// Copyright 2006-2009 Daniel James. // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #if !defined(BOOST_UNORDERED_TEST_MEMORY_HEADER) #define BOOST_UNORDERED_TEST_MEMORY_HEADER #include #include #include #include #include #include #include "../helpers/test.hpp" namespace test { namespace detail { // This annoymous namespace won't cause ODR violations as I won't // be linking multiple translation units together. I'll probably // move this into a cpp file before a full release, but for now it's // the most convenient way. struct memory_area { void const* start; void const* end; memory_area(void const* s, void const* e) : start(s), end(e) { BOOST_ASSERT(start != end); } }; struct memory_track { explicit memory_track(int tag = -1) : constructed_(0), tag_(tag) {} int constructed_; int tag_; }; // This is a bit dodgy as it defines overlapping // areas as 'equal', so this isn't a total ordering. // But it is for non-overlapping memory regions - which // is what'll be stored. // // All searches will be for areas entirely contained by // a member of the set - so it should find the area that contains // the region that is searched for. struct memory_area_compare { bool operator()(memory_area const& x, memory_area const& y) const { return x.end <= y.start; } }; template struct allocator_memory_type_gen { typedef std::map type; }; #if defined(BOOST_MPL_CFG_MSVC_ETI_BUG) template <> struct allocator_memory_type_gen { typedef std::map type; }; #endif template > struct memory_tracker { typedef BOOST_DEDUCED_TYPENAME boost::unordered_detail::rebind_wrap >::type allocator_type; typedef BOOST_DEDUCED_TYPENAME allocator_memory_type_gen::type allocated_memory_type; allocated_memory_type allocated_memory; unsigned int count_allocators; unsigned int count_allocations; unsigned int count_constructions; memory_tracker() : count_allocators(0), count_allocations(0), count_constructions(0) {} void allocator_ref() { if(count_allocators == 0) { count_allocations = 0; count_constructions = 0; allocated_memory.clear(); } ++count_allocators; } void allocator_unref() { BOOST_CHECK(count_allocators > 0); if(count_allocators > 0) { --count_allocators; if(count_allocators == 0) { bool no_allocations_left = (count_allocations == 0); bool no_constructions_left = (count_constructions == 0); bool allocated_memory_empty = allocated_memory.empty(); // Clearing the data before the checks terminate the tests. count_allocations = 0; count_constructions = 0; allocated_memory.clear(); BOOST_CHECK(no_allocations_left); BOOST_CHECK(no_constructions_left); BOOST_CHECK(allocated_memory_empty); } } } void track_allocate(void *ptr, std::size_t n, std::size_t size, int tag) { if(n == 0) { BOOST_ERROR("Allocating 0 length array."); } else { ++count_allocations; allocated_memory.insert( std::pair( memory_area(ptr, (char*) ptr + n * size), memory_track(tag))); } } void track_deallocate(void* ptr, std::size_t n, std::size_t size, int tag) { BOOST_DEDUCED_TYPENAME allocated_memory_type::iterator pos = allocated_memory.find(memory_area(ptr, (char*) ptr + n * size)); if(pos == allocated_memory.end()) { BOOST_ERROR("Deallocating unknown pointer."); } else { BOOST_CHECK(pos->first.start == ptr); BOOST_CHECK(pos->first.end == (char*) ptr + n * size); BOOST_CHECK(pos->second.tag_ == tag); allocated_memory.erase(pos); } BOOST_CHECK(count_allocations > 0); if(count_allocations > 0) --count_allocations; } void track_construct(void* /*ptr*/, std::size_t /*size*/, int /*tag*/) { ++count_constructions; } void track_destroy(void* /*ptr*/, std::size_t /*size*/, int /*tag*/) { BOOST_CHECK(count_constructions > 0); if(count_constructions > 0) --count_constructions; } }; } } #endif