unordered/test/cfoa/emplace_tests.cpp

623 lines
19 KiB
C++

// Copyright (C) 2023 Christian Mazakas
// Copyright (C) 2023-2024 Joaquin M Lopez Munoz
// Copyright (C) 2024 Braden Ganetsky
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "helpers.hpp"
#include "../helpers/count.hpp"
#include <boost/unordered/concurrent_flat_map.hpp>
#include <boost/unordered/concurrent_flat_set.hpp>
#include <boost/unordered/concurrent_node_map.hpp>
#include <boost/unordered/concurrent_node_set.hpp>
#include <boost/core/ignore_unused.hpp>
namespace {
test::seed_t initialize_seed(335740237);
template <typename Container, typename Value>
bool member_emplace(Container& x, Value const & v)
{
return x.emplace(v.x_);
}
template <typename Container, typename Key, typename Value>
bool member_emplace(Container& x, std::pair<Key, Value> const & v)
{
return x.emplace(v.first.x_, v.second.x_);
}
template <typename Container, typename Value, typename F>
bool member_emplace_or_visit(Container& x, Value& v, F f)
{
return x.emplace_or_visit(v.x_, f);
}
template <typename Container, typename Key, typename Value, typename F>
bool member_emplace_or_visit(Container& x, std::pair<Key, Value>& v, F f)
{
return x.emplace_or_visit(v.first.x_, v.second.x_, f);
}
template <typename Container, typename Value, typename F>
bool member_emplace_or_cvisit(Container& x, Value& v, F f)
{
return x.emplace_or_cvisit(v.x_, f);
}
template <typename Container, typename Key, typename Value, typename F>
bool member_emplace_or_cvisit(Container& x, std::pair<Key, Value>& v, F f)
{
return x.emplace_or_cvisit(v.first.x_, v.second.x_, f);
}
template <typename Container, typename Value, typename F1, typename F2>
bool member_emplace_and_visit(Container& x, Value& v, F1 f1, F2 f2)
{
return x.emplace_and_visit(v.x_, f1, f2);
}
template <
typename Container, typename Key, typename Value, typename F1, typename F2>
bool member_emplace_and_visit(
Container& x, std::pair<Key, Value>& v, F1 f1, F2 f2)
{
return x.emplace_and_visit(v.first.x_, v.second.x_, f1, f2);
}
template <typename Container, typename Value, typename F1, typename F2>
bool member_emplace_and_cvisit(Container& x, Value& v, F1 f1, F2 f2)
{
return x.emplace_and_cvisit(v.x_, f1, f2);
}
template <
typename Container, typename Key, typename Value, typename F1, typename F2>
bool member_emplace_and_cvisit(
Container& x, std::pair<Key, Value>& v, F1 f1, F2 f2)
{
return x.emplace_and_cvisit(v.first.x_, v.second.x_, f1, f2);
}
struct lvalue_emplacer_type
{
template <class T, class X> void call_impl(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
std::atomic<std::uint64_t> num_inserts{0};
thread_runner(values, [&x, &num_inserts](boost::span<T> s) {
for (auto const& r : s) {
bool b = member_emplace(x, r);
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, x.size());
std::uint64_t const default_constructors = value_type_cardinality == 2
? values.size() + num_inserts
: values.size();
BOOST_TEST_EQ(raii::default_constructor, default_constructors);
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
call_impl(values, x);
BOOST_TEST_GE(raii::move_constructor, x.size());
}
} lvalue_emplacer;
struct norehash_lvalue_emplacer_type : public lvalue_emplacer_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
x.reserve(values.size());
lvalue_emplacer_type::call_impl(values, x);
BOOST_TEST_EQ(raii::move_constructor, x.size());
}
} norehash_lvalue_emplacer;
struct lvalue_emplace_or_cvisit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
std::atomic<std::uint64_t> num_inserts{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values, [&x, &num_inserts, &num_invokes](boost::span<T> s) {
for (auto& r : s) {
bool b = member_emplace_or_cvisit(
x, r,
[&num_invokes](typename X::value_type const& v) {
(void)v;
++num_invokes;
});
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(
raii::default_constructor, value_type_cardinality * values.size());
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_GE(raii::move_constructor, value_type_cardinality * x.size());
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
}
} lvalue_emplace_or_cvisit;
struct lvalue_emplace_and_cvisit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
// concurrent_flat_set visit is always const access
using arg_type = typename std::conditional<
std::is_same<typename X::key_type, typename X::value_type>::value,
typename X::value_type const,
typename X::value_type
>::type;
std::atomic<std::uint64_t> num_inserts{0}, num_inserts_internal{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values,
[&x, &num_inserts, &num_inserts_internal, &num_invokes](boost::span<T> s) {
for (auto& r : s) {
bool b = member_emplace_and_cvisit(
x, r,
[&num_inserts_internal](arg_type& v) {
(void)v;
++num_inserts_internal;
},
[&num_invokes](typename X::value_type const& v) {
(void)v;
++num_invokes;
});
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, num_inserts_internal);
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(
raii::default_constructor, value_type_cardinality * values.size());
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_GE(raii::move_constructor, value_type_cardinality * x.size());
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
}
} lvalue_emplace_and_cvisit;
struct lvalue_emplace_or_visit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
// concurrent_flat_set visit is always const access
using arg_type = typename std::conditional<
std::is_same<typename X::key_type, typename X::value_type>::value,
typename X::value_type const,
typename X::value_type
>::type;
std::atomic<std::uint64_t> num_inserts{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values, [&x, &num_inserts, &num_invokes](boost::span<T> s) {
for (auto& r : s) {
bool b = member_emplace_or_visit(
x, r,
[&num_invokes](arg_type& v) {
(void)v;
++num_invokes;
});
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(
raii::default_constructor, value_type_cardinality * values.size());
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_GE(raii::move_constructor, value_type_cardinality * x.size());
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
}
} lvalue_emplace_or_visit;
struct lvalue_emplace_and_visit_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
// concurrent_flat_set visit is always const access
using arg_type = typename std::conditional<
std::is_same<typename X::key_type, typename X::value_type>::value,
typename X::value_type const,
typename X::value_type
>::type;
std::atomic<std::uint64_t> num_inserts{0}, num_inserts_internal{0};
std::atomic<std::uint64_t> num_invokes{0};
thread_runner(values,
[&x, &num_inserts, &num_inserts_internal, &num_invokes](boost::span<T> s) {
for (auto& r : s) {
bool b = member_emplace_and_visit(
x, r,
[&num_inserts_internal](arg_type& v) {
(void)v;
++num_inserts_internal;
},
[&num_invokes](arg_type& v) {
(void)v;
++num_invokes;
});
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, num_inserts_internal);
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(num_invokes, values.size() - x.size());
BOOST_TEST_EQ(
raii::default_constructor, value_type_cardinality * values.size());
BOOST_TEST_EQ(raii::copy_constructor, 0u);
BOOST_TEST_GE(raii::move_constructor, value_type_cardinality * x.size());
BOOST_TEST_EQ(raii::move_assignment, 0u);
BOOST_TEST_EQ(raii::copy_assignment, 0u);
}
} lvalue_emplace_and_visit;
struct copy_emplacer_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto value_type_cardinality =
value_cardinality<typename X::value_type>::value;
std::atomic<std::uint64_t> num_inserts{0};
thread_runner(values, [&x, &num_inserts](boost::span<T> s) {
for (auto const& r : s) {
bool b = x.emplace(r);
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(raii::default_constructor, 0u);
BOOST_TEST_EQ(raii::copy_constructor, value_type_cardinality * x.size());
if (is_container_node_based<X>::value) {
BOOST_TEST_EQ(raii::move_constructor, 0u);
}
else {
BOOST_TEST_GT(raii::move_constructor, 0u);
}
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
} copy_emplacer;
struct move_emplacer_type
{
template <class T, class X> void operator()(std::vector<T>& values, X& x)
{
static constexpr auto input_type_nonconst_cardinality =
value_nonconst_cardinality<T>::value;
std::atomic<std::uint64_t> num_inserts{0};
thread_runner(values, [&x, &num_inserts](boost::span<T> s) {
for (auto& r : s) {
bool b = x.emplace(std::move(r));
if (b) {
++num_inserts;
}
}
});
BOOST_TEST_EQ(num_inserts, x.size());
BOOST_TEST_EQ(raii::default_constructor, 0u);
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#endif
if (std::is_same<T, typename X::value_type>::value &&
!std::is_same<typename X::key_type,
typename X::value_type>::value) { // map value_type can only be
// copied, no move
BOOST_TEST_EQ(raii::copy_constructor, x.size());
} else {
BOOST_TEST_EQ(raii::copy_constructor, 0u);
}
if (is_container_node_based<X>::value) {
BOOST_TEST_EQ(
raii::move_constructor, input_type_nonconst_cardinality * x.size());
}
else {
BOOST_TEST_GT(
raii::move_constructor, input_type_nonconst_cardinality * x.size());
}
#if defined(BOOST_MSVC)
#pragma warning(pop) // C4127
#endif
BOOST_TEST_EQ(raii::copy_assignment, 0u);
BOOST_TEST_EQ(raii::move_assignment, 0u);
}
} move_emplacer;
template <class X, class GF, class F>
void emplace(X*, GF gen_factory, F emplacer, test::random_generator rg)
{
auto gen = gen_factory.template get<X>();
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
raii::reset_counts();
{
X x;
emplacer(values, x);
BOOST_TEST_EQ(x.size(), reference_cont.size());
using value_type = typename X::value_type;
BOOST_TEST_EQ(x.size(), x.visit_all([&](value_type const& v) {
BOOST_TEST(reference_cont.contains(get_key(v)));
if (rg == test::sequential) {
BOOST_TEST_EQ(v, *reference_cont.find(get_key(v)));
}
}));
}
BOOST_TEST_GE(raii::default_constructor, 0u);
BOOST_TEST_GE(raii::copy_constructor, 0u);
BOOST_TEST_GE(raii::move_constructor, 0u);
BOOST_TEST_GT(raii::destructor, 0u);
BOOST_TEST_EQ(raii::default_constructor + raii::copy_constructor +
raii::move_constructor,
raii::destructor);
}
boost::unordered::concurrent_flat_map<raii, raii>* map;
boost::unordered::concurrent_node_map<raii, raii>* node_map;
boost::unordered::concurrent_flat_set<raii>* set;
boost::unordered::concurrent_node_set<raii>* node_set;
} // namespace
using test::default_generator;
using test::limited_range;
using test::sequential;
// clang-format off
UNORDERED_TEST(
emplace,
((map)(node_map)(set)(node_set))
((value_type_generator_factory)(init_type_generator_factory))
((lvalue_emplacer)(norehash_lvalue_emplacer)
(lvalue_emplace_or_cvisit)(lvalue_emplace_or_visit)(copy_emplacer)(move_emplacer))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
emplace,
((map)(node_map)(set)(node_set))
((value_type_generator_factory)(init_type_generator_factory))
((lvalue_emplace_and_cvisit)(lvalue_emplace_and_visit))
((default_generator)(sequential)(limited_range)))
// clang-format on
namespace {
using converting_key_type = basic_raii<struct converting_key_tag_>;
using converting_value_type = basic_raii<struct converting_value_tag_>;
class counted_key_type : public basic_raii<struct counted_key_tag_>
{
public:
using basic_raii::basic_raii;
counted_key_type() = default;
counted_key_type(const converting_key_type& k) : counted_key_type(k.x_) {}
};
class counted_value_type : public basic_raii<struct counted_value_tag_>
{
public:
using basic_raii::basic_raii;
counted_value_type() = default;
counted_value_type(const converting_value_type& v)
: counted_value_type(v.x_)
{
}
};
void reset_counts()
{
counted_key_type::reset_counts();
counted_value_type::reset_counts();
converting_key_type::reset_counts();
converting_value_type::reset_counts();
}
using test::smf_count;
template <class T> smf_count count_for()
{
return test::smf_count{
(int)T::default_constructor.load(std::memory_order_relaxed),
(int)T::copy_constructor.load(std::memory_order_relaxed),
(int)T::move_constructor.load(std::memory_order_relaxed),
(int)T::copy_assignment.load(std::memory_order_relaxed),
(int)T::move_assignment.load(std::memory_order_relaxed),
(int)T::destructor.load(std::memory_order_relaxed)};
}
enum emplace_kind
{
copy,
move
};
enum emplace_status
{
fail,
success
};
struct counted_key_checker_type
{
using key_type = counted_key_type;
void operator()(emplace_kind kind, emplace_status status)
{
int copies = (kind == copy && status == success) ? 1 : 0;
int moves = (kind == move && status == success) ? 1 : 0;
BOOST_TEST_EQ(
count_for<counted_key_type>(), (smf_count{0, copies, moves, 0, 0, 0}));
}
} counted_key_checker;
struct converting_key_checker_type
{
using key_type = converting_key_type;
void operator()(emplace_kind, emplace_status status)
{
int moves = (status == success) ? 1 : 0;
BOOST_TEST_EQ(
count_for<counted_key_type>(), (smf_count{1, 0, moves, 0, 0, 1}));
}
} converting_key_checker;
struct counted_value_checker_type
{
using mapped_type = counted_value_type;
void operator()(emplace_kind kind, emplace_status status)
{
int copies = (kind == copy && status == success) ? 1 : 0;
int moves = (kind == move && status == success) ? 1 : 0;
BOOST_TEST_EQ(count_for<counted_value_type>(),
(smf_count{0, copies, moves, 0, 0, 0}));
}
} counted_value_checker;
struct converting_value_checker_type
{
using mapped_type = converting_value_type;
void operator()(emplace_kind, emplace_status status)
{
int ctors = (status == success) ? 1 : 0;
BOOST_TEST_EQ(
count_for<counted_value_type>(), (smf_count{ctors, 0, 0, 0, 0, 0}));
}
} converting_value_checker;
template <class X, class KC, class VC>
void emplace_map_key_value(
X*, emplace_kind kind, KC key_checker, VC value_checker)
{
using container = X;
using key_type = typename KC::key_type;
using mapped_type = typename VC::mapped_type;
container x;
key_type key{};
key_type key2 = key;
mapped_type value{};
mapped_type value2 = value;
{
reset_counts();
auto ret = (kind == copy) ? x.emplace(key, value)
: x.emplace(std::move(key), std::move(value));
BOOST_TEST_EQ(ret, true);
key_checker(kind, success);
value_checker(kind, success);
BOOST_TEST_EQ(
count_for<converting_key_type>(), (smf_count{0, 0, 0, 0, 0, 0}));
BOOST_TEST_EQ(
count_for<converting_value_type>(), (smf_count{0, 0, 0, 0, 0, 0}));
}
{
reset_counts();
bool ret = x.emplace(key2, value2);
BOOST_TEST_EQ(ret, false);
key_checker(kind, fail);
value_checker(kind, fail);
BOOST_TEST_EQ(
count_for<converting_key_type>(), (smf_count{0, 0, 0, 0, 0, 0}));
BOOST_TEST_EQ(
count_for<converting_value_type>(), (smf_count{0, 0, 0, 0, 0, 0}));
}
{
reset_counts();
bool ret = x.emplace(std::move(key2), std::move(value2));
BOOST_TEST_EQ(ret, false);
key_checker(kind, fail);
value_checker(kind, fail);
BOOST_TEST_EQ(
count_for<converting_key_type>(), (smf_count{0, 0, 0, 0, 0, 0}));
BOOST_TEST_EQ(
count_for<converting_value_type>(), (smf_count{0, 0, 0, 0, 0, 0}));
}
}
boost::unordered::concurrent_flat_map<counted_key_type, counted_value_type>*
test_counted_flat_map = {};
boost::unordered::concurrent_node_map<counted_key_type, counted_value_type>*
test_counted_node_map = {};
} // namespace
// clang-format off
UNORDERED_TEST(
emplace_map_key_value,
((test_counted_flat_map)(test_counted_node_map))
((copy)(move))
((counted_key_checker)(converting_key_checker))
((counted_value_checker)(converting_value_checker))
)
// clang-format on
RUN_TESTS()