unordered/test/objects/exception.hpp
Daniel James df1e1598a5 Import latest changes to the unordered containers. Includes:
Copyright update.
Switch back to the version where the sentinel points to itself.
Remove alternative versions of swap.
Workaround a borland bug or two.
More consistent use of class/swap/template.
Avoid a few warnings.
Add a no-throw swap to the allocator for exception testing.


[SVN r3793]
2007-03-18 20:00:59 +00:00

696 lines
21 KiB
C++

// Copyright 2006-2007 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_UNORDERED_TEST_OBJECTS_HEADER)
#define BOOST_UNORDERED_TEST_OBJECTS_HEADER
#include <cstddef>
#include <boost/limits.hpp>
#include <boost/test/test_tools.hpp>
#include <boost/test/exception_safety.hpp>
#include <boost/preprocessor/seq/for_each_product.hpp>
#include <boost/preprocessor/seq/elem.hpp>
#include <boost/preprocessor/cat.hpp>
#include <iostream>
#include <cstdlib>
#include "../helpers/fwd.hpp"
#include <map>
#define RUN_EXCEPTION_TESTS(test_seq, param_seq) \
BOOST_PP_SEQ_FOR_EACH_PRODUCT(RUN_EXCEPTION_TESTS_OP, (test_seq)(param_seq))
#define RUN_EXCEPTION_TESTS_OP(r, product) \
RUN_EXCEPTION_TESTS_OP2( \
BOOST_PP_CAT(BOOST_PP_SEQ_ELEM(0, product), \
BOOST_PP_CAT(_, BOOST_PP_SEQ_ELEM(1, product)) \
), \
BOOST_PP_SEQ_ELEM(0, product), \
BOOST_PP_SEQ_ELEM(1, product) \
)
#define RUN_EXCEPTION_TESTS_OP2(name, test_func, type) \
BOOST_AUTO_TEST_CASE(name) \
{ \
test_func< type > fixture; \
::test::exception_safety(fixture, BOOST_STRINGIZE(test_func<type>)); \
}
#define SCOPE(scope_name) \
for(::test::scope_guard unordered_test_guard( \
BOOST_STRINGIZE(scope_name)); \
!unordered_test_guard.dismissed(); \
unordered_test_guard.dismiss())
#define EPOINT(name) \
if(::test::exceptions_enabled) { \
BOOST_ITEST_EPOINT(name); \
}
#define ENABLE_EXCEPTIONS \
::test::exceptions_enable BOOST_PP_CAT(ENABLE_EXCEPTIONS_, __LINE__)(true)
#define DISABLE_EXCEPTIONS \
::test::exceptions_enable BOOST_PP_CAT(ENABLE_EXCEPTIONS_, __LINE__)(false)
#define HASH_CHECK(test) if(!(test)) BOOST_ERROR(BOOST_STRINGIZE(test))
namespace test {
static char const* scope = "";
bool exceptions_enabled = false;
class scope_guard {
scope_guard& operator=(scope_guard const&);
scope_guard(scope_guard const&);
char const* old_scope_;
char const* scope_;
bool dismissed_;
public:
scope_guard(char const* name)
: old_scope_(scope),
scope_(name),
dismissed_(false)
{
scope = scope_;
}
~scope_guard() {
if(dismissed_) scope = old_scope_;
}
void dismiss() {
dismissed_ = true;
}
bool dismissed() const {
return dismissed_;
}
};
class exceptions_enable
{
exceptions_enable& operator=(exceptions_enable const&);
exceptions_enable(exceptions_enable const&);
bool old_value_;
public:
exceptions_enable(bool enable)
: old_value_(exceptions_enabled)
{
exceptions_enabled = enable;
}
~exceptions_enable()
{
exceptions_enabled = old_value_;
}
};
struct exception_base {
struct data_type {};
struct strong_type {
template <class T> void store(T const&) {}
template <class T> void test(T const&) const {}
};
data_type init() const { return data_type(); }
void check() const {}
};
template <class T, class P1, class P2, class T2>
inline void call_with_increased_arity(void (T::*fn)() const, T2 const& obj,
P1&, P2&)
{
(obj.*fn)();
}
template <class T, class P1, class P2, class T2>
inline void call_with_increased_arity(void (T::*fn)(P1&) const, T2 const& obj,
P1& p1, P2&)
{
(obj.*fn)(p1);
}
template <class T, class P1, class P2, class T2>
inline void call_with_increased_arity(void (T::*fn)(P1&, P2&) const, T2 const& obj,
P1& p1, P2& p2)
{
(obj.*fn)(p1, p2);
}
template <class T>
T const& constant(T const& x) {
return x;
}
template <class Test>
class test_runner
{
Test const& test_;
public:
test_runner(Test const& t) : test_(t) {}
void operator()() const {
DISABLE_EXCEPTIONS;
typename Test::data_type x(test_.init());
typename Test::strong_type strong;
strong.store(x);
try {
ENABLE_EXCEPTIONS;
call_with_increased_arity(&Test::run, test_, x, strong);
}
catch(...) {
call_with_increased_arity(&Test::check, test_,
constant(x), constant(strong));
throw;
}
}
};
template <class Test>
void exception_safety(Test const& f, char const* name) {
test_runner<Test> runner(f);
::boost::itest::exception_safety(runner, name);
}
}
namespace test
{
namespace exception
{
namespace detail
{
// This annoymous namespace won't cause ODR violations as I won't
// be linking multiple translation units together. I'll probably
// move this into a cpp file before a full release, but for now it's
// the most convenient way.
namespace
{
template <class T>
struct malloc_allocator
{
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef T const* const_pointer;
typedef T& reference;
typedef T const& const_reference;
typedef T value_type;
template <class U> struct rebind { typedef malloc_allocator<U> other; };
malloc_allocator() {}
template <class Y> malloc_allocator(malloc_allocator<Y> const& x) {}
malloc_allocator(malloc_allocator const& x) {}
pointer address(reference r) { return &r; }
const_pointer address(const_reference r) { return &r; }
pointer allocate(size_type n) {
return static_cast<T*>(malloc(n * sizeof(T)));
}
pointer allocate(size_type n, const_pointer u) { return allocate(n); }
void deallocate(pointer p, size_type n) { free(p); }
void construct(pointer p, T const& t) { new(p) T(t); }
void destroy(pointer p) { p->~T(); }
size_type max_size() const {
return (std::numeric_limits<size_type>::max)();
}
bool operator==(malloc_allocator const& x) const { return true; }
bool operator!=(malloc_allocator const& x) const { return false; }
};
struct memory_area {
void const* start;
void const* end;
memory_area(void const* s, void const* e)
: start(s), end(e)
{
}
// This is a bit dodgy as it defines overlapping
// areas as 'equal', so this isn't a total ordering.
// But it is for non-overlapping memory regions - which
// is what'll be stored.
//
// All searches will be for areas entirely contained by
// a member of the set - so it should find the area that contains
// the region that is searched for.
bool operator<(memory_area const& other) const {
return end < other.start;
}
};
struct memory_track {
explicit memory_track(int tag = -1) :
tag_(tag) {}
int tag_;
};
typedef std::map<memory_area, memory_track, std::less<memory_area>,
malloc_allocator<std::pair<memory_area const, memory_track> > >
allocated_memory_type;
allocated_memory_type allocated_memory;
unsigned int count_allocators = 0;
unsigned int count_allocations = 0;
unsigned int count_constructions = 0;
}
void allocator_ref()
{
if(count_allocators == 0) {
count_allocations = 0;
count_constructions = 0;
allocated_memory.clear();
}
++count_allocators;
}
void allocator_unref()
{
HASH_CHECK(count_allocators > 0);
if(count_allocators > 0) {
--count_allocators;
if(count_allocators == 0) {
bool no_allocations_left = (count_allocations == 0);
bool no_constructions_left = (count_constructions == 0);
bool allocated_memory_empty = allocated_memory.empty();
// Clearing the data before the checks terminate the tests.
count_allocations = 0;
count_constructions = 0;
allocated_memory.clear();
HASH_CHECK(no_allocations_left);
HASH_CHECK(no_constructions_left);
HASH_CHECK(allocated_memory_empty);
}
}
}
void track_allocate(void *ptr, std::size_t n, std::size_t size, int tag)
{
if(n == 0) {
BOOST_ERROR("Allocating 0 length array.");
}
else {
++count_allocations;
allocated_memory[memory_area(ptr, (char*) ptr + n * size)] =
memory_track(tag);
}
}
void track_deallocate(void* ptr, std::size_t n, std::size_t size, int tag)
{
allocated_memory_type::iterator pos
= allocated_memory.find(memory_area(ptr, ptr));
if(pos == allocated_memory.end()) {
BOOST_ERROR("Deallocating unknown pointer.");
} else {
HASH_CHECK(pos->first.start == ptr);
HASH_CHECK(pos->first.end == (char*) ptr + n * size);
HASH_CHECK(pos->second.tag_ == tag);
allocated_memory.erase(pos);
}
HASH_CHECK(count_allocations > 0);
if(count_allocations > 0) --count_allocations;
}
void track_construct(void* ptr, std::size_t /*size*/, int tag)
{
++count_constructions;
}
void track_destroy(void* ptr, std::size_t /*size*/, int tag)
{
HASH_CHECK(count_constructions > 0);
if(count_constructions > 0) --count_constructions;
}
}
class object;
class hash;
class equal_to;
template <class T> class allocator;
class object
{
public:
int tag1_, tag2_;
explicit object() : tag1_(0), tag2_(0)
{
SCOPE(object::object()) {
EPOINT("Mock object default constructor.");
}
}
explicit object(int t1, int t2 = 0) : tag1_(t1), tag2_(t2)
{
SCOPE(object::object(int)) {
EPOINT("Mock object constructor by value.");
}
}
object(object const& x)
: tag1_(x.tag1_), tag2_(x.tag2_)
{
SCOPE(object::object(object)) {
EPOINT("Mock object copy constructor.");
}
}
~object() {
tag1_ = -1;
tag2_ = -1;
}
object& operator=(object const& x)
{
SCOPE(object::operator=(object)) {
tag1_ = x.tag1_;
EPOINT("Mock object assign operator 1.");
tag2_ = x.tag2_;
//EPOINT("Mock object assign operator 2.");
}
return *this;
}
friend bool operator==(object const& x1, object const& x2) {
SCOPE(operator==(object, object)) {
EPOINT("Mock object equality operator.");
}
return x1.tag1_ == x2.tag1_ && x1.tag2_ == x2.tag2_;
}
friend bool operator!=(object const& x1, object const& x2) {
SCOPE(operator!=(object, object)) {
EPOINT("Mock object inequality operator.");
}
return !(x1.tag1_ == x2.tag1_ && x1.tag2_ == x2.tag2_);
}
// None of the last few functions are used by the unordered associative
// containers - so there aren't any exception points.
friend bool operator<(object const& x1, object const& x2) {
return x1.tag1_ < x2.tag1_ ||
(x1.tag1_ == x2.tag1_ && x1.tag2_ < x2.tag2_);
}
friend object generate(object const*) {
int* x = 0;
return object(::test::generate(x), ::test::generate(x));
}
friend std::ostream& operator<<(std::ostream& out, object const& o)
{
return out<<"("<<o.tag1_<<","<<o.tag2_<<")";
}
};
class hash
{
int tag_;
public:
hash(int t = 0) : tag_(t)
{
SCOPE(hash::object()) {
EPOINT("Mock hash default constructor.");
}
}
hash(hash const& x)
: tag_(x.tag_)
{
SCOPE(hash::hash(hash)) {
EPOINT("Mock hash copy constructor.");
}
}
hash& operator=(hash const& x)
{
SCOPE(hash::operator=(hash)) {
EPOINT("Mock hash assign operator 1.");
tag_ = x.tag_;
EPOINT("Mock hash assign operator 2.");
}
return *this;
}
std::size_t operator()(object const& x) const {
SCOPE(hash::operator()(object)) {
EPOINT("Mock hash function.");
}
switch(tag_) {
case 1:
return x.tag1_;
case 2:
return x.tag2_;
default:
return x.tag1_ + x.tag2_;
}
}
friend bool operator==(hash const& x1, hash const& x2) {
SCOPE(operator==(hash, hash)) {
EPOINT("Mock hash equality function.");
}
return x1.tag_ == x2.tag_;
}
friend bool operator!=(hash const& x1, hash const& x2) {
SCOPE(hash::operator!=(hash, hash)) {
EPOINT("Mock hash inequality function.");
}
return x1.tag_ != x2.tag_;
}
};
class equal_to
{
int tag_;
public:
equal_to(int t = 0) : tag_(t)
{
SCOPE(equal_to::equal_to()) {
EPOINT("Mock equal_to default constructor.");
}
}
equal_to(equal_to const& x)
: tag_(x.tag_)
{
SCOPE(equal_to::equal_to(equal_to)) {
EPOINT("Mock equal_to copy constructor.");
}
}
equal_to& operator=(equal_to const& x)
{
SCOPE(equal_to::operator=(equal_to)) {
EPOINT("Mock equal_to assign operator 1.");
tag_ = x.tag_;
EPOINT("Mock equal_to assign operator 2.");
}
return *this;
}
bool operator()(object const& x1, object const& x2) const {
SCOPE(equal_to::operator()(object, object)) {
EPOINT("Mock equal_to function.");
}
switch(tag_) {
case 1:
return x1.tag1_ == x2.tag1_;
case 2:
return x1.tag2_ == x2.tag2_;
default:
return x1 == x2;
}
}
friend bool operator==(equal_to const& x1, equal_to const& x2) {
SCOPE(operator==(equal_to, equal_to)) {
EPOINT("Mock equal_to equality function.");
}
return x1.tag_ == x2.tag_;
}
friend bool operator!=(equal_to const& x1, equal_to const& x2) {
SCOPE(operator!=(equal_to, equal_to)) {
EPOINT("Mock equal_to inequality function.");
}
return x1.tag_ != x2.tag_;
}
};
template <class T>
class allocator
{
public:
int tag_;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef T const* const_pointer;
typedef T& reference;
typedef T const& const_reference;
typedef T value_type;
template <class U> struct rebind { typedef allocator<U> other; };
explicit allocator(int t = 0) : tag_(t)
{
SCOPE(allocator::allocator()) {
EPOINT("Mock allocator default constructor.");
}
detail::allocator_ref();
}
template <class Y> allocator(allocator<Y> const& x) : tag_(x.tag_)
{
SCOPE(allocator::allocator()) {
EPOINT("Mock allocator template copy constructor.");
}
detail::allocator_ref();
}
allocator(allocator const& x) : tag_(x.tag_)
{
SCOPE(allocator::allocator()) {
EPOINT("Mock allocator copy constructor.");
}
detail::allocator_ref();
}
~allocator() {
detail::allocator_unref();
}
allocator& operator=(allocator const& x) {
SCOPE(allocator::allocator()) {
EPOINT("Mock allocator assignment operator.");
tag_ = x.tag_;
}
return *this;
}
// If address throws, then it can't be used in erase or the
// destructor, which is very limiting. I need to check up on
// this.
pointer address(reference r) {
//SCOPE(allocator::address(reference)) {
// EPOINT("Mock allocator address function.");
//}
return pointer(&r);
}
const_pointer address(const_reference r) {
//SCOPE(allocator::address(const_reference)) {
// EPOINT("Mock allocator const address function.");
//}
return const_pointer(&r);
}
pointer allocate(size_type n) {
T* ptr = 0;
SCOPE(allocator::allocate(size_type)) {
EPOINT("Mock allocator allocate function.");
using namespace std;
ptr = (T*) malloc(n * sizeof(T));
if(!ptr) throw std::bad_alloc();
}
detail::track_allocate((void*) ptr, n, sizeof(T), tag_);
return pointer(ptr);
//return pointer(static_cast<T*>(::operator new(n * sizeof(T))));
}
pointer allocate(size_type n, const_pointer u)
{
T* ptr = 0;
SCOPE(allocator::allocate(size_type, const_pointer)) {
EPOINT("Mock allocator allocate function.");
using namespace std;
ptr = (T*) malloc(n * sizeof(T));
if(!ptr) throw std::bad_alloc();
}
detail::track_allocate((void*) ptr, n, sizeof(T), tag_);
return pointer(ptr);
//return pointer(static_cast<T*>(::operator new(n * sizeof(T))));
}
void deallocate(pointer p, size_type n)
{
//::operator delete((void*) p);
if(p) {
detail::track_deallocate((void*) p, n, sizeof(T), tag_);
using namespace std;
free(p);
}
}
void construct(pointer p, T const& t) {
SCOPE(allocator::construct(pointer, T)) {
EPOINT("Mock allocator construct function.");
new(p) T(t);
}
detail::track_construct((void*) p, sizeof(T), tag_);
}
void destroy(pointer p) {
detail::track_destroy((void*) p, sizeof(T), tag_);
p->~T();
}
size_type max_size() const {
SCOPE(allocator::construct(pointer, T)) {
EPOINT("Mock allocator max_size function.");
}
return (std::numeric_limits<std::size_t>::max)();
}
friend void swap(allocator<T>& x, allocator<T>& y)
{
std::swap(x.tag_, y.tag_);
}
};
// It's pretty much impossible to write a compliant swap when these
// two can throw. So they don't.
template <class T>
inline bool operator==(allocator<T> const& x, allocator<T> const& y)
{
//SCOPE(operator==(allocator, allocator)) {
// EPOINT("Mock allocator equality operator.");
//}
return x.tag_ == y.tag_;
}
template <class T>
inline bool operator!=(allocator<T> const& x, allocator<T> const& y)
{
//SCOPE(operator!=(allocator, allocator)) {
// EPOINT("Mock allocator inequality operator.");
//}
return x.tag_ != y.tag_;
}
}
}
#endif