& operator<<(std::ostream& out, object const& o)
|
|
{
|
|
return out<<"("<<o.tag1_<<","<<o.tag2_<<")";
|
|
}
|
|
};
|
|
|
|
class hash
|
|
{
|
|
int type_;
|
|
public:
|
|
explicit hash(int t = 0) : type_(t) {}
|
|
|
|
std::size_t operator()(object const& x) const {
|
|
switch(type_) {
|
|
case 1:
|
|
return x.tag1_;
|
|
case 2:
|
|
return x.tag2_;
|
|
default:
|
|
return x.tag1_ + x.tag2_;
|
|
}
|
|
}
|
|
|
|
std::size_t operator()(int x) const {
|
|
return x;
|
|
}
|
|
|
|
friend bool operator==(hash const& x1, hash const& x2) {
|
|
return x1.type_ == x2.type_;
|
|
}
|
|
|
|
friend bool operator!=(hash const& x1, hash const& x2) {
|
|
return x1.type_ != x2.type_;
|
|
}
|
|
};
|
|
|
|
class less
|
|
{
|
|
int type_;
|
|
public:
|
|
explicit less(int t = 0) : type_(t) {}
|
|
|
|
bool operator()(object const& x1, object const& x2) const {
|
|
switch(type_) {
|
|
case 1:
|
|
return x1.tag1_ < x2.tag1_;
|
|
case 2:
|
|
return x1.tag2_ < x2.tag2_;
|
|
default:
|
|
return x1 < x2;
|
|
}
|
|
}
|
|
|
|
std::size_t operator()(int x1, int x2) const {
|
|
return x1 < x2;
|
|
}
|
|
|
|
friend bool operator==(less const& x1, less const& x2) {
|
|
return x1.type_ == x2.type_;
|
|
}
|
|
};
|
|
|
|
class equal_to
|
|
{
|
|
int type_;
|
|
public:
|
|
explicit equal_to(int t = 0) : type_(t) {}
|
|
|
|
bool operator()(object const& x1, object const& x2) const {
|
|
switch(type_) {
|
|
case 1:
|
|
return x1.tag1_ == x2.tag1_;
|
|
case 2:
|
|
return x1.tag2_ == x2.tag2_;
|
|
default:
|
|
return x1 == x2;
|
|
}
|
|
}
|
|
|
|
std::size_t operator()(int x1, int x2) const {
|
|
return x1 == x2;
|
|
}
|
|
|
|
friend bool operator==(equal_to const& x1, equal_to const& x2) {
|
|
return x1.type_ == x2.type_;
|
|
}
|
|
|
|
friend bool operator!=(equal_to const& x1, equal_to const& x2) {
|
|
return x1.type_ != x2.type_;
|
|
}
|
|
|
|
friend less create_compare(equal_to x) {
|
|
return less(x.type_);
|
|
}
|
|
};
|
|
|
|
namespace detail
|
|
{
|
|
// This annoymous namespace won't cause ODR violations as I won't
|
|
// be linking multiple translation units together. I'll probably
|
|
// move this into a cpp file before a full release, but for now it's
|
|
// the most convenient way.
|
|
namespace {
|
|
struct memory_area {
|
|
void const* start;
|
|
void const* end;
|
|
|
|
memory_area(void const* s, void const* e)
|
|
: start(s), end(e)
|
|
{
|
|
}
|
|
|
|
// This is a bit dodgy as it defines overlapping
|
|
// areas as 'equal', so this isn't a total ordering.
|
|
// But it is for non-overlapping memory regions - which
|
|
// is what'll be stored.
|
|
//
|
|
// All searches will be for areas entirely contained by
|
|
// a member of the set - so it should find the area that contains
|
|
// the region that is searched for.
|
|
bool operator<(memory_area const& other) const {
|
|
return end < other.start;
|
|
}
|
|
};
|
|
|
|
struct memory_track {
|
|
explicit memory_track(int tag = -1) :
|
|
constructed_(0),
|
|
tag_(tag) {}
|
|
|
|
int constructed_;
|
|
int tag_;
|
|
};
|
|
|
|
typedef std::map<memory_area, memory_track> allocated_memory_type;
|
|
allocated_memory_type allocated_memory;
|
|
unsigned int count_allocators = 0;
|
|
unsigned int count_allocations = 0;
|
|
unsigned int count_constructions = 0;
|
|
}
|
|
|
|
void allocator_ref()
|
|
{
|
|
if(count_allocators == 0) {
|
|
count_allocations = 0;
|
|
count_constructions = 0;
|
|
allocated_memory.clear();
|
|
}
|
|
++count_allocators;
|
|
}
|
|
|
|
void allocator_unref()
|
|
{
|
|
BOOST_TEST(count_allocators > 0);
|
|
if(count_allocators > 0) {
|
|
--count_allocators;
|
|
if(count_allocators == 0) {
|
|
bool no_allocations_left = (count_allocations == 0);
|
|
bool no_constructions_left = (count_constructions == 0);
|
|
bool allocated_memory_empty = allocated_memory.empty();
|
|
|
|
// Clearing the data before the checks terminate the tests.
|
|
count_allocations = 0;
|
|
count_constructions = 0;
|
|
allocated_memory.clear();
|
|
|
|
BOOST_TEST(no_allocations_left);
|
|
BOOST_TEST(no_constructions_left);
|
|
BOOST_TEST(allocated_memory_empty);
|
|
}
|
|
}
|
|
}
|
|
|
|
void track_allocate(void *ptr, std::size_t n, std::size_t size, int tag)
|
|
{
|
|
if(n == 0) {
|
|
BOOST_ERROR("Allocating 0 length array.");
|
|
}
|
|
else {
|
|
++count_allocations;
|
|
allocated_memory[memory_area(ptr, (char*) ptr + n * size)] =
|
|
memory_track(tag);
|
|
}
|
|
}
|
|
|
|
void track_deallocate(void* ptr, std::size_t n, std::size_t size, int tag)
|
|
{
|
|
allocated_memory_type::iterator pos
|
|
= allocated_memory.find(memory_area(ptr, ptr));
|
|
if(pos == allocated_memory.end()) {
|
|
BOOST_ERROR("Deallocating unknown pointer.");
|
|
} else {
|
|
BOOST_TEST(pos->first.start == ptr);
|
|
BOOST_TEST(pos->first.end == (char*) ptr + n * size);
|
|
BOOST_TEST(pos->second.tag_ == tag);
|
|
BOOST_TEST(pos->second.constructed_ == 0);
|
|
allocated_memory.erase(pos);
|
|
}
|
|
BOOST_TEST(count_allocations > 0);
|
|
if(count_allocations > 0) --count_allocations;
|
|
}
|
|
|
|
void track_construct(void* ptr, std::size_t /*size*/, int tag)
|
|
{
|
|
allocated_memory_type::iterator pos
|
|
= allocated_memory.find(memory_area(ptr, ptr));
|
|
if(pos == allocated_memory.end())
|
|
BOOST_ERROR("Constructing unknown pointer.");
|
|
BOOST_TEST(pos->second.tag_ == tag);
|
|
++count_constructions;
|
|
++pos->second.constructed_;
|
|
}
|
|
|
|
void track_destroy(void* ptr, std::size_t /*size*/, int tag)
|
|
{
|
|
allocated_memory_type::iterator pos
|
|
= allocated_memory.find(memory_area(ptr, ptr));
|
|
if(pos == allocated_memory.end())
|
|
BOOST_ERROR("Destroying unknown pointer.");
|
|
BOOST_TEST(count_constructions > 0);
|
|
BOOST_TEST(pos->second.tag_ == tag);
|
|
BOOST_TEST(pos->second.constructed_ > 0);
|
|
if(count_constructions > 0) --count_constructions;
|
|
if(pos->second.constructed_ > 0) --pos->second.constructed_;
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
class allocator
|
|
{
|
|
# ifdef BOOST_NO_MEMBER_TEMPLATE_FRIENDS
|
|
public:
|
|
# else
|
|
template <class> friend class allocator;
|
|
# endif
|
|
int tag_;
|
|
public:
|
|
typedef std::size_t size_type;
|
|
typedef std::ptrdiff_t difference_type;
|
|
typedef T* pointer;
|
|
typedef T const* const_pointer;
|
|
typedef T& reference;
|
|
typedef T const& const_reference;
|
|
typedef T value_type;
|
|
|
|
template <class U> struct rebind { typedef allocator<U> other; };
|
|
|
|
explicit allocator(int t = 0) : tag_(t) { detail::allocator_ref(); }
|
|
template <class Y> allocator(allocator<Y> const& x) : tag_(x.tag_) { detail::allocator_ref(); }
|
|
allocator(allocator const& x) : tag_(x.tag_) { detail::allocator_ref(); }
|
|
~allocator() { detail::allocator_unref(); }
|
|
|
|
pointer address(reference r) { return pointer(&r); }
|
|
const_pointer address(const_reference r) { return const_pointer(&r); }
|
|
|
|
pointer allocate(size_type n) {
|
|
pointer ptr(static_cast<T*>(::operator new(n * sizeof(T))));
|
|
detail::track_allocate((void*) ptr, n, sizeof(T), tag_);
|
|
return ptr;
|
|
}
|
|
|
|
pointer allocate(size_type n, const_pointer u)
|
|
{
|
|
pointer ptr(static_cast<T*>(::operator new(n * sizeof(T))));
|
|
detail::track_allocate((void*) ptr, n, sizeof(T), tag_);
|
|
return ptr;
|
|
}
|
|
|
|
void deallocate(pointer p, size_type n)
|
|
{
|
|
detail::track_deallocate((void*) p, n, sizeof(T), tag_);
|
|
::operator delete((void*) p);
|
|
}
|
|
|
|
void construct(pointer p, T const& t) {
|
|
detail::track_construct((void*) p, sizeof(T), tag_);
|
|
new(p) T(t);
|
|
}
|
|
|
|
void destroy(pointer p) {
|
|
detail::track_destroy((void*) p, sizeof(T), tag_);
|
|
p->~T();
|
|
}
|
|
|
|
size_type max_size() const {
|
|
return (std::numeric_limits<size_type>::max)();
|
|
}
|
|
|
|
bool operator==(allocator const& x) const
|
|
{
|
|
return tag_ == x.tag_;
|
|
}
|
|
|
|
bool operator!=(allocator const& x) const
|
|
{
|
|
return tag_ != x.tag_;
|
|
}
|
|
};
|
|
|
|
template <class T>
|
|
bool equivalent_impl(allocator<T> const& x, allocator<T> const& y, test::derived_type) {
|
|
return x == y;
|
|
}
|
|
}
|
|
|
|
#endif
|