unordered/include/boost/unordered_set.hpp
Daniel James 9bd73e4ba7 New version of the unordered associative containers, with a more efficient data
structure for unordered_multimap/unordered_multiset that uses an extra
pointer per node but makes most operations more efficient when equivalent
nodes are present.

Now uses macros instead of template metaprogramming to implement the
differences between containers with equivalent and unique keys.

Removed the erase_iterator stuff which complicated matters more than it helped.
Now just using pointers with some helper functions.


[SVN r2950]
2006-05-07 13:24:17 +00:00

606 lines
15 KiB
C++

// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2006 Daniel James.
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy
// at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_SET_HPP_INCLUDED
#define BOOST_UNORDERED_SET_HPP_INCLUDED
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
#include <boost/config.hpp>
#include <functional>
#include <memory>
#include <boost/unordered/detail/hash_table.hpp>
#include <boost/functional/hash.hpp>
namespace boost
{
//! An unordered associative container that stores unique values.
/*! For full details see chapter 23 of the draft C++ standard.
* http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2009.pdf
*/
template <class Value,
class Hash = hash<Value>,
class Pred = std::equal_to<Value>,
class Alloc = std::allocator<Value> >
class unordered_set
{
// Named for the benefit of Doxygen.
typedef boost::unordered_detail::hash_types_unique_keys<
Value, Value, Hash, Pred, Alloc
> implementation_defined;
typename implementation_defined::hash_table base;
public:
// types
typedef Value key_type;
typedef Value value_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef typename implementation_defined::size_type size_type;
typedef typename implementation_defined::difference_type difference_type;
typedef typename implementation_defined::const_iterator iterator;
typedef typename implementation_defined::const_iterator const_iterator;
typedef typename implementation_defined::const_local_iterator local_iterator;
typedef typename implementation_defined::const_local_iterator const_local_iterator;
// construct/destroy/copy
explicit unordered_set(
size_type n = boost::unordered_detail::default_initial_bucket_count,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(n, hf, eql, a)
{
}
template <class InputIterator>
unordered_set(InputIterator f, InputIterator l)
: base(f, l, boost::unordered_detail::default_initial_bucket_count,
hasher(), key_equal(), allocator_type())
{
}
template <class InputIterator>
unordered_set(InputIterator f, InputIterator l, size_type n,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(f, l, n, hf, eql, a)
{
}
private:
typename implementation_defined::iterator_base const&
get(const_iterator const& it)
{
return boost::unordered_detail::iterator_access::get(it);
}
public:
allocator_type get_allocator() const
{
return base.get_allocator();
}
// size and capacity
bool empty() const
{
return base.empty();
}
size_type size() const
{
return base.size();
}
size_type max_size() const
{
return base.max_size();
}
// iterators
iterator begin()
{
return iterator(base.begin());
}
const_iterator begin() const
{
return const_iterator(base.begin());
}
iterator end()
{
return iterator(base.end());
}
const_iterator end() const
{
return const_iterator(base.end());
}
const_iterator cbegin() const
{
return const_iterator(base.begin());
}
const_iterator cend() const
{
return const_iterator(base.end());
}
// modifiers
std::pair<iterator, bool> insert(const value_type& obj)
{
return boost::unordered_detail::pair_cast<iterator, bool>(
base.insert(obj));
}
const_iterator insert(const_iterator hint, const value_type& obj)
{
return const_iterator(base.insert(get(hint), obj));
}
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{
base.insert(first, last);
}
const_iterator erase(const_iterator position)
{
return const_iterator(base.erase(get(position)));
}
size_type erase(const key_type& k)
{
return base.erase(k);
}
const_iterator erase(const_iterator first, const_iterator last)
{
return const_iterator(base.erase(get(first), get(last)));
}
void clear()
{
base.clear();
}
void swap(unordered_set& other)
{
base.swap(other.base);
}
// observers
hasher hash_function() const
{
return base.hash_function();
}
key_equal key_eq() const
{
return base.key_eq();
}
// lookup
const_iterator find(const key_type& k) const
{
return const_iterator(base.find(k));
}
size_type count(const key_type& k) const
{
return base.count(k);
}
std::pair<const_iterator, const_iterator>
equal_range(const key_type& k) const
{
return boost::unordered_detail::pair_cast<const_iterator, const_iterator>(
base.equal_range(k));
}
// bucket interface
size_type bucket_count() const
{
return base.bucket_count();
}
size_type max_bucket_count() const
{
return base.max_bucket_count();
}
size_type bucket_size(size_type n) const
{
return base.bucket_size(n);
}
size_type bucket(const key_type& k) const
{
return base.bucket(k);
}
local_iterator begin(size_type n)
{
return local_iterator(base.begin(n));
}
const_local_iterator begin(size_type n) const
{
return const_local_iterator(base.begin(n));
}
local_iterator end(size_type n)
{
return local_iterator(base.end(n));
}
const_local_iterator end(size_type n) const
{
return const_local_iterator(base.end(n));
}
#if defined(BOOST_UNORDERED_LOCAL_CBEGIN)
const_local_iterator cbegin(size_type n) const
{
return const_local_iterator(base.begin(n));
}
const_local_iterator cend(size_type n) const
{
return const_local_iterator(base.end(n));
}
#endif
// hash policy
float load_factor() const
{
return base.load_factor();
}
float max_load_factor() const
{
return base.max_load_factor();
}
void max_load_factor(float m)
{
base.max_load_factor(m);
}
void rehash(size_type n)
{
base.rehash(n);
}
}; // class template unordered_set
template <class T, class H, class P, class A>
void swap(unordered_set<T, H, P, A> &m1,
unordered_set<T, H, P, A> &m2)
{
m1.swap(m2);
}
//! An unordered associative container that stores equivalent values.
/*! For full details see chapter 23 of the draft C++ standard.
* http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2009.pdf
*/
template <class Value,
class Hash = hash<Value>,
class Pred = std::equal_to<Value>,
class Alloc = std::allocator<Value> >
class unordered_multiset
{
// Named for the benefit of Doxygen.
typedef boost::unordered_detail::hash_types_equivalent_keys<
Value, Value, Hash, Pred, Alloc
> implementation_defined;
typename implementation_defined::hash_table base;
public:
//types
typedef Value key_type;
typedef Value value_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef typename implementation_defined::size_type size_type;
typedef typename implementation_defined::difference_type difference_type;
typedef typename implementation_defined::const_iterator iterator;
typedef typename implementation_defined::const_iterator const_iterator;
typedef typename implementation_defined::const_local_iterator local_iterator;
typedef typename implementation_defined::const_local_iterator const_local_iterator;
// construct/destroy/copy
explicit unordered_multiset(
size_type n = boost::unordered_detail::default_initial_bucket_count,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(n, hf, eql, a)
{
}
template <class InputIterator>
unordered_multiset(InputIterator f, InputIterator l)
: base(f, l, boost::unordered_detail::default_initial_bucket_count,
hasher(), key_equal(), allocator_type())
{
}
template <class InputIterator>
unordered_multiset(InputIterator f, InputIterator l, size_type n,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(f, l, n, hf, eql, a)
{
}
private:
typename implementation_defined::iterator_base const&
get(const_iterator const& it)
{
return boost::unordered_detail::iterator_access::get(it);
}
public:
allocator_type get_allocator() const
{
return base.get_allocator();
}
// size and capacity
bool empty() const
{
return base.empty();
}
size_type size() const
{
return base.size();
}
size_type max_size() const
{
return base.max_size();
}
// iterators
iterator begin()
{
return iterator(base.begin());
}
const_iterator begin() const
{
return const_iterator(base.begin());
}
iterator end()
{
return iterator(base.end());
}
const_iterator end() const
{
return const_iterator(base.end());
}
const_iterator cbegin() const
{
return const_iterator(base.begin());
}
const_iterator cend() const
{
return const_iterator(base.end());
}
// modifiers
iterator insert(const value_type& obj)
{
return iterator(base.insert(obj));
}
const_iterator insert(const_iterator hint, const value_type& obj)
{
return const_iterator(base.insert(get(hint), obj));
}
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{
base.insert(first, last);
}
const_iterator erase(const_iterator position)
{
return const_iterator(base.erase(get(position)));
}
size_type erase(const key_type& k)
{
return base.erase(k);
}
const_iterator erase(const_iterator first, const_iterator last)
{
return const_iterator(base.erase(get(first), get(last)));
}
void clear()
{
base.clear();
}
void swap(unordered_multiset& other)
{
base.swap(other.base);
}
// observers
hasher hash_function() const
{
return base.hash_function();
}
key_equal key_eq() const
{
return base.key_eq();
}
// lookup
const_iterator find(const key_type& k) const
{
return const_iterator(base.find(k));
}
size_type count(const key_type& k) const
{
return base.count(k);
}
std::pair<const_iterator, const_iterator>
equal_range(const key_type& k) const
{
return boost::unordered_detail::pair_cast<const_iterator, const_iterator>(
base.equal_range(k));
}
// bucket interface
size_type bucket_count() const
{
return base.bucket_count();
}
size_type max_bucket_count() const
{
return base.max_bucket_count();
}
size_type bucket_size(size_type n) const
{
return base.bucket_size(n);
}
size_type bucket(const key_type& k) const
{
return base.bucket(k);
}
local_iterator begin(size_type n)
{
return local_iterator(base.begin(n));
}
const_local_iterator begin(size_type n) const
{
return const_local_iterator(base.begin(n));
}
local_iterator end(size_type n)
{
return local_iterator(base.end(n));
}
const_local_iterator end(size_type n) const
{
return const_local_iterator(base.end(n));
}
#if defined(BOOST_UNORDERED_LOCAL_CBEGIN)
const_local_iterator cbegin(size_type n) const
{
return const_local_iterator(base.begin(n));
}
const_local_iterator cend(size_type n) const
{
return const_local_iterator(base.end(n));
}
#endif
// hash policy
float load_factor() const
{
return base.load_factor();
}
float max_load_factor() const
{
return base.max_load_factor();
}
void max_load_factor(float m)
{
base.max_load_factor(m);
}
void rehash(size_type n)
{
base.rehash(n);
}
}; // class template unordered_multiset
template <class T, class H, class P, class A>
void swap(unordered_multiset<T, H, P, A> &m1,
unordered_multiset<T, H, P, A> &m2)
{
m1.swap(m2);
}
} // namespace boost
#endif // BOOST_UNORDERED_SET_HPP_INCLUDED