unordered/test/exception/insert_exception_tests.cpp
Daniel James 9cfee57633 Use Boost.Test's minimal test library for unordered & hash. It's closer to
Boster.Test which makes it easier to switch to take advantage of Boost.Test's
extra testing facilities.

Merged revisions 44420 via svnmerge from 
https://svn.boost.org/svn/boost/branches/unordered/trunk

........
  r44420 | danieljames | 2008-04-14 19:02:03 +0100 (Mon, 14 Apr 2008) | 1 line
  
  Use Boost.Test's minimal test library.
........


[SVN r44487]
2008-04-17 07:39:24 +00:00

211 lines
6.4 KiB
C++

// Copyright 2006-2008 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "./containers.hpp"
#include <string>
#include "../helpers/random_values.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/strong.hpp"
#include "../helpers/input_iterator.hpp"
#include <boost/utility.hpp>
#include <cmath>
test::seed_t seed(747373);
template <class T>
struct insert_test_base : public test::exception_base
{
test::random_values<T> values;
insert_test_base(unsigned int count = 5) : values(count) {}
typedef T data_type;
typedef test::strong<T> strong_type;
data_type init() const {
return T();
}
void check(T const& x, strong_type const& strong) const {
std::string scope(test::scope);
if(scope.find("hash::operator()") == std::string::npos)
strong.test(x);
test::check_equivalent_keys(x);
}
};
template <class T>
struct insert_test1 : public insert_test_base<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
void run(T& x, strong_type& strong) const {
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(), end = this->values.end(); it != end; ++it)
{
strong.store(x);
x.insert(*it);
}
}
};
template <class T>
struct insert_test2 : public insert_test_base<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
void run(T& x, strong_type& strong) const {
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(), end = this->values.end(); it != end; ++it)
{
strong.store(x);
x.insert(x.begin(), *it);
}
}
};
template <class T>
struct insert_test3 : public insert_test_base<T>
{
void run(T& x) const {
x.insert(this->values.begin(), this->values.end());
}
void check(T const& x) const {
test::check_equivalent_keys(x);
}
};
template <class T>
struct insert_test4 : public insert_test_base<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
void run(T& x, strong_type& strong) const {
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(), end = this->values.end(); it != end; ++it)
{
strong.store(x);
x.insert(it, boost::next(it));
}
}
};
template <class T>
struct insert_test_rehash1 : public insert_test_base<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
insert_test_rehash1() : insert_test_base<T>(1000) {}
T init() const {
using namespace std;
typedef BOOST_DEDUCED_TYPENAME T::size_type size_type;
T x;
x.max_load_factor(0.25);
size_type bucket_count = x.bucket_count();
size_type initial_elements = static_cast<size_type>(
ceil(bucket_count * (double) x.max_load_factor()) - 1);
BOOST_REQUIRE(initial_elements < this->values.size());
x.insert(this->values.begin(),
boost::next(this->values.begin(), initial_elements));
BOOST_REQUIRE(bucket_count == x.bucket_count());
return x;
}
void run(T& x, strong_type& strong) const {
BOOST_DEDUCED_TYPENAME T::size_type bucket_count = x.bucket_count();
int count = 0;
BOOST_DEDUCED_TYPENAME T::const_iterator pos = x.cbegin();
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = boost::next(this->values.begin(), x.size()), end = this->values.end();
it != end && count < 10; ++it, ++count)
{
strong.store(x);
pos = x.insert(pos, *it);
}
// This isn't actually a failure, but it means the test isn't doing its
// job.
BOOST_REQUIRE(x.bucket_count() != bucket_count);
}
};
template <class T>
struct insert_test_rehash2 : public insert_test_rehash1<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
void run(T& x, strong_type& strong) const {
BOOST_DEDUCED_TYPENAME T::size_type bucket_count = x.bucket_count();
int count = 0;
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = boost::next(this->values.begin(), x.size()), end = this->values.end();
it != end && count < 10; ++it, ++count)
{
strong.store(x);
x.insert(*it);
}
// This isn't actually a failure, but it means the test isn't doing its
// job.
BOOST_REQUIRE(x.bucket_count() != bucket_count);
}
};
template <class T>
struct insert_test_rehash3 : public insert_test_base<T>
{
BOOST_DEDUCED_TYPENAME T::size_type mutable rehash_bucket_count, original_bucket_count;
insert_test_rehash3() : insert_test_base<T>(1000) {}
T init() const {
using namespace std;
typedef BOOST_DEDUCED_TYPENAME T::size_type size_type;
T x;
x.max_load_factor(0.25);
original_bucket_count = x.bucket_count();
rehash_bucket_count = static_cast<size_type>(
ceil(original_bucket_count * (double) x.max_load_factor())) - 1;
size_type initial_elements = rehash_bucket_count - 5;
BOOST_REQUIRE(initial_elements < this->values.size());
x.insert(this->values.begin(),
boost::next(this->values.begin(), initial_elements));
BOOST_REQUIRE(original_bucket_count == x.bucket_count());
return x;
}
void run(T& x) const {
BOOST_DEDUCED_TYPENAME T::size_type bucket_count = x.bucket_count();
x.insert(boost::next(this->values.begin(), x.size()),
boost::next(this->values.begin(), x.size() + 20));
// This isn't actually a failure, but it means the test isn't doing its
// job.
BOOST_REQUIRE(x.bucket_count() != bucket_count);
}
void check(T const& x) const {
if(x.size() < rehash_bucket_count) {
//BOOST_CHECK(x.bucket_count() == original_bucket_count);
}
test::check_equivalent_keys(x);
}
};
RUN_EXCEPTION_TESTS(
(insert_test1)(insert_test2)(insert_test3)(insert_test4)
(insert_test_rehash1)(insert_test_rehash2)(insert_test_rehash3),
CONTAINER_SEQ)