unordered/include/boost/unordered_map.hpp
Daniel James 18e46ae624 Fix for older versions of the Borland C++ compiler which create the default
'operator=' even when an 'operator=' which takes its argument by value has been
defined. This causes assignments to be ambiguous. To work around this, I'm
removing the definitions on those compilers - breaking move assignment, but
allowing other assignments to work.

I'm using 0x0593 because that's the earliest compiler that I've seen do the
right thing, but it might also work on earlier 5.9.x versions.

Refs #1923.



[SVN r45573]
2008-05-20 15:13:57 +00:00

788 lines
20 KiB
C++

// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2008 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/unordered for documentation
#ifndef BOOST_UNORDERED_MAP_HPP_INCLUDED
#define BOOST_UNORDERED_MAP_HPP_INCLUDED
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
#include <boost/config.hpp>
#include <functional>
#include <memory>
#include <boost/functional/hash.hpp>
#include <boost/unordered/detail/hash_table.hpp>
#if !defined(BOOST_HAS_RVALUE_REFS)
#include <boost/unordered/detail/move.hpp>
#endif
namespace boost
{
template <class Key,
class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T> > >
class unordered_map
{
typedef boost::unordered_detail::hash_types_unique_keys<
std::pair<const Key, T>, Key, Hash, Pred, Alloc
> implementation;
BOOST_DEDUCED_TYPENAME implementation::hash_table base;
public:
// types
typedef Key key_type;
typedef std::pair<const Key, T> value_type;
typedef T mapped_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef BOOST_DEDUCED_TYPENAME allocator_type::pointer pointer;
typedef BOOST_DEDUCED_TYPENAME allocator_type::const_pointer const_pointer;
typedef BOOST_DEDUCED_TYPENAME allocator_type::reference reference;
typedef BOOST_DEDUCED_TYPENAME allocator_type::const_reference const_reference;
typedef BOOST_DEDUCED_TYPENAME implementation::size_type size_type;
typedef BOOST_DEDUCED_TYPENAME implementation::difference_type difference_type;
typedef BOOST_DEDUCED_TYPENAME implementation::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME implementation::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME implementation::local_iterator local_iterator;
typedef BOOST_DEDUCED_TYPENAME implementation::const_local_iterator const_local_iterator;
// construct/destroy/copy
explicit unordered_map(
size_type n = boost::unordered_detail::default_initial_bucket_count,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(n, hf, eql, a)
{
}
// TODO: Should this be explicit?
unordered_map(allocator_type const& a)
: base(boost::unordered_detail::default_initial_bucket_count,
hasher(), key_equal(), a)
{
}
unordered_map(unordered_map const& other, allocator_type const& a)
: base(other.base, a)
{
}
template <class InputIterator>
unordered_map(InputIterator f, InputIterator l)
: base(f, l, boost::unordered_detail::default_initial_bucket_count,
hasher(), key_equal(), allocator_type())
{
}
template <class InputIterator>
unordered_map(InputIterator f, InputIterator l,
size_type n,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(f, l, n, hf, eql, a)
{
}
#if defined(BOOST_HAS_RVALUE_REFS)
unordered_map(unordered_map&& other)
: base(other.base, boost::unordered_detail::move_tag())
{
}
unordered_map(unordered_map&& other, allocator_type const& a)
: base(other.base, a, boost::unordered_detail::move_tag())
{
}
unordered_map& operator=(unordered_map&& x)
{
base.move(x.base);
return *this;
}
#else
unordered_map(boost::unordered_detail::move_from<unordered_map<Key, T, Hash, Pred, Alloc> > other)
: base(other.base, boost::unordered_detail::move_tag())
{
}
#if !BOOST_WORKAROUND(__BORLANDC__, < 0x0593)
unordered_map& operator=(unordered_map x)
{
base.move(x.base);
return *this;
}
#endif
#endif
private:
BOOST_DEDUCED_TYPENAME implementation::iterator_base const&
get(const_iterator const& it)
{
return boost::unordered_detail::iterator_access::get(it);
}
public:
allocator_type get_allocator() const
{
return base.get_allocator();
}
// size and capacity
bool empty() const
{
return base.empty();
}
size_type size() const
{
return base.size();
}
size_type max_size() const
{
return base.max_size();
}
// iterators
iterator begin()
{
return iterator(base.data_.begin());
}
const_iterator begin() const
{
return const_iterator(base.data_.begin());
}
iterator end()
{
return iterator(base.data_.end());
}
const_iterator end() const
{
return const_iterator(base.data_.end());
}
const_iterator cbegin() const
{
return const_iterator(base.data_.begin());
}
const_iterator cend() const
{
return const_iterator(base.data_.end());
}
// modifiers
#if defined(BOOST_HAS_RVALUE_REFS) && defined(BOOST_HAS_VARIADIC_TMPL)
template <class... Args>
std::pair<iterator, bool> emplace(Args&&... args)
{
return boost::unordered_detail::pair_cast<iterator, bool>(
base.insert(std::forward<Args>(args)...));
}
template <class... Args>
iterator emplace(const_iterator hint, Args&&... args)
{
return iterator(base.insert_hint(get(hint), std::forward<Args>(args)...));
}
#endif
std::pair<iterator, bool> insert(const value_type& obj)
{
return boost::unordered_detail::pair_cast<iterator, bool>(
base.insert(obj));
}
iterator insert(const_iterator hint, const value_type& obj)
{
return iterator(base.insert_hint(get(hint), obj));
}
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{
base.insert_range(first, last);
}
iterator erase(const_iterator position)
{
return iterator(base.data_.erase(get(position)));
}
size_type erase(const key_type& k)
{
return base.erase_key(k);
}
iterator erase(const_iterator first, const_iterator last)
{
return iterator(base.data_.erase_range(get(first), get(last)));
}
void clear()
{
base.data_.clear();
}
void swap(unordered_map& other)
{
base.swap(other.base);
}
// observers
hasher hash_function() const
{
return base.hash_function();
}
key_equal key_eq() const
{
return base.key_eq();
}
mapped_type& operator[](const key_type &k)
{
return base[k].second;
}
mapped_type& at(const key_type& k)
{
return base.at(k).second;
}
mapped_type const& at(const key_type& k) const
{
return base.at(k).second;
}
// lookup
iterator find(const key_type& k)
{
return iterator(base.find(k));
}
const_iterator find(const key_type& k) const
{
return const_iterator(base.find(k));
}
size_type count(const key_type& k) const
{
return base.count(k);
}
std::pair<iterator, iterator>
equal_range(const key_type& k)
{
return boost::unordered_detail::pair_cast<iterator, iterator>(
base.equal_range(k));
}
std::pair<const_iterator, const_iterator>
equal_range(const key_type& k) const
{
return boost::unordered_detail::pair_cast<const_iterator, const_iterator>(
base.equal_range(k));
}
// bucket interface
size_type bucket_count() const
{
return base.bucket_count();
}
size_type max_bucket_count() const
{
return base.max_bucket_count();
}
size_type bucket_size(size_type n) const
{
return base.data_.bucket_size(n);
}
size_type bucket(const key_type& k) const
{
return base.bucket(k);
}
local_iterator begin(size_type n)
{
return local_iterator(base.data_.begin(n));
}
const_local_iterator begin(size_type n) const
{
return const_local_iterator(base.data_.begin(n));
}
local_iterator end(size_type n)
{
return local_iterator(base.data_.end(n));
}
const_local_iterator end(size_type n) const
{
return const_local_iterator(base.data_.end(n));
}
const_local_iterator cbegin(size_type n) const
{
return const_local_iterator(base.data_.begin(n));
}
const_local_iterator cend(size_type n) const
{
return const_local_iterator(base.data_.end(n));
}
// hash policy
float load_factor() const
{
return base.load_factor();
}
float max_load_factor() const
{
return base.max_load_factor();
}
void max_load_factor(float m)
{
base.max_load_factor(m);
}
void rehash(size_type n)
{
base.rehash(n);
}
friend bool operator==(unordered_map const& m1, unordered_map const& m2)
{
return m1.base.equals(m2.base);
}
friend bool operator!=(unordered_map const& m1, unordered_map const& m2)
{
return !m1.base.equals(m2.base);
}
friend std::size_t hash_value(unordered_map const& m)
{
return m.base.hash_value();
}
}; // class template unordered_map
template <class K, class T, class H, class P, class A>
void swap(unordered_map<K, T, H, P, A> &m1,
unordered_map<K, T, H, P, A> &m2)
{
m1.swap(m2);
}
template <class Key,
class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T> > >
class unordered_multimap
{
typedef boost::unordered_detail::hash_types_equivalent_keys<
std::pair<const Key, T>, Key, Hash, Pred, Alloc
> implementation;
BOOST_DEDUCED_TYPENAME implementation::hash_table base;
public:
// types
typedef Key key_type;
typedef std::pair<const Key, T> value_type;
typedef T mapped_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef BOOST_DEDUCED_TYPENAME allocator_type::pointer pointer;
typedef BOOST_DEDUCED_TYPENAME allocator_type::const_pointer const_pointer;
typedef BOOST_DEDUCED_TYPENAME allocator_type::reference reference;
typedef BOOST_DEDUCED_TYPENAME allocator_type::const_reference const_reference;
typedef BOOST_DEDUCED_TYPENAME implementation::size_type size_type;
typedef BOOST_DEDUCED_TYPENAME implementation::difference_type difference_type;
typedef BOOST_DEDUCED_TYPENAME implementation::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME implementation::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME implementation::local_iterator local_iterator;
typedef BOOST_DEDUCED_TYPENAME implementation::const_local_iterator const_local_iterator;
// construct/destroy/copy
explicit unordered_multimap(
size_type n = boost::unordered_detail::default_initial_bucket_count,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(n, hf, eql, a)
{
}
unordered_multimap(allocator_type const& a)
: base(boost::unordered_detail::default_initial_bucket_count,
hasher(), key_equal(), a)
{
}
unordered_multimap(unordered_multimap const& other, allocator_type const& a)
: base(other.base, a)
{
}
template <class InputIterator>
unordered_multimap(InputIterator f, InputIterator l)
: base(f, l, boost::unordered_detail::default_initial_bucket_count,
hasher(), key_equal(), allocator_type())
{
}
template <class InputIterator>
unordered_multimap(InputIterator f, InputIterator l,
size_type n,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(f, l, n, hf, eql, a)
{
}
#if defined(BOOST_HAS_RVALUE_REFS)
unordered_multimap(unordered_multimap&& other)
: base(other.base, boost::unordered_detail::move_tag())
{
}
unordered_multimap(unordered_multimap&& other, allocator_type const& a)
: base(other.base, a, boost::unordered_detail::move_tag())
{
}
unordered_multimap& operator=(unordered_multimap&& x)
{
base.move(x.base);
return *this;
}
#else
unordered_multimap(boost::unordered_detail::move_from<unordered_multimap<Key, T, Hash, Pred, Alloc> > other)
: base(other.base, boost::unordered_detail::move_tag())
{
}
#if !BOOST_WORKAROUND(__BORLANDC__, < 0x0593)
unordered_multimap& operator=(unordered_multimap x)
{
base.move(x.base);
return *this;
}
#endif
#endif
private:
BOOST_DEDUCED_TYPENAME implementation::iterator_base const&
get(const_iterator const& it)
{
return boost::unordered_detail::iterator_access::get(it);
}
public:
allocator_type get_allocator() const
{
return base.get_allocator();
}
// size and capacity
bool empty() const
{
return base.empty();
}
size_type size() const
{
return base.size();
}
size_type max_size() const
{
return base.max_size();
}
// iterators
iterator begin()
{
return iterator(base.data_.begin());
}
const_iterator begin() const
{
return const_iterator(base.data_.begin());
}
iterator end()
{
return iterator(base.data_.end());
}
const_iterator end() const
{
return const_iterator(base.data_.end());
}
const_iterator cbegin() const
{
return const_iterator(base.data_.begin());
}
const_iterator cend() const
{
return const_iterator(base.data_.end());
}
// modifiers
#if defined(BOOST_HAS_RVALUE_REFS) && defined(BOOST_HAS_VARIADIC_TMPL)
template <class... Args>
iterator emplace(Args&&... args)
{
return iterator(base.insert(std::forward<Args>(args)...));
}
template <class... Args>
iterator emplace(const_iterator hint, Args&&... args)
{
return iterator(base.insert_hint(get(hint), std::forward<Args>(args)...));
}
#endif
iterator insert(const value_type& obj)
{
return iterator(base.insert(obj));
}
iterator insert(const_iterator hint, const value_type& obj)
{
return iterator(base.insert_hint(get(hint), obj));
}
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{
base.insert_range(first, last);
}
iterator erase(const_iterator position)
{
return iterator(base.data_.erase(get(position)));
}
size_type erase(const key_type& k)
{
return base.erase_key(k);
}
iterator erase(const_iterator first, const_iterator last)
{
return iterator(base.data_.erase_range(get(first), get(last)));
}
void clear()
{
base.data_.clear();
}
void swap(unordered_multimap& other)
{
base.swap(other.base);
}
// observers
hasher hash_function() const
{
return base.hash_function();
}
key_equal key_eq() const
{
return base.key_eq();
}
// lookup
iterator find(const key_type& k)
{
return iterator(base.find(k));
}
const_iterator find(const key_type& k) const
{
return const_iterator(base.find(k));
}
size_type count(const key_type& k) const
{
return base.count(k);
}
std::pair<iterator, iterator>
equal_range(const key_type& k)
{
return boost::unordered_detail::pair_cast<iterator, iterator>(
base.equal_range(k));
}
std::pair<const_iterator, const_iterator>
equal_range(const key_type& k) const
{
return boost::unordered_detail::pair_cast<const_iterator, const_iterator>(
base.equal_range(k));
}
// bucket interface
size_type bucket_count() const
{
return base.bucket_count();
}
size_type max_bucket_count() const
{
return base.max_bucket_count();
}
size_type bucket_size(size_type n) const
{
return base.data_.bucket_size(n);
}
size_type bucket(const key_type& k) const
{
return base.bucket(k);
}
local_iterator begin(size_type n)
{
return local_iterator(base.data_.begin(n));
}
const_local_iterator begin(size_type n) const
{
return const_local_iterator(base.data_.begin(n));
}
local_iterator end(size_type n)
{
return local_iterator(base.data_.end(n));
}
const_local_iterator end(size_type n) const
{
return const_local_iterator(base.data_.end(n));
}
const_local_iterator cbegin(size_type n) const
{
return const_local_iterator(base.data_.begin(n));
}
const_local_iterator cend(size_type n) const
{
return const_local_iterator(base.data_.end(n));
}
// hash policy
float load_factor() const
{
return base.load_factor();
}
float max_load_factor() const
{
return base.max_load_factor();
}
void max_load_factor(float m)
{
base.max_load_factor(m);
}
void rehash(size_type n)
{
base.rehash(n);
}
friend bool operator==(unordered_multimap const& m1, unordered_multimap const& m2)
{
return m1.base.equals(m2.base);
}
friend bool operator!=(unordered_multimap const& m1, unordered_multimap const& m2)
{
return !m1.base.equals(m2.base);
}
friend std::size_t hash_value(unordered_multimap const& m)
{
return m.base.hash_value();
}
}; // class template unordered_multimap
template <class K, class T, class H, class P, class A>
void swap(unordered_multimap<K, T, H, P, A> &m1,
unordered_multimap<K, T, H, P, A> &m2)
{
m1.swap(m2);
}
} // namespace boost
#endif // BOOST_UNORDERED_MAP_HPP_INCLUDED