unordered/test/cfoa/constructor_tests.cpp
joaquintides f734e399e3
Feature/concurrent node containers (#271)
* added concurrent node containers

* removed spurious typename

* added missing includes

* avoided unused param warning

* worked around Clang bug

* s/{}/() to work around GCC4.8 problems with aggregate initialization

* used /bigobj for cfoa/visit_tests.cpp

* suppressed localized maybe-uninitialized warnings

* fixed comments

* added /bigobj to cfoa/insert_tests.cpp

* instrumented double exact comparison to spot a spurious error

* fixed pedantic error

* refactored byte_span machinery

* compromised on sub-epsilon equality for doubles that should be identical

* documented boost::concurrent_node_(map|set)

* added concurrent_node_set

* added missing AlternativeType

* tested empty node insertion

* tested node_handle allocator management

* added nonassignable_allocator and node_handle_allocator_swap_tests

* fixed warning disabling

* silenced spurious GCC warning

* broadened scope of previous pragma

* broadened even more

* worked around spurious constexpr-related msvc-14.0 bug
https://godbolt.org/z/v78545Ebf

* added workaround back

* replaced previous workaround with built-in one

* added workaround back on top of built-in solution (which doesn't work 100% of the time)
2024-08-25 18:34:58 +02:00

1076 lines
30 KiB
C++

// Copyright (C) 2023 Christian Mazakas
// Copyright (C) 2023-2024 Joaquin M Lopez Munoz
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "helpers.hpp"
#include <boost/unordered/concurrent_flat_map.hpp>
#include <boost/unordered/concurrent_flat_set.hpp>
#include <boost/unordered/concurrent_node_map.hpp>
#include <boost/unordered/concurrent_node_set.hpp>
test::seed_t initialize_seed(4122023);
using test::default_generator;
using test::limited_range;
using test::sequential;
template <class T> struct soccc_allocator
{
int x_ = -1;
using value_type = T;
soccc_allocator() = default;
soccc_allocator(soccc_allocator const&) = default;
soccc_allocator(soccc_allocator&&) = default;
soccc_allocator(int const x) : x_{x} {}
template <class U> soccc_allocator(soccc_allocator<U> const& rhs) : x_{rhs.x_}
{
}
T* allocate(std::size_t n)
{
return static_cast<T*>(::operator new(n * sizeof(T)));
}
void deallocate(T* p, std::size_t) { ::operator delete(p); }
soccc_allocator select_on_container_copy_construction() const
{
return {x_ + 1};
}
bool operator==(soccc_allocator const& rhs) const { return x_ == rhs.x_; }
bool operator!=(soccc_allocator const& rhs) const { return x_ != rhs.x_; }
};
using hasher = stateful_hash;
using key_equal = stateful_key_equal;
using map_type = boost::unordered::concurrent_flat_map<raii, raii, hasher,
key_equal, stateful_allocator<std::pair<raii const, raii> > >;
using node_map_type = boost::unordered::concurrent_node_map<raii, raii, hasher,
key_equal, stateful_allocator<std::pair<raii const, raii> > >;
using set_type = boost::unordered::concurrent_flat_set<raii, hasher,
key_equal, stateful_allocator<raii> >;
using node_set_type = boost::unordered::concurrent_node_set<raii, hasher,
key_equal, stateful_allocator<raii> >;
map_type* test_map;
node_map_type* test_node_map;
set_type* test_set;
node_set_type* test_node_set;
std::initializer_list<map_type::value_type> map_init_list{
{raii{0}, raii{0}},
{raii{1}, raii{1}},
{raii{2}, raii{2}},
{raii{3}, raii{3}},
{raii{4}, raii{4}},
{raii{5}, raii{5}},
{raii{6}, raii{6}},
{raii{6}, raii{6}},
{raii{7}, raii{7}},
{raii{8}, raii{8}},
{raii{9}, raii{9}},
{raii{10}, raii{10}},
{raii{9}, raii{9}},
{raii{8}, raii{8}},
{raii{7}, raii{7}},
{raii{6}, raii{6}},
{raii{5}, raii{5}},
{raii{4}, raii{4}},
{raii{3}, raii{3}},
{raii{2}, raii{2}},
{raii{1}, raii{1}},
{raii{0}, raii{0}},
};
std::initializer_list<set_type::value_type> set_init_list{
raii{0},
raii{1},
raii{2},
raii{3},
raii{4},
raii{5},
raii{6},
raii{6},
raii{7},
raii{8},
raii{9},
raii{10},
raii{9},
raii{8},
raii{7},
raii{6},
raii{5},
raii{4},
raii{3},
raii{2},
raii{1},
raii{0},
};
auto test_map_and_init_list=std::make_pair(test_map,map_init_list);
auto test_node_map_and_init_list=std::make_pair(test_node_map,map_init_list);
auto test_set_and_init_list=std::make_pair(test_set,set_init_list);
auto test_node_set_and_init_list=std::make_pair(test_node_set,set_init_list);
namespace {
template <class X>
void default_constructor(X*)
{
X x;
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.size(), 0u);
}
template <class X>
void bucket_count_with_hasher_key_equal_and_allocator(X*)
{
using allocator_type = typename X::allocator_type;
raii::reset_counts();
{
X x(0);
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
}
{
X x(0, hasher(1));
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal());
}
{
X x(0, hasher(1), key_equal(2));
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
}
{
X x(0, hasher(1), key_equal(2), allocator_type{});
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST(x.get_allocator() == allocator_type{});
}
}
template <class X>
void soccc(X*)
{
raii::reset_counts();
replace_allocator<X, soccc_allocator> x, y(x);
BOOST_TEST_EQ(y.hash_function(), x.hash_function());
BOOST_TEST_EQ(y.key_eq(), x.key_eq());
BOOST_TEST(y.get_allocator() != x.get_allocator());
}
template <class X, class GF>
void from_iterator_range(X*, GF gen_factory, test::random_generator rg)
{
using allocator_type = typename X::allocator_type;
auto gen = gen_factory.template get<X>();
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
raii::reset_counts();
{
X x(values.begin(), values.end());
test_matches_reference(x, reference_cont);
BOOST_TEST_GT(x.size(), 0u);
BOOST_TEST_LE(x.size(), values.size());
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == allocator_type{});
if (rg == sequential) {
BOOST_TEST_EQ(x.size(), values.size());
}
}
{
X x(values.begin(), values.end(), 0);
test_matches_reference(x, reference_cont);
BOOST_TEST_GT(x.size(), 0u);
BOOST_TEST_LE(x.size(), values.size());
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == allocator_type{});
if (rg == sequential) {
BOOST_TEST_EQ(x.size(), values.size());
}
}
{
X x(values.begin(), values.end(), 0, hasher(1));
test_matches_reference(x, reference_cont);
BOOST_TEST_GT(x.size(), 0u);
BOOST_TEST_LE(x.size(), values.size());
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == allocator_type{});
if (rg == sequential) {
BOOST_TEST_EQ(x.size(), values.size());
}
}
{
X x(values.begin(), values.end(), 0, hasher(1), key_equal(2));
test_matches_reference(x, reference_cont);
BOOST_TEST_GT(x.size(), 0u);
BOOST_TEST_LE(x.size(), values.size());
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST(x.get_allocator() == allocator_type{});
if (rg == sequential) {
BOOST_TEST_EQ(x.size(), values.size());
}
}
{
X x(values.begin(), values.end(), 0, hasher(1), key_equal(2),
allocator_type{});
test_matches_reference(x, reference_cont);
BOOST_TEST_GT(x.size(), 0u);
BOOST_TEST_LE(x.size(), values.size());
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST(x.get_allocator() == allocator_type{});
if (rg == sequential) {
BOOST_TEST_EQ(x.size(), values.size());
}
}
check_raii_counts();
}
template <class X, class GF>
void copy_constructor(X*, GF gen_factory, test::random_generator rg)
{
using allocator_type = typename X::allocator_type;
{
X x(0, hasher(1), key_equal(2), allocator_type{});
X y(x);
BOOST_TEST_EQ(y.size(), x.size());
BOOST_TEST_EQ(y.hash_function(), x.hash_function());
BOOST_TEST_EQ(y.key_eq(), x.key_eq());
BOOST_TEST(y.get_allocator() == x.get_allocator());
}
auto gen = gen_factory.template get<X>();
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
raii::reset_counts();
{
X x(values.begin(), values.end(), 0, hasher(1), key_equal(2),
allocator_type{});
thread_runner(
values, [&x, &reference_cont](
boost::span<span_value_type<decltype(values)> > s) {
(void)s;
X y(x);
test_matches_reference(x, reference_cont);
test_matches_reference(y, reference_cont);
BOOST_TEST_EQ(y.size(), x.size());
BOOST_TEST_EQ(y.hash_function(), x.hash_function());
BOOST_TEST_EQ(y.key_eq(), x.key_eq());
BOOST_TEST(y.get_allocator() == x.get_allocator());
});
}
check_raii_counts();
raii::reset_counts();
{
allocator_type a;
X x(values.begin(), values.end(), 0, hasher(1), key_equal(2), a);
thread_runner(
values, [&x, &reference_cont, a](
boost::span<span_value_type<decltype(values)> > s) {
(void)s;
X y(x, a);
test_matches_reference(x, reference_cont);
test_matches_reference(y, reference_cont);
BOOST_TEST_EQ(y.size(), x.size());
BOOST_TEST_EQ(y.hash_function(), x.hash_function());
BOOST_TEST_EQ(y.key_eq(), x.key_eq());
BOOST_TEST(y.get_allocator() == x.get_allocator());
});
}
check_raii_counts();
}
template <class X, class GF>
void copy_constructor_with_insertion(X*, GF gen_factory, test::random_generator rg)
{
using allocator_type = typename X::allocator_type;
auto gen = gen_factory.template get<X>();
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
raii::reset_counts();
std::mutex m;
std::condition_variable cv;
bool ready = false;
{
X x(0, hasher(1), key_equal(2), allocator_type{});
auto f = [&x, &values, &m, &cv, &ready] {
{
std::lock_guard<std::mutex> guard(m);
ready = true;
}
cv.notify_all();
for (auto const& val : values) {
x.insert(val);
}
};
std::thread t1(f);
std::thread t2(f);
thread_runner(
values, [&x, &reference_cont, &values, rg, &m, &cv, &ready](
boost::span<span_value_type<decltype(values)> > s) {
(void)s;
{
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, [&] { return ready; });
}
X y(x);
BOOST_TEST_LE(y.size(), values.size());
BOOST_TEST_EQ(y.hash_function(), x.hash_function());
BOOST_TEST_EQ(y.key_eq(), x.key_eq());
BOOST_TEST(y.get_allocator() == x.get_allocator());
x.visit_all([&reference_cont, rg](
typename X::value_type const& val) {
BOOST_TEST(reference_cont.contains(get_key(val)));
if (rg == sequential) {
BOOST_TEST_EQ(val, *reference_cont.find(get_key(val)));
}
});
});
t1.join();
t2.join();
}
check_raii_counts();
}
template <class X, class GF>
void move_constructor(X*, GF gen_factory, test::random_generator rg)
{
using value_type = typename X::value_type;
using allocator_type = typename X::allocator_type;
static constexpr auto value_type_cardinality =
value_cardinality<value_type>::value;
{
X x(0, hasher(1), key_equal(2), allocator_type{});
auto const old_size = x.size();
X y(std::move(x));
BOOST_TEST_EQ(y.size(), old_size);
BOOST_TEST_EQ(y.hash_function(), hasher(1));
BOOST_TEST_EQ(y.key_eq(), key_equal(2));
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(y.get_allocator() == x.get_allocator());
}
auto gen = gen_factory.template get<X>();
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
raii::reset_counts();
{
X x(values.begin(), values.end(), 0, hasher(1), key_equal(2),
allocator_type{});
std::atomic_uint num_transfers{0};
auto const old_mc = +raii::move_constructor;
thread_runner(
values, [&x, &reference_cont, &num_transfers](
boost::span<span_value_type<decltype(values)> > s) {
(void)s;
auto const old_size = x.size();
X y(std::move(x));
if (!y.empty()) {
++num_transfers;
test_matches_reference(y, reference_cont);
BOOST_TEST_EQ(y.size(), old_size);
BOOST_TEST_EQ(y.hash_function(), hasher(1));
BOOST_TEST_EQ(y.key_eq(), key_equal(2));
} else {
BOOST_TEST_EQ(y.size(), 0u);
BOOST_TEST_EQ(y.hash_function(), hasher());
BOOST_TEST_EQ(y.key_eq(), key_equal());
}
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(y.get_allocator() == x.get_allocator());
});
BOOST_TEST_EQ(num_transfers, 1u);
BOOST_TEST_EQ(raii::move_constructor, old_mc);
}
check_raii_counts();
// allocator-aware move constructor, unequal allocators
raii::reset_counts();
{
X x(values.begin(), values.end(), 0, hasher(1), key_equal(2),
allocator_type{1});
std::atomic_uint num_transfers{0};
auto const old_mc = +raii::move_constructor;
auto const old_size = x.size();
thread_runner(
values, [&x, &reference_cont, &num_transfers, old_size](
boost::span<span_value_type<decltype(values)> > s) {
(void)s;
auto a = allocator_type{2};
BOOST_TEST(a != x.get_allocator());
X y(std::move(x), a);
if (!y.empty()) {
++num_transfers;
test_matches_reference(y, reference_cont);
BOOST_TEST_EQ(y.size(), old_size);
BOOST_TEST_EQ(y.hash_function(), hasher(1));
BOOST_TEST_EQ(y.key_eq(), key_equal(2));
} else {
BOOST_TEST_EQ(y.size(), 0u);
BOOST_TEST_EQ(y.hash_function(), hasher());
BOOST_TEST_EQ(y.key_eq(), key_equal());
}
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(y.get_allocator() != x.get_allocator());
BOOST_TEST(y.get_allocator() == a);
});
BOOST_TEST_EQ(num_transfers, 1u);
BOOST_TEST_EQ(
raii::move_constructor, old_mc + (value_type_cardinality * old_size));
}
check_raii_counts();
// allocator-aware move constructor, equal allocators
raii::reset_counts();
{
X x(values.begin(), values.end(), 0, hasher(1), key_equal(2),
allocator_type{1});
std::atomic_uint num_transfers{0};
auto const old_mc = +raii::move_constructor;
auto const old_size = x.size();
thread_runner(
values, [&x, &reference_cont, &num_transfers, old_size](
boost::span<span_value_type<decltype(values)> > s) {
(void)s;
auto a = allocator_type{1};
BOOST_TEST(a == x.get_allocator());
X y(std::move(x), a);
if (!y.empty()) {
++num_transfers;
test_matches_reference(y, reference_cont);
BOOST_TEST_EQ(y.size(), old_size);
BOOST_TEST_EQ(y.hash_function(), hasher(1));
BOOST_TEST_EQ(y.key_eq(), key_equal(2));
} else {
BOOST_TEST_EQ(y.size(), 0u);
BOOST_TEST_EQ(y.hash_function(), hasher());
BOOST_TEST_EQ(y.key_eq(), key_equal());
}
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(y.get_allocator() == x.get_allocator());
BOOST_TEST(y.get_allocator() == a);
});
BOOST_TEST_EQ(num_transfers, 1u);
BOOST_TEST_EQ(raii::move_constructor, old_mc);
}
check_raii_counts();
}
template <class X, class GF>
void move_constructor_with_insertion(
X*, GF gen_factory, test::random_generator rg)
{
using value_type = typename X::value_type;
using allocator_type = typename X::allocator_type;
auto gen = gen_factory.template get<X>();
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
raii::reset_counts();
std::mutex m;
std::condition_variable cv;
bool ready = false;
{
X x(0, hasher(1), key_equal(2), allocator_type{});
std::atomic_uint num_transfers{0};
std::thread t1([&x, &values] {
for (auto const& val : values) {
x.insert(val);
}
});
std::thread t2([&x, &m, &cv, &ready] {
while (x.empty()) {
std::this_thread::yield();
}
{
std::lock_guard<std::mutex> guard(m);
ready = true;
}
cv.notify_all();
});
thread_runner(
values, [&x, &reference_cont, &num_transfers, rg, &m, &ready, &cv](
boost::span<span_value_type<decltype(values)> > s) {
(void)s;
{
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, [&] { return ready; });
}
X y(std::move(x));
if (!y.empty()) {
++num_transfers;
y.cvisit_all([&reference_cont, rg](value_type const& val) {
BOOST_TEST(reference_cont.contains(get_key(val)));
if (rg == sequential) {
BOOST_TEST_EQ(
val, *reference_cont.find(get_key(val)));
}
});
}
});
t1.join();
t2.join();
BOOST_TEST_GE(num_transfers, 1u);
}
check_raii_counts();
}
template <class X, class GF>
void iterator_range_with_allocator(
X*, GF gen_factory, test::random_generator rg)
{
using allocator_type = typename X::allocator_type;
auto gen = gen_factory.template get<X>();
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
raii::reset_counts();
{
allocator_type a;
X x(values.begin(), values.end(), a);
BOOST_TEST_GT(x.size(), 0u);
BOOST_TEST_LE(x.size(), values.size());
if (rg == sequential) {
BOOST_TEST_EQ(x.size(), values.size());
}
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == a);
test_fuzzy_matches_reference(x, reference_cont, rg);
}
check_raii_counts();
}
template <class X>
void explicit_allocator(X*)
{
using allocator_type = typename X::allocator_type;
raii::reset_counts();
{
allocator_type a;
X x(a);
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == a);
}
}
template <class X, class IL>
void initializer_list_with_all_params(std::pair<X*, IL> p)
{
using value_type = typename X::value_type;
static constexpr auto value_type_cardinality =
value_cardinality<value_type>::value;
using allocator_type = typename X::allocator_type;
auto init_list = p.second;
{
raii::reset_counts();
X x(init_list, 0, hasher(1), key_equal(2), allocator_type(3));
BOOST_TEST_EQ(x.size(), 11u);
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST(x.get_allocator() == allocator_type(3));
BOOST_TEST_EQ(raii::default_constructor, 0u);
BOOST_TEST_EQ(
raii::copy_constructor, value_type_cardinality * init_list.size() / 2u);
BOOST_TEST_EQ(
raii::move_constructor, 0u);
}
check_raii_counts();
{
raii::reset_counts();
X x(init_list, allocator_type(3));
BOOST_TEST_EQ(x.size(), 11u);
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == allocator_type(3));
BOOST_TEST_EQ(raii::default_constructor, 0u);
BOOST_TEST_EQ(
raii::copy_constructor, value_type_cardinality * init_list.size() / 2u);
BOOST_TEST_EQ(
raii::move_constructor, 0u);
}
check_raii_counts();
{
raii::reset_counts();
X x(init_list, 0, allocator_type(3));
BOOST_TEST_EQ(x.size(), 11u);
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == allocator_type(3));
BOOST_TEST_EQ(raii::default_constructor, 0u);
BOOST_TEST_EQ(
raii::copy_constructor, value_type_cardinality * init_list.size() / 2u);
BOOST_TEST_EQ(
raii::move_constructor, 0u);
}
check_raii_counts();
{
raii::reset_counts();
X x(init_list, 0, hasher(1), allocator_type(3));
BOOST_TEST_EQ(x.size(), 11u);
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == allocator_type(3));
BOOST_TEST_EQ(raii::default_constructor, 0u);
BOOST_TEST_EQ(
raii::copy_constructor, value_type_cardinality * init_list.size() / 2u);
BOOST_TEST_EQ(
raii::move_constructor, 0u);
}
check_raii_counts();
}
template <class X>
void bucket_count_and_allocator(X*)
{
using allocator_type = typename X::allocator_type;
raii::reset_counts();
{
X x(0, allocator_type(3));
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == allocator_type(3));
}
{
X x(4096, allocator_type(3));
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == allocator_type(3));
}
}
template <class X>
void bucket_count_with_hasher_and_allocator(X*)
{
using allocator_type = typename X::allocator_type;
raii::reset_counts();
{
X x(0, hasher(1), allocator_type(3));
BOOST_TEST_EQ(x.size(), 0u);
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == allocator_type(3));
}
}
template <class X, class GF>
void iterator_range_with_bucket_count_and_allocator(
X*, GF gen_factory, test::random_generator rg)
{
using allocator_type = typename X::allocator_type;
auto gen = gen_factory.template get<X>();
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
raii::reset_counts();
{
allocator_type a(3);
X x(values.begin(), values.end(), 0, a);
test_fuzzy_matches_reference(x, reference_cont, rg);
BOOST_TEST_EQ(x.hash_function(), hasher());
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == a);
}
check_raii_counts();
}
template <class X, class GF>
void iterator_range_with_bucket_count_hasher_and_allocator(
X*, GF gen_factory, test::random_generator rg)
{
using allocator_type = typename X::allocator_type;
auto gen = gen_factory.template get<X>();
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
raii::reset_counts();
{
allocator_type a(3);
hasher hf(1);
X x(values.begin(), values.end(), 0, hf, a);
test_fuzzy_matches_reference(x, reference_cont, rg);
BOOST_TEST_EQ(x.hash_function(), hf);
BOOST_TEST_EQ(x.key_eq(), key_equal());
BOOST_TEST(x.get_allocator() == a);
}
check_raii_counts();
}
template <class X, class GF>
void nonconcurrent_constructor(X*, GF gen_factory, test::random_generator rg)
{
using value_type = typename X::value_type;
static constexpr auto value_type_cardinality =
value_cardinality<value_type>::value;
using allocator_type = typename X::allocator_type;
auto gen = gen_factory.template get<X>();
auto values = make_random_values(1024 * 16, [&] { return gen(rg); });
auto reference_cont = reference_container<X>(values.begin(), values.end());
auto reference_nonc =
nonconcurrent_container<X>(values.begin(), values.end());
raii::reset_counts();
{
nonconcurrent_container<X> nonc(
values.begin(), values.end(), reference_cont.size(), hasher(1),
key_equal(2), allocator_type(3));
auto const old_dc = +raii::default_constructor;
auto const old_mc = +raii::move_constructor;
auto const old_cc = +raii::copy_constructor;
BOOST_TEST_EQ(old_dc, 0u);
BOOST_TEST_EQ(old_mc, 0u);
BOOST_TEST_EQ(old_cc, value_type_cardinality * nonc.size());
X x(std::move(nonc));
test_fuzzy_matches_reference(x, reference_cont, rg);
BOOST_TEST_EQ(+raii::default_constructor, old_dc);
BOOST_TEST_EQ(+raii::move_constructor, old_mc);
BOOST_TEST_EQ(+raii::copy_constructor, old_cc);
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST(x.get_allocator() == allocator_type(3));
BOOST_TEST(nonc.empty());
}
check_raii_counts();
{
nonconcurrent_container<X> nonc(
0, hasher(1), key_equal(2), allocator_type(3));
X x(std::move(nonc));
BOOST_TEST(x.empty());
BOOST_TEST_EQ(x.hash_function(), hasher(1));
BOOST_TEST_EQ(x.key_eq(), key_equal(2));
BOOST_TEST(x.get_allocator() == allocator_type(3));
BOOST_TEST(nonc.empty());
}
check_raii_counts();
{
X x(values.begin(), values.end(), reference_cont.size(),
hasher(1), key_equal(2), allocator_type(3));
auto const old_dc = +raii::default_constructor;
auto const old_mc = +raii::move_constructor;
auto const old_cc = +raii::copy_constructor;
BOOST_TEST_EQ(old_dc, 0u);
BOOST_TEST_EQ(old_mc, 0u);
BOOST_TEST_EQ(old_cc, 2u * value_type_cardinality * x.size());
nonconcurrent_container<X> nonc(std::move(x));
BOOST_TEST(nonc == reference_nonc);
BOOST_TEST_EQ(+raii::default_constructor, old_dc);
BOOST_TEST_EQ(+raii::move_constructor, old_mc);
BOOST_TEST_EQ(+raii::copy_constructor, old_cc);
BOOST_TEST_EQ(nonc.hash_function(), hasher(1));
BOOST_TEST_EQ(nonc.key_eq(), key_equal(2));
BOOST_TEST(nonc.get_allocator() == allocator_type(3));
BOOST_TEST(x.empty());
}
check_raii_counts();
{
X x(0, hasher(1), key_equal(2), allocator_type(3));
nonconcurrent_container<X> nonc(std::move(x));
BOOST_TEST(nonc.empty());
BOOST_TEST_EQ(nonc.hash_function(), hasher(1));
BOOST_TEST_EQ(nonc.key_eq(), key_equal(2));
BOOST_TEST(nonc.get_allocator() == allocator_type(3));
BOOST_TEST(x.empty());
}
check_raii_counts();
}
} // namespace
// clang-format off
UNORDERED_TEST(
default_constructor,
((test_map)(test_node_map)(test_set)(test_node_set)))
UNORDERED_TEST(
bucket_count_with_hasher_key_equal_and_allocator,
((test_map)(test_node_map)(test_set)(test_node_set)))
UNORDERED_TEST(
soccc,
((test_map)(test_node_map)(test_set)(test_node_set)))
UNORDERED_TEST(
from_iterator_range,
((test_map)(test_node_map)(test_set)(test_node_set))
((value_type_generator_factory))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
copy_constructor,
((test_map)(test_node_map)(test_set)(test_node_set))
((value_type_generator_factory))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
copy_constructor_with_insertion,
((test_map)(test_node_map)(test_set)(test_node_set))
((value_type_generator_factory))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
move_constructor,
((test_map)(test_node_map)(test_set)(test_node_set))
((value_type_generator_factory))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
move_constructor_with_insertion,
((test_map)(test_node_map)(test_set)(test_node_set))
((value_type_generator_factory))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
iterator_range_with_allocator,
((test_map)(test_node_map)(test_set)(test_node_set))
((value_type_generator_factory))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
explicit_allocator,
((test_map)(test_node_map)(test_set)(test_node_set)))
UNORDERED_TEST(
initializer_list_with_all_params,
((test_map_and_init_list)(test_node_map_and_init_list)
(test_set_and_init_list)(test_node_set_and_init_list)))
UNORDERED_TEST(
bucket_count_and_allocator,
((test_map)(test_node_map)(test_set)(test_node_set)))
UNORDERED_TEST(
bucket_count_with_hasher_and_allocator,
((test_map)(test_node_map)(test_set)(test_node_set)))
UNORDERED_TEST(
iterator_range_with_bucket_count_and_allocator,
((test_map)(test_node_map)(test_set)(test_node_set))
((value_type_generator_factory))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
iterator_range_with_bucket_count_hasher_and_allocator,
((test_map)(test_node_map)(test_set)(test_node_set))
((value_type_generator_factory))
((default_generator)(sequential)(limited_range)))
UNORDERED_TEST(
nonconcurrent_constructor,
((test_map)(test_node_map)(test_set)(test_node_set))
((value_type_generator_factory))
((default_generator)(sequential)(limited_range)))
// clang-format on
RUN_TESTS()