Merge pull request #177 from cmazakas/feature/p2363

Feature/p2363
This commit is contained in:
Christian Mazakas 2022-12-20 10:55:20 -08:00 committed by GitHub
commit a3c1e643dc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 1086 additions and 184 deletions

View File

@ -6,6 +6,11 @@
:github-pr-url: https://github.com/boostorg/unordered/pull
:cpp: C++
== Release 1.82.0
* Extended heterogeneous lookup to more member functions as specified in
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2363r3.html[P2363].
== Release 1.81.0 - Major update
* Added fast containers `boost::unordered_flat_map` and `boost::unordered_flat_set`

View File

@ -134,23 +134,31 @@ namespace boost {
std::pair<iterator, bool> xref:#unordered_flat_map_try_emplace[try_emplace](const key_type& k, Args&&... args);
template<class... Args>
std::pair<iterator, bool> xref:#unordered_flat_map_try_emplace[try_emplace](key_type&& k, Args&&... args);
template<class K, class... Args>
std::pair<iterator, bool> xref:#unordered_flat_map_try_emplace[try_emplace](K&& k, Args&&... args);
template<class... Args>
iterator xref:#unordered_flat_map_try_emplace_with_hint[try_emplace](const_iterator hint, const key_type& k, Args&&... args);
template<class... Args>
iterator xref:#unordered_flat_map_try_emplace_with_hint[try_emplace](const_iterator hint, key_type&& k, Args&&... args);
template<class K, class... Args>
iterator xref:#unordered_flat_map_try_emplace_with_hint[try_emplace](const_iterator hint, K&& k, Args&&... args);
template<class M>
std::pair<iterator, bool> xref:#unordered_flat_map_insert_or_assign[insert_or_assign](const key_type& k, M&& obj);
template<class M>
std::pair<iterator, bool> xref:#unordered_flat_map_insert_or_assign[insert_or_assign](key_type&& k, M&& obj);
template<class K, class M>
std::pair<iterator, bool> xref:#unordered_flat_map_insert_or_assign[insert_or_assign](K&& k, M&& obj);
template<class M>
iterator xref:#unordered_flat_map_insert_or_assign_with_hint[insert_or_assign](const_iterator hint, const key_type& k, M&& obj);
template<class M>
iterator xref:#unordered_flat_map_insert_or_assign_with_hint[insert_or_assign](const_iterator hint, key_type&& k, M&& obj);
template<class K, class M>
iterator xref:#unordered_flat_map_insert_or_assign_with_hint[insert_or_assign](const_iterator hint, K&& k, M&& obj);
void xref:#unordered_flat_map_erase_by_position[erase](iterator position);
void xref:#unordered_flat_map_erase_by_position[erase](const_iterator position);
size_type xref:#unordered_flat_map_erase_by_key[erase](const key_type& k);
template<class K> size_type xref:#unordered_flat_map_transparent_erase_by_key[erase](K&& k);
template<class K> size_type xref:#unordered_flat_map_erase_by_key[erase](K&& k);
iterator xref:#unordered_flat_map_erase_range[erase](const_iterator first, const_iterator last);
void xref:#unordered_flat_map_swap[swap](unordered_flat_map& other)
noexcept(boost::allocator_traits<Allocator>::is_always_equal::value ||
@ -189,8 +197,11 @@ namespace boost {
// element access
mapped_type& xref:#unordered_flat_map_operator[operator[+]+](const key_type& k);
mapped_type& xref:#unordered_flat_map_operator[operator[+]+](key_type&& k);
template<class K> mapped_type& xref:#unordered_flat_map_operator[operator[+]+](K&& k);
mapped_type& xref:#unordered_flat_map_at[at](const key_type& k);
const mapped_type& xref:#unordered_flat_map_at[at](const key_type& k) const;
template<class K> mapped_type& xref:#unordered_flat_map_at[at](const K& k);
template<class K> const mapped_type& xref:#unordered_flat_map_at[at](const K& k) const;
// bucket interface
size_type xref:#unordered_flat_map_bucket_count[bucket_count]() const noexcept;
@ -860,6 +871,8 @@ template<class... Args>
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);
template<class... Args>
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);
template<class K, class... Args>
std::pair<iterator, bool> try_emplace(K&& k, Args&&... args);
```
Inserts a new node into the container if there is no existing element with key `k` contained within it.
@ -876,15 +889,23 @@ if there is an element with an equivalent key; otherwise, the construction is of
+
--
```c++
// first two overloads
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<Args>(args)...))
// third overload
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<K>(k)),
std::forward_as_tuple(boost::forward<Args>(args)...))
```
unlike xref:#unordered_flat_map_emplace[emplace], which simply forwards all arguments to ``value_type``'s constructor.
Can invalidate iterators pointers and references, but only if the insert causes the load to be greater than the maximum load.
The `template <class K, class... Args>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
--
---
@ -895,6 +916,8 @@ template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);
template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);
template<class K, class... Args>
iterator try_emplace(const_iterator hint, K&& k, Args&&... args);
```
Inserts a new node into the container if there is no existing element with key `k` contained within it.
@ -911,15 +934,23 @@ if there is an element with an equivalent key; otherwise, the construction is of
+
--
```c++
// first two overloads
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<Args>(args)...))
// third overload
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<K>(k)),
std::forward_as_tuple(boost::forward<Args>(args)...))
```
unlike xref:#unordered_flat_map_emplace_hint[emplace_hint], which simply forwards all arguments to ``value_type``'s constructor.
Can invalidate iterators pointers and references, but only if the insert causes the load to be greater than the maximum load.
The `template <class K, class... Args>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
--
---
@ -930,6 +961,8 @@ template<class M>
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);
template<class M>
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);
template<class K, class M>
std::pair<iterator, bool> insert_or_assign(K&& k, M&& obj);
```
Inserts a new element into the container or updates an existing one by assigning to the contained value.
@ -938,9 +971,15 @@ If there is an element with key `k`, then it is updated by assigning `boost::for
If there is no such element, it is added to the container as:
```c++
// first two overloads
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<M>(obj)))
// third overload
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<K>(k)),
std::forward_as_tuple(boost::forward<M>(obj)))
```
[horizontal]
@ -948,7 +987,9 @@ Returns:;; The `bool` component of the return type is `true` if an insert took p
+
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators pointers and references, but only if the insert causes the load to be greater than the maximum load. +
Notes:;; Can invalidate iterators pointers and references, but only if the insert causes the load to be greater than the maximum load. +
+
The `template<class K, class M>` only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -958,6 +999,8 @@ template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);
template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);
template<class K, class M>
iterator insert_or_assign(const_iterator hint, K&& k, M&& obj);
```
Inserts a new element into the container or updates an existing one by assigning to the contained value.
@ -966,9 +1009,15 @@ If there is an element with key `k`, then it is updated by assigning `boost::for
If there is no such element, it is added to the container as:
```c++
// first two overloads
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<M>(obj)))
// third overload
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<K>(k)),
std::forward_as_tuple(boost::forward<M>(obj)))
```
`hint` is a suggestion to where the element should be inserted. This implementation ignores it.
@ -976,7 +1025,9 @@ value_type(std::piecewise_construct,
[horizontal]
Returns:;; If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, pointers and references, but only if the insert causes the load to be greater than the maximum load.
Notes:;; Can invalidate iterators, pointers and references, but only if the insert causes the load to be greater than the maximum load. +
+
The `template<class K, class M>` only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -998,28 +1049,15 @@ Throws:;; Nothing.
==== Erase by Key
```c++
size_type erase(const key_type& k);
```
Erase all elements with key equivalent to `k`.
[horizontal]
Returns:;; The number of elements erased.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
---
==== Transparent Erase by Key
```c++
template<class K> size_type erase(K&& k);
```
Erase all elements with key equivalent to `k`.
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
[horizontal]
Returns:;; The number of elements erased.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1172,13 +1210,16 @@ Notes:;; The `template <typename K>` overloads only participate in overload reso
```c++
mapped_type& operator[](const key_type& k);
mapped_type& operator[](key_type&& k);
template<class K> mapped_type& operator[](K&& k);
```
[horizontal]
Effects:;; If the container does not already contain an element with a key equivalent to `k`, inserts the value `std::pair<key_type const, mapped_type>(k, mapped_type())`.
Returns:;; A reference to `x.second` where `x` is the element already in the container, or the newly inserted element with a key equivalent to `k`.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, pointers and references, but only if the insert causes the load to be greater than the maximum load.
Notes:;; Can invalidate iterators, pointers and references, but only if the insert causes the load to be greater than the maximum load. +
+
The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1186,11 +1227,14 @@ Notes:;; Can invalidate iterators, pointers and references, but only if the inse
```c++
mapped_type& at(const key_type& k);
const mapped_type& at(const key_type& k) const;
template<class K> mapped_type& at(const K& k);
template<class K> const mapped_type& at(const K& k) const;
```
[horizontal]
Returns:;; A reference to `x.second` where `x` is the (unique) element whose key is equivalent to `k`.
Throws:;; An exception object of type `std::out_of_range` if no such element is present.
Notes:;; The `template<class K>` overloads only participate in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---

View File

@ -116,15 +116,17 @@ namespace boost {
template<class... Args> iterator xref:#unordered_flat_set_emplace_hint[emplace_hint](const_iterator position, Args&&... args);
std::pair<iterator, bool> xref:#unordered_flat_set_copy_insert[insert](const value_type& obj);
std::pair<iterator, bool> xref:#unordered_flat_set_move_insert[insert](value_type&& obj);
iterator xref:#unordered_flat_set_copy_insert_with_hint[insert](const_iterator hint, const value_type& obj);
iterator xref:#unordered_flat_set_move_insert_with_hint[insert](const_iterator hint, value_type&& obj);
template<class K> std::pair<iterator, bool> xref:#unordered_flat_set_transparent_insert[insert](K&& k);
iterator xref:#unordered_flat_set_copy_insert_with_hint[insert](const_iterator hint, const value_type& obj);
iterator xref:#unordered_flat_set_move_insert_with_hint[insert](const_iterator hint, value_type&& obj);
template<class K> iterator xref:#unordered_flat_set_transparent_insert_with_hint[insert](const_iterator hint, K&& k);
template<class InputIterator> void xref:#unordered_flat_set_insert_iterator_range[insert](InputIterator first, InputIterator last);
void xref:#unordered_flat_set_insert_initializer_list[insert](std::initializer_list<value_type>);
void xref:#unordered_flat_set_erase_by_position[erase](iterator position);
void xref:#unordered_flat_set_erase_by_position[erase](const_iterator position);
size_type xref:#unordered_flat_set_erase_by_key[erase](const key_type& k);
template<class K> size_type xref:#unordered_flat_set_transparent_erase_by_key[erase](K&& k);
template<class K> size_type xref:#unordered_flat_set_erase_by_key[erase](K&& k);
iterator xref:#unordered_flat_set_erase_range[erase](const_iterator first, const_iterator last);
void xref:#unordered_flat_set_swap[swap](unordered_flat_set& other)
noexcept(boost::allocator_traits<Allocator>::is_always_equal::value ||
@ -736,6 +738,25 @@ Notes:;; Can invalidate iterators, pointers and references, but only if the inse
---
==== Transparent Insert
```c++
template<class K> std::pair<iterator, bool> insert(K&& k);
```
Inserts an element constructed from `std::forward<K>(k)` in the container if and only if there is no element in the container with an equivalent key.
[horizontal]
Requires:;; `value_type` is https://en.cppreference.com/w/cpp/named_req/EmplaceConstructible[EmplaceConstructible^] from `k`.
Returns:;; The bool component of the return type is true if an insert took place. +
+
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, pointers and references, but only if the insert causes the load to be greater than the maximum load. +
+
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
==== Copy Insert with Hint
```c++
iterator insert(const_iterator hint, const value_type& obj);
@ -773,6 +794,27 @@ Notes:;; Can invalidate iterators, pointers and references, but only if the inse
---
==== Transparent Insert with Hint
```c++
template<class K> std::pair<iterator, bool> insert(const_iterator hint, K&& k);
```
Inserts an element constructed from `std::forward<K>(k)` in the container if and only if there is no element in the container with an equivalent key.
`hint` is a suggestion to where the element should be inserted. This implementation ignores it.
[horizontal]
Requires:;; `value_type` is https://en.cppreference.com/w/cpp/named_req/EmplaceConstructible[EmplaceConstructible^] from `k`.
Returns:;; The bool component of the return type is true if an insert took place. +
+
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, pointers and references, but only if the insert causes the load to be greater than the maximum load. +
+
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
==== Insert Iterator Range
```c++
template<class InputIterator> void insert(InputIterator first, InputIterator last);
@ -818,28 +860,15 @@ Throws:;; Nothing.
==== Erase by Key
```c++
size_type erase(const key_type& k);
```
Erase all elements with key equivalent to `k`.
[horizontal]
Returns:;; The number of elements erased.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
---
==== Transparent Erase by Key
```c++
template<class K> size_type erase(K&& k);
```
Erase all elements with key equivalent to `k`.
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
[horizontal]
Returns:;; The number of elements erased.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---

View File

@ -113,29 +113,37 @@ namespace boost {
std::pair<iterator, bool> xref:#unordered_map_try_emplace[try_emplace](const key_type& k, Args&&... args);
template<class... Args>
std::pair<iterator, bool> xref:#unordered_map_try_emplace[try_emplace](key_type&& k, Args&&... args);
template<class K, class... Args>
std::pair<iterator, bool> xref:#unordered_map_try_emplace[try_emplace](K&& k, Args&&... args);
template<class... Args>
iterator xref:#unordered_map_try_emplace_with_hint[try_emplace](const_iterator hint, const key_type& k, Args&&... args);
template<class... Args>
iterator xref:#unordered_map_try_emplace_with_hint[try_emplace](const_iterator hint, key_type&& k, Args&&... args);
template<class K, class... Args>
iterator xref:#unordered_map_try_emplace_with_hint[try_emplace](const_iterator hint, K&& k, Args&&... args);
template<class M>
std::pair<iterator, bool> xref:#unordered_map_insert_or_assign[insert_or_assign](const key_type& k, M&& obj);
template<class M>
std::pair<iterator, bool> xref:#unordered_map_insert_or_assign[insert_or_assign](key_type&& k, M&& obj);
template<class K, class M>
std::pair<iterator, bool> xref:#unordered_map_insert_or_assign[insert_or_assign](K&& k, M&& obj);
template<class M>
iterator xref:#unordered_map_insert_or_assign_with_hint[insert_or_assign](const_iterator hint, const key_type& k, M&& obj);
template<class M>
iterator xref:#unordered_map_insert_or_assign_with_hint[insert_or_assign](const_iterator hint, key_type&& k, M&& obj);
template<class K, class M>
iterator xref:#unordered_map_insert_or_assign_with_hint[insert_or_assign](const_iterator hint, K&& k, M&& obj);
node_type xref:#unordered_map_extract_by_iterator[extract](const_iterator position);
node_type xref:#unordered_map_extract_by_key[extract](const key_type& k);
template<class K> node_type xref:#unordered_map_transparent_extract_by_key[extract](K&& k);
template<class K> node_type xref:#unordered_map_extract_by_key[extract](K&& k);
insert_return_type xref:#unordered_map_insert_with_node_handle[insert](node_type&& nh);
iterator xref:#unordered_map_insert_with_hint_and_node_handle[insert](const_iterator hint, node_type&& nh);
iterator xref:#unordered_map_erase_by_position[erase](iterator position);
iterator xref:#unordered_map_erase_by_position[erase](const_iterator position);
size_type xref:#unordered_map_erase_by_key[erase](const key_type& k);
template<class K> size_type xref:#unordered_map_transparent_erase_by_key[erase](K&& k);
template<class K> size_type xref:#unordered_map_erase_by_key[erase](K&& k);
iterator xref:#unordered_map_erase_range[erase](const_iterator first, const_iterator last);
void xref:#unordered_map_quick_erase[quick_erase](const_iterator position);
void xref:#unordered_map_erase_return_void[erase_return_void](const_iterator position);
@ -187,14 +195,18 @@ namespace boost {
// element access
mapped_type& xref:#unordered_map_operator[operator[+]+](const key_type& k);
mapped_type& xref:#unordered_map_operator[operator[+]+](key_type&& k);
template<class K> mapped_type& xref:#unordered_map_operator[operator[+]+](K&& k);
mapped_type& xref:#unordered_map_at[at](const key_type& k);
const mapped_type& xref:#unordered_map_at[at](const key_type& k) const;
template<class K> mapped_type& xref:#unordered_map_at[at](const K& k);
template<class K> const mapped_type& xref:#unordered_map_at[at](const K& k) const;
// bucket interface
size_type xref:#unordered_map_bucket_count[bucket_count]() const noexcept;
size_type xref:#unordered_map_max_bucket_count[max_bucket_count]() const noexcept;
size_type xref:#unordered_map_bucket_size[bucket_size](size_type n) const;
size_type xref:#unordered_map_bucket[bucket](const key_type& k) const;
template<class K> size_type xref:#unordered_map_bucket[bucket](const K& k) const;
local_iterator xref:#unordered_map_begin_2[begin](size_type n);
const_local_iterator xref:#unordered_map_begin_2[begin](size_type n) const;
local_iterator xref:#unordered_map_end_2[end](size_type n);
@ -997,6 +1009,8 @@ template<class... Args>
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);
template<class... Args>
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);
template <class K, class... Args>
std::pair<iterator, bool> try_emplace(K&& k, Args&&... args)
```
Inserts a new node into the container if there is no existing element with key `k` contained within it.
@ -1012,9 +1026,15 @@ Notes:;; This function is similiar to xref:#unordered_map_emplace[emplace] excep
+
--
```c++
// first two overloads
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<Args>(args)...))
// third overload
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<K>(k)),
std::forward_as_tuple(boost::forward<Args>(args)...))
```
instead of xref:#unordered_map_emplace[emplace] which simply forwards all arguments to ``value_type``'s constructor.
@ -1023,6 +1043,8 @@ Can invalidate iterators, but only if the insert causes the load factor to be gr
Pointers and references to elements are never invalidated.
The `template <class K, class... Args>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to `10` arguments, with no support for rvalue references or move semantics.
Since existing `std::pair` implementations don't support `std::piecewise_construct` this emulates it, but using `boost::unordered::piecewise_construct`.
@ -1036,6 +1058,8 @@ template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);
template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);
template<class K, class... Args>
iterator try_emplace(const_iterator hint, K&& k, Args&&... args);
```
Inserts a new node into the container if there is no existing element with key `k` contained within it.
@ -1051,9 +1075,15 @@ Notes:;; This function is similiar to xref:#unordered_map_emplace_hint[emplace_h
+
--
```c++
// first two overloads
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<Args>(args)...))
// third overload
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<K>(k)),
std::forward_as_tuple(boost::forward<Args>(args)...))
```
instead of xref:#unordered_map_emplace_hint[emplace_hint] which simply forwards all arguments to ``value_type``'s constructor.
@ -1064,6 +1094,8 @@ Can invalidate iterators, but only if the insert causes the load factor to be gr
Pointers and references to elements are never invalidated.
The `template <class K, class... Args>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to `10` arguments, with no support for rvalue references or move semantics.
Since existing `std::pair` implementations don't support `std::piecewise_construct` this emulates it, but using `boost::unordered::piecewise_construct`.
@ -1077,6 +1109,8 @@ template<class M>
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);
template<class M>
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);
template<class K, class M>
std::pair<iterator, bool> insert_or_assign(K&& k, M&& obj);
```
Inserts a new element into the container or updates an existing one by assigning to the contained value.
@ -1085,9 +1119,15 @@ If there is an element with key `k`, then it is updated by assigning `boost::for
If there is no such element, it is added to the container as:
```c++
// first two overloads
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<M>(obj)))
// third overload
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<K>(k)),
std::forward_as_tuple(boost::forward<M>(obj)))
```
[horizontal]
@ -1097,7 +1137,9 @@ If an insert took place, then the iterator points to the newly inserted element.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load factor. +
+
Pointers and references to elements are never invalidated.
Pointers and references to elements are never invalidated. +
+
The `template<class K, class M>` only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1107,6 +1149,8 @@ template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);
template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);
template<class K, class M>
iterator insert_or_assign(const_iterator hint, K&& k, M&& obj);
```
Inserts a new element into the container or updates an existing one by assigning to the contained value.
@ -1115,9 +1159,15 @@ If there is an element with key `k`, then it is updated by assigning `boost::for
If there is no such element, it is added to the container as:
```c++
// first two overloads
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<M>(obj)))
// third overload
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<K>(k)),
std::forward_as_tuple(boost::forward<M>(obj)))
```
`hint` is a suggestion to where the element should be inserted.
@ -1129,7 +1179,9 @@ Notes:;; The standard is fairly vague on the meaning of the hint. But the only p
+
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load factor. +
+
Pointers and references to elements are never invalidated.
Pointers and references to elements are never invalidated. +
+
The `template<class K, class M>` only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1149,30 +1201,17 @@ Notes:;; A node extracted using this method can be inserted into a compatible `u
==== Extract by Key
```c++
node_type extract(const key_type& k);
```
Removes an element with key equivalent to `k`.
[horizontal]
Returns:;; A `node_type` owning the element if found, otherwise an empty `node_type`.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; A node extracted using this method can be inserted into a compatible `unordered_multimap`.
---
==== Transparent Extract by Key
```c++
template<class K> node_type extract(K&& k);
```
Removes an element with key equivalent to `k`.
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
[horizontal]
Returns:;; A `node_type` owning the element if found, otherwise an empty `node_type`.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; A node extracted using this method can be inserted into a compatible `unordered_multimap`.
Notes:;; A node extracted using this method can be inserted into a compatible `unordered_multimap`. +
+
The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1251,28 +1290,15 @@ Notes:;; In older versions this could be inefficient because it had to search th
==== Erase by Key
```c++
size_type erase(const key_type& k);
```
Erase all elements with key equivalent to `k`.
[horizontal]
Returns:;; The number of elements erased.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
---
==== Transparent Erase by Key
```c++
template<class K> size_type erase(K&& k);
```
Erase all elements with key equivalent to `k`.
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
[horizontal]
Returns:;; The number of elements erased.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1490,6 +1516,7 @@ Notes:;; The `template <typename K>` overloads only participate in overload reso
```c++
mapped_type& operator[](const key_type& k);
mapped_type& operator[](key_type&& k);
template<class K> mapped_type& operator[](K&& k);
```
[horizontal]
@ -1498,7 +1525,9 @@ Returns:;; A reference to `x.second` where `x` is the element already in the con
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load factor. +
+
Pointers and references to elements are never invalidated.
Pointers and references to elements are never invalidated. +
+
The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1506,11 +1535,14 @@ Pointers and references to elements are never invalidated.
```c++
mapped_type& at(const key_type& k);
const mapped_type& at(const key_type& k) const;
template<class K> mapped_type& at(const K& k);
template<class K> const mapped_type& at(const K& k) const;
```
[horizontal]
Returns:;; A reference to `x.second` where `x` is the (unique) element whose key is equivalent to `k`.
Throws:;; An exception object of type `std::out_of_range` if no such element is present.
Notes:;; The `template<class K>` overloads only participate in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1550,11 +1582,13 @@ Returns:;; The number of elements in bucket `n`.
==== bucket
```c++
size_type bucket(const key_type& k) const;
template<class K> size_type bucket(const K& k) const;
```
[horizontal]
Returns:;; The index of the bucket which would contain an element with key `k`.
Postconditions:;; The return value is less than `bucket_count()`.
Notes:;; The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---

View File

@ -111,14 +111,14 @@ namespace boost {
node_type xref:#unordered_multimap_extract_by_iterator[extract](const_iterator position);
node_type xref:#unordered_multimap_extract_by_key[extract](const key_type& k);
template<class K> node_type xref:#unordered_multimap_transparent_extract_by_key[extract](K&& k);
template<class K> node_type xref:#unordered_multimap_extract_by_key[extract](K&& k);
iterator xref:#unordered_multimap_insert_with_node_handle[insert](node_type&& nh);
iterator xref:#unordered_multimap_insert_with_hint_and_node_handle[insert](const_iterator hint, node_type&& nh);
iterator xref:#unordered_multimap_erase_by_position[erase](iterator position);
iterator xref:#unordered_multimap_erase_by_position[erase](const_iterator position);
size_type xref:#unordered_multimap_erase_by_key[erase](const key_type& k);
template<class K> size_type xref:#unordered_multimap_transparent_erase_by_key[erase](K&& k);
template<class K> size_type xref:#unordered_multimap_erase_by_key[erase](K&& k);
iterator xref:#unordered_multimap_erase_range[erase](const_iterator first, const_iterator last);
void xref:#unordered_multimap_quick_erase[quick_erase](const_iterator position);
void xref:#unordered_multimap_erase_return_void[erase_return_void](const_iterator position);
@ -172,6 +172,7 @@ namespace boost {
size_type xref:#unordered_multimap_max_bucket_count[max_bucket_count]() const noexcept;
size_type xref:#unordered_multimap_bucket_size[bucket_size](size_type n) const;
size_type xref:#unordered_multimap_bucket[bucket](const key_type& k) const;
template<class K> size_type xref:#unordered_multimap_bucket[bucket](const K& k) const;
local_iterator xref:#unordered_multimap_begin_2[begin](size_type n);
const_local_iterator xref:#unordered_multimap_begin_2[begin](size_type n) const;
local_iterator xref:#unordered_multimap_end_2[end](size_type n);
@ -964,30 +965,17 @@ Notes:;; A node extracted using this method can be inserted into a compatible `u
==== Extract by Key
```c++
node_type extract(const key_type& k);
```
Removes an element with key equivalent to `k`.
[horizontal]
Returns:;; A `node_type` owning the element if found, otherwise an empty `node_type`.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; A node extracted using this method can be inserted into a compatible `unordered_map`.
---
==== Transparent Extract by Key
```c++
template<class K> node_type extract(K&& k);
```
Removes an element with key equivalent to `k`.
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
[horizontal]
Returns:;; A `node_type` owning the element if found, otherwise an empty `node_type`.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; A node extracted using this method can be inserted into a compatible `unordered_map`.
Notes:;; A node extracted using this method can be inserted into a compatible `unordered_map`. +
+
The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1060,28 +1048,15 @@ Notes:;; In older versions this could be inefficient because it had to search th
==== Erase by Key
```c++
size_type erase(const key_type& k);
```
Erase all elements with key equivalent to `k`.
[horizontal]
Returns:;; The number of elements erased.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
---
==== Transparent Erase by Key
```c++
template<class K> size_type erase(K&& k);
```
Erase all elements with key equivalent to `k`.
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
[horizontal]
Returns:;; The number of elements erased.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1330,11 +1305,13 @@ Returns:;; The number of elements in bucket `n`.
==== bucket
```c++
size_type bucket(const key_type& k) const;
template<class K> size_type bucket(const K& k) const;
```
[horizontal]
Returns:;; The index of the bucket which would contain an element with key `k`.
Postconditions:;; The return value is less than `bucket_count()`.
Notes:;; The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---

View File

@ -107,14 +107,14 @@ namespace boost {
node_type xref:#unordered_multiset_extract_by_iterator[extract](const_iterator position);
node_type xref:#unordered_multiset_extract_by_value[extract](const key_type& k);
template<class K> node_type xref:#unordered_multiset_transparent_extract_by_value[extract](K&& k);
template<class K> node_type xref:#unordered_multiset_extract_by_value[extract](K&& k);
iterator xref:#unordered_multiset_insert_with_node_handle[insert](node_type&& nh);
iterator xref:#unordered_multiset_insert_with_hint_and_node_handle[insert](const_iterator hint, node_type&& nh);
iterator xref:#unordered_multiset_erase_by_position[erase](iterator position);
iterator xref:#unordered_multiset_erase_by_position[erase](const_iterator position);
size_type xref:#unordered_multiset_erase_by_value[erase](const key_type& k);
template<class K> size_type xref:#unordered_multiset_transparent_erase_by_value[erase](K&& x);
template<class K> size_type xref:#unordered_multiset_erase_by_value[erase](K&& x);
iterator xref:#unordered_multiset_erase_range[erase](const_iterator first, const_iterator last);
void xref:#unordered_multiset_quick_erase[quick_erase](const_iterator position);
void xref:#unordered_multiset_erase_return_void[erase_return_void](const_iterator position);
@ -168,6 +168,7 @@ namespace boost {
size_type xref:#unordered_multiset_max_bucket_count[max_bucket_count]() const noexcept;
size_type xref:#unordered_multiset_bucket_size[bucket_size](size_type n) const;
size_type xref:#unordered_multiset_bucket[bucket](const key_type& k) const;
template<class K> size_type xref:#unordered_multiset_bucket[bucket](const K& k) const;
local_iterator xref:#unordered_multiset_begin_2[begin](size_type n);
const_local_iterator xref:#unordered_multiset_begin_2[begin](size_type n) const;
local_iterator xref:#unordered_multiset_end_2[end](size_type n);
@ -922,6 +923,7 @@ Notes:;; A node extracted using this method can be inserted into a compatible `u
==== Extract by Value
```c++
node_type extract(const key_type& k);
template<class K> node_type extract(K&& k);
```
Removes an element with key equivalent to `k`.
@ -929,23 +931,9 @@ Removes an element with key equivalent to `k`.
[horizontal]
Returns:;; A `node_type` owning the element if found, otherwise an empty `node_type`.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; A node extracted using this method can be inserted into a compatible `unordered_set`.
---
==== Transparent Extract by Value
```c++
template<class K> node_type extract(K&& k);
```
Removes an element with key equivalent to `k`.
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
[horizontal]
Returns:;; A `node_type` owning the element if found, otherwise an empty `node_type`.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.[horizontal]
Notes:;; A node extracted using this method can be inserted into a compatible `unordered_set`.
Notes:;; A node extracted using this method can be inserted into a compatible `unordered_set`. +
+
The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1018,28 +1006,15 @@ Notes:;; In older versions this could be inefficient because it had to search th
==== Erase by Value
```c++
size_type erase(const key_type& k);
```
Erase all elements with key equivalent to `k`.
[horizontal]
Returns:;; The number of elements erased.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
---
==== Transparent Erase by Value
```c++
template<class K> size_type erase(K&& x);
```
Erase all elements with key equivalent to `k`.
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
[horizontal]
Returns:;; The number of elements erased.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1288,11 +1263,13 @@ Returns:;; The number of elements in bucket `n`.
==== bucket
```c++
size_type bucket(const key_type& k) const;
template<class K> size_type bucket(const K& k) const;
```
[horizontal]
Returns:;; The index of the bucket which would contain an element with key `k`.
Postconditions:;; The return value is less than `bucket_count()`.
Notes:;; The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---

View File

@ -100,21 +100,23 @@ namespace boost {
template<class... Args> iterator xref:#unordered_set_emplace_hint[emplace_hint](const_iterator position, Args&&... args);
std::pair<iterator, bool> xref:#unordered_set_copy_insert[insert](const value_type& obj);
std::pair<iterator, bool> xref:#unordered_set_move_insert[insert](value_type&& obj);
template<class K> std::pair<iterator, bool> xref:#unordered_set_transparent_insert[insert](K&& k);
iterator xref:#unordered_set_copy_insert_with_hint[insert](const_iterator hint, const value_type& obj);
iterator xref:#unordered_set_move_insert_with_hint[insert](const_iterator hint, value_type&& obj);
template<class K> iterator xref:#unordered_set_transparent_insert_with_hint[insert](const_iterator hint, K&& k);
template<class InputIterator> void xref:#unordered_set_insert_iterator_range[insert](InputIterator first, InputIterator last);
void xref:#unordered_set_insert_initializer_list[insert](std::initializer_list<value_type>);
node_type xref:#unordered_set_extract_by_iterator[extract](const_iterator position);
node_type xref:#unordered_set_extract_by_value[extract](const key_type& k);
template<class K> node_type xref:#unordered_set_transparent_extract_by_value[extract](K&& k);
template<class K> node_type xref:#unordered_set_extract_by_value[extract](K&& k);
insert_return_type xref:#unordered_set_insert_with_node_handle[insert](node_type&& nh);
iterator xref:#unordered_set_insert_with_hint_and_node_handle[insert](const_iterator hint, node_type&& nh);
iterator xref:#unordered_set_erase_by_position[erase](iterator position);
iterator xref:#unordered_set_erase_by_position[erase](const_iterator position);
size_type xref:#unordered_set_erase_by_value[erase](const key_type& k);
template<class K> size_type xref:#unordered_set_transparent_erase_by_value[erase](K&& k);
template<class K> size_type xref:#unordered_set_erase_by_value[erase](K&& k);
iterator xref:#unordered_set_erase_range[erase](const_iterator first, const_iterator last);
void xref:#unordered_set_quick_erase[quick_erase](const_iterator position);
void xref:#unordered_set_erase_return_void[erase_return_void](const_iterator position);
@ -168,6 +170,7 @@ namespace boost {
size_type xref:#unordered_set_max_bucket_count[max_bucket_count]() const noexcept;
size_type xref:#unordered_set_bucket_size[bucket_size](size_type n) const;
size_type xref:#unordered_set_bucket[bucket](const key_type& k) const;
template<class K> size_type xref:#unordered_set_bucket[bucket](const K& k) const;
local_iterator xref:#unordered_set_begin_2[begin](size_type n);
const_local_iterator xref:#unordered_set_begin_2[begin](size_type n) const;
local_iterator xref:#unordered_set_end_2[end](size_type n);
@ -847,6 +850,27 @@ Pointers and references to elements are never invalidated.
---
==== Transparent Insert
```c++
template<class K> std::pair<iterator, bool> insert(K&& k);
```
Inserts an element constructed from `std::forward<K>(k)` in the container if and only if there is no element in the container with an equivalent key.
[horizontal]
Requires:;; `value_type` is https://en.cppreference.com/w/cpp/named_req/EmplaceConstructible[EmplaceConstructible^] from `k`.
Returns:;; The bool component of the return type is true if an insert took place. +
+
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load factor. +
+
Pointers and references to elements are never invalidated. +
+
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
==== Copy Insert with Hint
```c++
iterator insert(const_iterator hint, const value_type& obj);
@ -888,6 +912,29 @@ Pointers and references to elements are never invalidated.
---
==== Transparent Insert with Hint
```c++
template<class K> iterator insert(const_iterator hint, K&& k);
```
Inserts an element constructed from `std::forward<K>(k)` in the container if and only if there is no element in the container with an equivalent key.
`hint` is a suggestion to where the element should be inserted.
[horizontal]
Requires:;; `value_type` is https://en.cppreference.com/w/cpp/named_req/EmplaceConstructible[EmplaceConstructible^] from `k`.
Returns:;; If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way that Boost.Unordered supports is to point to an existing element with the same key. +
+
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load factor. +
+
Pointers and references to elements are never invalidated. +
+
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
==== Insert Iterator Range
```c++
template<class InputIterator> void insert(InputIterator first, InputIterator last);
@ -936,30 +983,17 @@ Notes:;; In C++17 a node extracted using this method can be inserted into a comp
==== Extract by Value
```c++
node_type extract(const key_type& k);
```
Removes an element with key equivalent to `k`.
[horizontal]
Returns:;; A `node_type` owning the element if found, otherwise an empty `node_type`.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; In C++17 a node extracted using this method can be inserted into a compatible `unordered_multiset`, but that is not supported yet.
---
==== Transparent Extract by Value
```c++
template<class K> node_type extract(K&& k);
```
Removes an element with key equivalent to `k`.
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
[horizontal]
Returns:;; A `node_type` owning the element if found, otherwise an empty `node_type`.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; In C++17 a node extracted using this method can be inserted into a compatible `unordered_multiset`, but that is not supported yet.
Notes:;; In C++17 a node extracted using this method can be inserted into a compatible `unordered_multiset`, but that is not supported yet. +
+
The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1038,28 +1072,15 @@ Notes:;; In older versions this could be inefficient because it had to search th
==== Erase by Value
```c++
size_type erase(const key_type& k);
```
Erase all elements with key equivalent to `k`.
[horizontal]
Returns:;; The number of elements erased.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
---
==== Transparent Erase by Value
```c++
template<class K> size_type erase(K&& k);
```
Erase all elements with key equivalent to `k`.
This overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
[horizontal]
Returns:;; The number of elements erased.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
@ -1309,11 +1330,13 @@ Returns:;; The number of elements in bucket `n`.
==== bucket
```c++
size_type bucket(const key_type& k) const;
template<class K> size_type bucket(const K& k) const;
```
[horizontal]
Returns:;; The index of the bucket which would contain an element with key `k`.
Postconditions:;; The return value is less than `bucket_count()`.
Notes:;; The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---

View File

@ -1477,7 +1477,22 @@ namespace boost {
}
#endif
}
template <typename T, typename Alloc, typename Key>
inline typename boost::allocator_pointer<Alloc>::type
construct_node_from_key(T*, Alloc& alloc, BOOST_FWD_REF(Key) k)
{
return construct_node(alloc, boost::forward<Key>(k));
}
template <typename T, typename V, typename Alloc, typename Key>
inline typename boost::allocator_pointer<Alloc>::type
construct_node_from_key(
std::pair<T const, V>*, Alloc& alloc, BOOST_FWD_REF(Key) k)
{
return construct_node_pair(alloc, boost::forward<Key>(k));
}
} // namespace func
}
}
}
@ -2640,8 +2655,10 @@ namespace boost {
} else {
node_allocator_type alloc = node_alloc();
node_tmp tmp(
detail::func::construct_node_pair(alloc, boost::forward<Key>(k)),
value_type* dispatch = BOOST_NULLPTR;
node_tmp tmp(detail::func::construct_node_from_key(
dispatch, alloc, boost::forward<Key>(k)),
alloc);
if (size_ + 1 > max_load_) {
@ -2660,7 +2677,7 @@ namespace boost {
template <typename Key>
iterator try_emplace_hint_unique(c_iterator hint, BOOST_FWD_REF(Key) k)
{
if (hint.p && this->key_eq()(hint->first, k)) {
if (hint.p && this->key_eq()(extractor::extract(*hint), k)) {
return iterator(hint.p, hint.itb);
} else {
return try_emplace_unique(k).first;

View File

@ -53,10 +53,10 @@ namespace boost {
{
};
template <class, class A, class B> struct are_transparent
template <class, class Hash, class KeyEqual> struct are_transparent
{
static bool const value =
is_transparent<A>::value && is_transparent<B>::value;
is_transparent<Hash>::value && is_transparent<KeyEqual>::value;
};
template <class Key, class UnorderedMap> struct transparent_non_iterable

View File

@ -278,24 +278,37 @@ namespace boost {
template <class M>
std::pair<iterator, bool> insert_or_assign(key_type const& key, M&& obj)
{
auto iter_bool_pair = table_.try_emplace(key, std::forward<M>(obj));
if (iter_bool_pair.second) {
return iter_bool_pair;
auto ibp = table_.try_emplace(key, std::forward<M>(obj));
if (ibp.second) {
return ibp;
}
iter_bool_pair.first->second = std::forward<M>(obj);
return iter_bool_pair;
ibp.first->second = std::forward<M>(obj);
return ibp;
}
template <class M>
std::pair<iterator, bool> insert_or_assign(key_type&& key, M&& obj)
{
auto iter_bool_pair =
table_.try_emplace(std::move(key), std::forward<M>(obj));
if (iter_bool_pair.second) {
return iter_bool_pair;
auto ibp = table_.try_emplace(std::move(key), std::forward<M>(obj));
if (ibp.second) {
return ibp;
}
iter_bool_pair.first->second = std::forward<M>(obj);
return iter_bool_pair;
ibp.first->second = std::forward<M>(obj);
return ibp;
}
template <class K, class M>
typename std::enable_if<
boost::unordered::detail::are_transparent<K, hasher, key_equal>::value,
std::pair<iterator, bool> >::type
insert_or_assign(K&& k, M&& obj)
{
auto ibp = table_.try_emplace(std::forward<K>(k), std::forward<M>(obj));
if (ibp.second) {
return ibp;
}
ibp.first->second = std::forward<M>(obj);
return ibp;
}
template <class M>
@ -311,6 +324,16 @@ namespace boost {
.first;
}
template <class K, class M>
typename std::enable_if<
boost::unordered::detail::are_transparent<K, hasher, key_equal>::value,
iterator>::type
insert_or_assign(const_iterator, K&& k, M&& obj)
{
return this->insert_or_assign(std::forward<K>(k), std::forward<M>(obj))
.first;
}
template <class... Args>
BOOST_FORCEINLINE std::pair<iterator, bool> emplace(Args&&... args)
{
@ -337,6 +360,17 @@ namespace boost {
return table_.try_emplace(std::move(key), std::forward<Args>(args)...);
}
template <class K, class... Args>
BOOST_FORCEINLINE typename std::enable_if<
boost::unordered::detail::transparent_non_iterable<K,
unordered_flat_map>::value,
std::pair<iterator, bool> >::type
try_emplace(K&& key, Args&&... args)
{
return table_.try_emplace(
std::forward<K>(key), std::forward<Args>(args)...);
}
template <class... Args>
BOOST_FORCEINLINE iterator try_emplace(
const_iterator, key_type const& key, Args&&... args)
@ -352,6 +386,18 @@ namespace boost {
.first;
}
template <class K, class... Args>
BOOST_FORCEINLINE typename std::enable_if<
boost::unordered::detail::transparent_non_iterable<K,
unordered_flat_map>::value,
iterator>::type
try_emplace(const_iterator, K&& key, Args&&... args)
{
return table_
.try_emplace(std::forward<K>(key), std::forward<Args>(args)...)
.first;
}
BOOST_FORCEINLINE void erase(iterator pos) { table_.erase(pos); }
BOOST_FORCEINLINE void erase(const_iterator pos)
{
@ -427,6 +473,34 @@ namespace boost {
std::out_of_range("key was not found in unordered_flat_map"));
}
template <class K>
typename std::enable_if<
boost::unordered::detail::are_transparent<K, hasher, key_equal>::value,
mapped_type&>::type
at(K&& key)
{
auto pos = table_.find(std::forward<K>(key));
if (pos != table_.end()) {
return pos->second;
}
boost::throw_exception(
std::out_of_range("key was not found in unordered_flat_map"));
}
template <class K>
typename std::enable_if<
boost::unordered::detail::are_transparent<K, hasher, key_equal>::value,
mapped_type const&>::type
at(K&& key) const
{
auto pos = table_.find(std::forward<K>(key));
if (pos != table_.end()) {
return pos->second;
}
boost::throw_exception(
std::out_of_range("key was not found in unordered_flat_map"));
}
BOOST_FORCEINLINE mapped_type& operator[](key_type const& key)
{
return table_.try_emplace(key).first->second;
@ -437,6 +511,15 @@ namespace boost {
return table_.try_emplace(std::move(key)).first->second;
}
template <class K>
typename std::enable_if<
boost::unordered::detail::are_transparent<K, hasher, key_equal>::value,
mapped_type&>::type
operator[](K&& key)
{
return table_.try_emplace(std::forward<K>(key)).first->second;
}
BOOST_FORCEINLINE size_type count(key_type const& key) const
{
auto pos = table_.find(key);

View File

@ -231,6 +231,15 @@ namespace boost {
return table_.insert(std::move(value));
}
template <class K>
BOOST_FORCEINLINE typename std::enable_if<
detail::transparent_non_iterable<K, unordered_flat_set>::value,
std::pair<iterator, bool> >::type
insert(K&& k)
{
return table_.try_emplace(std::forward<K>(k));
}
BOOST_FORCEINLINE iterator insert(const_iterator, value_type const& value)
{
return table_.insert(value).first;
@ -241,6 +250,15 @@ namespace boost {
return table_.insert(std::move(value)).first;
}
template <class K>
BOOST_FORCEINLINE typename std::enable_if<
detail::transparent_non_iterable<K, unordered_flat_set>::value,
iterator>::type
insert(const_iterator, K&& k)
{
return table_.try_emplace(std::forward<K>(k)).first;
}
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{

View File

@ -486,6 +486,16 @@ namespace boost {
boost::move(k), boost::forward<Args>(args)...);
}
template <class Key, class... Args>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_map>::value,
std::pair<iterator, bool> >::type
try_emplace(Key&& k, Args&&... args)
{
return table_.try_emplace_unique(
boost::forward<Key>(k), boost::forward<Args>(args)...);
}
template <class... Args>
iterator try_emplace(
const_iterator hint, key_type const& k, BOOST_FWD_REF(Args)... args)
@ -502,6 +512,16 @@ namespace boost {
hint, boost::move(k), boost::forward<Args>(args)...);
}
template <class Key, class... Args>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_map>::value,
iterator>::type
try_emplace(const_iterator hint, Key&& k, Args&&... args)
{
return table_.try_emplace_hint_unique(
hint, boost::forward<Key>(k), boost::forward<Args>(args)...);
}
#else
// In order to make this a template, this handles both:
@ -582,6 +602,43 @@ namespace boost {
boost::forward<A1>(a1), boost::forward<A2>(a2)));
}
// try_emplace(Key&&, Args&&...)
template <typename Key, typename A0>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_map>::value,
std::pair<iterator, bool> >::type
try_emplace(BOOST_FWD_REF(Key) k, BOOST_FWD_REF(A0) a0)
{
return table_.try_emplace_unique(
boost::forward<Key>(k), boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0)));
}
template <typename Key, typename A0, typename A1>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_map>::value,
std::pair<iterator, bool> >::type
try_emplace(
BOOST_FWD_REF(Key) k, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
{
return table_.try_emplace_unique(boost::forward<Key>(k),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1)));
}
template <typename Key, typename A0, typename A1, typename A2>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_map>::value,
std::pair<iterator, bool> >::type
try_emplace(BOOST_FWD_REF(Key) k, BOOST_FWD_REF(A0) a0,
BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
{
return table_.try_emplace_unique(boost::forward<Key>(k),
boost::unordered::detail::create_emplace_args(boost::forward<A0>(a0),
boost::forward<A1>(a1), boost::forward<A2>(a2)));
}
// try_emplace(const_iterator hint, key const&, Args&&...)
template <typename A0>
@ -640,6 +697,44 @@ namespace boost {
boost::forward<A1>(a1), boost::forward<A2>(a2)));
}
// try_emplace(const_iterator hint, Key&&, Args&&...)
template <typename Key, typename A0>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_map>::value,
iterator>::type
try_emplace(
const_iterator hint, BOOST_FWD_REF(Key) k, BOOST_FWD_REF(A0) a0)
{
return table_.try_emplace_hint_unique(hint, boost::forward<Key>(k),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0)));
}
template <typename Key, typename A0, typename A1>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_map>::value,
iterator>::type
try_emplace(const_iterator hint, BOOST_FWD_REF(Key) k,
BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
{
return table_.try_emplace_hint_unique(hint, boost::forward<Key>(k),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1)));
}
template <typename Key, typename A0, typename A1, typename A2>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_map>::value,
iterator>::type
try_emplace(const_iterator hint, BOOST_FWD_REF(Key) k,
BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
{
return table_.try_emplace_hint_unique(hint, boost::forward<Key>(k),
boost::unordered::detail::create_emplace_args(boost::forward<A0>(a0),
boost::forward<A1>(a1), boost::forward<A2>(a2)));
}
#define BOOST_UNORDERED_TRY_EMPLACE(z, n, _) \
\
template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \
@ -706,6 +801,15 @@ namespace boost {
boost::move(k), boost::forward<M>(obj));
}
template <class Key, class M>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
std::pair<iterator, bool> >::type
insert_or_assign(BOOST_FWD_REF(Key) k, BOOST_FWD_REF(M) obj)
{
return table_.insert_or_assign_unique(
boost::forward<Key>(k), boost::forward<M>(obj));
}
template <class M>
iterator insert_or_assign(
const_iterator, key_type const& k, BOOST_FWD_REF(M) obj)
@ -722,6 +826,18 @@ namespace boost {
.first;
}
template <class Key, class M>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
iterator>::type
insert_or_assign(
const_iterator, BOOST_FWD_REF(Key) k, BOOST_FWD_REF(M) obj)
{
return table_
.insert_or_assign_unique(
boost::forward<Key>(k), boost::forward<M>(obj))
.first;
}
iterator erase(iterator);
iterator erase(const_iterator);
size_type erase(const key_type&);
@ -856,9 +972,23 @@ namespace boost {
mapped_type& operator[](const key_type&);
mapped_type& operator[](BOOST_RV_REF(key_type));
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
mapped_type&>::type
operator[](BOOST_FWD_REF(Key) k);
mapped_type& at(const key_type&);
mapped_type const& at(const key_type&) const;
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
mapped_type&>::type at(BOOST_FWD_REF(Key) k);
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
mapped_type const&>::type at(BOOST_FWD_REF(Key) k) const;
// bucket interface
size_type bucket_count() const BOOST_NOEXCEPT
@ -878,6 +1008,14 @@ namespace boost {
return table_.hash_to_bucket(table_.hash(k));
}
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
size_type>::type
bucket(BOOST_FWD_REF(Key) k) const
{
return table_.hash_to_bucket(table_.hash(boost::forward<Key>(k)));
}
local_iterator begin(size_type n)
{
return table_.begin(n);
@ -1584,6 +1722,14 @@ namespace boost {
return table_.hash_to_bucket(table_.hash(k));
}
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
size_type>::type
bucket(BOOST_FWD_REF(Key) k) const
{
return table_.hash_to_bucket(table_.hash(boost::forward<Key>(k)));
}
local_iterator begin(size_type n)
{
return local_iterator(table_.begin(n));
@ -2098,6 +2244,15 @@ namespace boost {
return table_.try_emplace_unique(boost::move(k)).first->second;
}
template <class K, class T, class H, class P, class A>
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
typename unordered_map<K, T, H, P, A>::mapped_type&>::type
unordered_map<K, T, H, P, A>::operator[](BOOST_FWD_REF(Key) k)
{
return table_.try_emplace_unique(boost::forward<Key>(k)).first->second;
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::mapped_type&
unordered_map<K, T, H, P, A>::at(const key_type& k)
@ -2130,6 +2285,42 @@ namespace boost {
std::out_of_range("Unable to find key in unordered_map."));
}
template <class K, class T, class H, class P, class A>
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
typename unordered_map<K, T, H, P, A>::mapped_type&>::type
unordered_map<K, T, H, P, A>::at(BOOST_FWD_REF(Key) k)
{
typedef typename table::node_pointer node_pointer;
if (table_.size_) {
node_pointer p = table_.find_node(boost::forward<Key>(k));
if (p)
return p->value().second;
}
boost::throw_exception(
std::out_of_range("Unable to find key in unordered_map."));
}
template <class K, class T, class H, class P, class A>
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
typename unordered_map<K, T, H, P, A>::mapped_type const&>::type
unordered_map<K, T, H, P, A>::at(BOOST_FWD_REF(Key) k) const
{
typedef typename table::node_pointer node_pointer;
if (table_.size_) {
node_pointer p = table_.find_node(boost::forward<Key>(k));
if (p)
return p->value().second;
}
boost::throw_exception(
std::out_of_range("Unable to find key in unordered_map."));
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::size_type
unordered_map<K, T, H, P, A>::bucket_size(size_type n) const

View File

@ -390,6 +390,15 @@ namespace boost {
return this->emplace(boost::move(x));
}
template <class Key>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_set>::value,
std::pair<iterator, bool> >::type
insert(BOOST_FWD_REF(Key) k)
{
return table_.try_emplace_unique(boost::forward<Key>(k));
}
iterator insert(const_iterator hint, value_type const& x)
{
return this->emplace_hint(hint, x);
@ -400,6 +409,15 @@ namespace boost {
return this->emplace_hint(hint, boost::move(x));
}
template <class Key>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_set>::value,
iterator>::type
insert(const_iterator hint, BOOST_FWD_REF(Key) k)
{
return table_.try_emplace_hint_unique(hint, boost::forward<Key>(k));
}
template <class InputIt> void insert(InputIt, InputIt);
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
@ -571,6 +589,14 @@ namespace boost {
return table_.hash_to_bucket(table_.hash(k));
}
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
size_type>::type
bucket(BOOST_FWD_REF(Key) k) const
{
return table_.hash_to_bucket(table_.hash(boost::forward<Key>(k)));
}
local_iterator begin(size_type n)
{
return local_iterator(table_.begin(n));
@ -1212,6 +1238,14 @@ namespace boost {
return table_.hash_to_bucket(table_.hash(k));
}
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
size_type>::type
bucket(BOOST_FWD_REF(Key) k) const
{
return table_.hash_to_bucket(table_.hash(boost::forward<Key>(k)));
}
local_iterator begin(size_type n)
{
return local_iterator(table_.begin(n));

View File

@ -1478,6 +1478,312 @@ template <class UnorderedMap> void test_map_non_transparent_extract()
#endif
}
template <class UnorderedMap> void test_map_transparent_try_emplace()
{
count_reset();
typedef typename UnorderedMap::iterator iterator;
UnorderedMap map;
map.insert(std::make_pair(0, 1337));
map.insert(std::make_pair(1, 1338));
map.insert(std::make_pair(2, 1339));
map.insert(std::make_pair(0, 1340));
map.insert(std::make_pair(0, 1341));
map.insert(std::make_pair(0, 1342));
int key_count = key::count_;
std::pair<iterator, bool> r = map.try_emplace(0, 7331);
BOOST_TEST(r.first == map.find(0));
BOOST_TEST_NOT(r.second);
BOOST_TEST_EQ(key::count_, key_count);
r = map.try_emplace(4, 7331);
BOOST_TEST(r.first == map.find(4));
BOOST_TEST(r.second);
BOOST_TEST_EQ(key::count_, key_count + 1);
key_count = key::count_;
iterator p = map.try_emplace(map.cbegin(), 0, 7331);
BOOST_TEST(p == map.find(0));
BOOST_TEST_EQ(key::count_, key_count);
p = map.try_emplace(map.begin(), 5, 7331);
BOOST_TEST(p == map.find(5));
BOOST_TEST_EQ(key::count_, key_count + 1);
}
template <class UnorderedMap> void test_map_non_transparent_try_emplace()
{
count_reset();
typedef typename UnorderedMap::iterator iterator;
UnorderedMap map;
map.insert(std::make_pair(0, 1337));
map.insert(std::make_pair(1, 1338));
map.insert(std::make_pair(2, 1339));
map.insert(std::make_pair(0, 1340));
map.insert(std::make_pair(0, 1341));
map.insert(std::make_pair(0, 1342));
int key_count = key::count_;
std::pair<iterator, bool> r = map.try_emplace(0, 7331);
BOOST_TEST_EQ(key::count_, key_count + 1);
BOOST_TEST(r.first == map.find(0));
BOOST_TEST_NOT(r.second);
key_count = key::count_;
r = map.try_emplace(4, 7331);
BOOST_TEST_EQ(key::count_, key_count + 2);
BOOST_TEST(r.first == map.find(4));
BOOST_TEST(r.second);
key_count = key::count_;
iterator p = map.try_emplace(map.cbegin(), 0, 7331);
BOOST_TEST_EQ(key::count_, key_count + 1);
BOOST_TEST(p == map.find(0));
key_count = key::count_;
p = map.try_emplace(map.begin(), 5, 7331);
BOOST_TEST_EQ(key::count_, key_count + 2);
BOOST_TEST(p == map.find(5));
}
template <class UnorderedMap> void test_map_transparent_insert_or_assign()
{
count_reset();
typedef typename UnorderedMap::iterator iterator;
UnorderedMap map;
map.insert(std::make_pair(0, 1337));
map.insert(std::make_pair(1, 1338));
map.insert(std::make_pair(2, 1339));
map.insert(std::make_pair(0, 1340));
map.insert(std::make_pair(0, 1341));
map.insert(std::make_pair(0, 1342));
int key_count = key::count_;
std::pair<iterator, bool> r = map.insert_or_assign(0, 7331);
BOOST_TEST(r.first == map.find(0));
BOOST_TEST_EQ(r.first->second, 7331);
BOOST_TEST_NOT(r.second);
BOOST_TEST_EQ(key::count_, key_count);
r = map.insert_or_assign(4, 7331);
BOOST_TEST(r.first == map.find(4));
BOOST_TEST(r.second);
BOOST_TEST_EQ(key::count_, key_count + 1);
key_count = key::count_;
iterator p = map.insert_or_assign(map.cbegin(), 0, 1111);
BOOST_TEST(p == map.find(0));
BOOST_TEST_EQ(p->second, 1111);
BOOST_TEST_EQ(key::count_, key_count);
p = map.insert_or_assign(map.begin(), 5, 7331);
BOOST_TEST(p == map.find(5));
BOOST_TEST_EQ(key::count_, key_count + 1);
}
template <class UnorderedMap> void test_map_non_transparent_insert_or_assign()
{
count_reset();
typedef typename UnorderedMap::iterator iterator;
UnorderedMap map;
map.insert(std::make_pair(0, 1337));
map.insert(std::make_pair(1, 1338));
map.insert(std::make_pair(2, 1339));
map.insert(std::make_pair(0, 1340));
map.insert(std::make_pair(0, 1341));
map.insert(std::make_pair(0, 1342));
int key_count = key::count_;
std::pair<iterator, bool> r = map.insert_or_assign(0, 7331);
BOOST_TEST_EQ(key::count_, key_count + 1);
BOOST_TEST(r.first == map.find(0));
BOOST_TEST_EQ(r.first->second, 7331);
BOOST_TEST_NOT(r.second);
key_count = key::count_;
r = map.insert_or_assign(4, 7331);
BOOST_TEST_EQ(key::count_, key_count + 2);
BOOST_TEST(r.first == map.find(4));
BOOST_TEST(r.second);
key_count = key::count_;
iterator p = map.insert_or_assign(map.cbegin(), 0, 1111);
BOOST_TEST_EQ(key::count_, key_count + 1);
BOOST_TEST(p == map.find(0));
BOOST_TEST_EQ(p->second, 1111);
key_count = key::count_;
p = map.insert_or_assign(map.begin(), 5, 7331);
BOOST_TEST_EQ(key::count_, key_count + 2);
BOOST_TEST(p == map.find(5));
}
template <class UnorderedMap> void test_map_transparent_subscript()
{
count_reset();
UnorderedMap map;
map[0] = 1337;
map[1] = 1338;
map[2] = 1339;
map[0] = 1340;
map[0] = 1341;
map[0] = 1342;
int key_count = key::count_;
map[0] = 7331;
BOOST_ASSERT(BOOST_TEST_EQ(key::count_, key_count));
map[4] = 7331;
BOOST_TEST_EQ(key::count_, key_count + 1);
}
template <class UnorderedMap> void test_map_non_transparent_subscript()
{
count_reset();
UnorderedMap map;
map[0] = 1337;
map[1] = 1338;
map[2] = 1339;
map[0] = 1340;
map[0] = 1341;
map[0] = 1342;
int key_count = key::count_;
map[0] = 7331;
BOOST_ASSERT(BOOST_TEST_EQ(key::count_, key_count + 1));
key_count = key::count_;
map[4] = 7331;
BOOST_TEST_EQ(key::count_, key_count + 2);
}
template <class UnorderedMap> void test_map_transparent_at()
{
count_reset();
UnorderedMap map;
map.insert(std::make_pair(0, 1337));
map.insert(std::make_pair(1, 1338));
map.insert(std::make_pair(2, 1339));
map.insert(std::make_pair(0, 1340));
map.insert(std::make_pair(0, 1341));
map.insert(std::make_pair(0, 1342));
int key_count = key::count_;
map.at(0) = 7331;
BOOST_TEST_EQ(key::count_, key_count);
BOOST_TEST_THROWS(map.at(4), std::out_of_range);
BOOST_TEST_EQ(key::count_, key_count);
UnorderedMap const& m = map;
BOOST_TEST_EQ(m.at(0), 7331);
BOOST_TEST_EQ(key::count_, key_count);
BOOST_TEST_THROWS(m.at(4), std::out_of_range);
BOOST_TEST_EQ(key::count_, key_count);
}
template <class UnorderedMap> void test_map_non_transparent_at()
{
count_reset();
UnorderedMap map;
map.insert(std::make_pair(0, 1337));
map.insert(std::make_pair(1, 1338));
map.insert(std::make_pair(2, 1339));
map.insert(std::make_pair(0, 1340));
map.insert(std::make_pair(0, 1341));
map.insert(std::make_pair(0, 1342));
int key_count = key::count_;
map.at(0) = 7331;
BOOST_TEST_EQ(key::count_, key_count + 1);
key_count = key::count_;
BOOST_TEST_THROWS(map.at(4), std::out_of_range);
BOOST_TEST_EQ(key::count_, key_count + 1);
key_count = key::count_;
UnorderedMap const& m = map;
BOOST_TEST_EQ(m.at(0), 7331);
BOOST_TEST_EQ(key::count_, key_count + 1);
key_count = key::count_;
BOOST_TEST_THROWS(m.at(4), std::out_of_range);
BOOST_TEST_EQ(key::count_, key_count + 1);
}
template <class UnorderedMap> void test_map_transparent_bucket()
{
#ifndef BOOST_UNORDERED_FOA_TESTS
count_reset();
UnorderedMap map;
map.insert(std::make_pair(0, 1337));
map.insert(std::make_pair(1, 1338));
map.insert(std::make_pair(2, 1339));
map.insert(std::make_pair(0, 1340));
map.insert(std::make_pair(0, 1341));
map.insert(std::make_pair(0, 1342));
int key_count = key::count_;
map.bucket(0);
map.bucket(4);
BOOST_TEST_EQ(key::count_, key_count);
#endif
}
template <class UnorderedMap> void test_map_non_transparent_bucket()
{
#ifndef BOOST_UNORDERED_FOA_TESTS
count_reset();
UnorderedMap map;
map.insert(std::make_pair(0, 1337));
map.insert(std::make_pair(1, 1338));
map.insert(std::make_pair(2, 1339));
map.insert(std::make_pair(0, 1340));
map.insert(std::make_pair(0, 1341));
map.insert(std::make_pair(0, 1342));
int key_count = key::count_;
map.bucket(0);
map.bucket(4);
BOOST_TEST_EQ(key::count_, key_count + 2);
#endif
}
#ifndef BOOST_UNORDERED_FOA_TESTS
transparent_unordered_set::node_type set_extract_overload_compile_test()
{
@ -1626,6 +1932,134 @@ template <class UnorderedSet> void test_set_non_transparent_extract()
#endif
}
template <class UnorderedSet> void test_set_transparent_bucket()
{
#ifndef BOOST_UNORDERED_FOA_TESTS
count_reset();
UnorderedSet set;
set.insert(0);
set.insert(1);
set.insert(2);
set.insert(0);
set.insert(0);
set.insert(0);
int key_count = key::count_;
set.bucket(0);
set.bucket(4);
BOOST_TEST_EQ(key::count_, key_count);
#endif
}
template <class UnorderedSet> void test_set_non_transparent_bucket()
{
#ifndef BOOST_UNORDERED_FOA_TESTS
count_reset();
UnorderedSet set;
set.insert(0);
set.insert(1);
set.insert(2);
set.insert(0);
set.insert(0);
set.insert(0);
int key_count = key::count_;
set.bucket(0);
set.bucket(4);
BOOST_TEST_EQ(key::count_, key_count + 2);
#endif
}
template <class UnorderedSet> void test_set_transparent_insert()
{
count_reset();
typedef typename UnorderedSet::iterator iterator;
UnorderedSet set;
set.insert(0);
set.insert(1);
set.insert(2);
set.insert(0);
set.insert(0);
set.insert(0);
int key_count = key::count_;
std::pair<iterator, bool> p = set.insert(0);
BOOST_TEST(p.first == set.find(0));
BOOST_TEST_NOT(p.second);
BOOST_TEST_EQ(key::count_, key_count);
key_count = key::count_;
p = set.insert(4);
BOOST_TEST(p.first == set.find(4));
BOOST_TEST(p.second);
BOOST_TEST_EQ(key::count_, key_count + 1);
key_count = key::count_;
iterator pos = set.insert(set.begin(), 0);
BOOST_TEST(pos == set.find(0));
BOOST_TEST_EQ(key::count_, key_count);
key_count = key::count_;
pos = set.insert(set.begin(), 5);
BOOST_TEST(pos == set.find(5));
BOOST_TEST_EQ(key::count_, key_count + 1);
// check for collisions with insert(iterator, iterator)
// note: this precludes Key from being convertible to an iterator which isn't
// explicitly stated by p2363r3
//
set.insert(set.begin(), set.end());
}
template <class UnorderedSet> void test_set_non_transparent_insert()
{
count_reset();
typedef typename UnorderedSet::iterator iterator;
UnorderedSet set;
set.insert(0);
set.insert(1);
set.insert(2);
set.insert(0);
set.insert(0);
set.insert(0);
int key_count = key::count_;
std::pair<iterator, bool> p = set.insert(0);
BOOST_TEST_EQ(key::count_, key_count + 1);
BOOST_TEST(p.first == set.find(0));
BOOST_TEST_NOT(p.second);
key_count = key::count_;
p = set.insert(4);
BOOST_TEST_EQ(key::count_, key_count + 2);
BOOST_TEST(p.first == set.find(4));
BOOST_TEST(p.second);
key_count = key::count_;
iterator pos = set.insert(set.begin(), 0);
BOOST_TEST_EQ(key::count_, key_count + 1);
BOOST_TEST(pos == set.find(0));
key_count = key::count_;
pos = set.insert(set.begin(), 5);
BOOST_TEST_EQ(key::count_, key_count + 2);
BOOST_TEST(pos == set.find(5));
set.insert(set.begin(), set.end());
}
template <class Key, class T, class Hash, class KeyEqual> struct map_type
{
#ifdef BOOST_UNORDERED_FOA_TESTS
@ -1646,6 +2080,11 @@ void test_unordered_map()
test_map_transparent_equal_range<unordered_map>();
test_map_transparent_erase<unordered_map>();
test_map_transparent_extract<unordered_map>();
test_map_transparent_try_emplace<unordered_map>();
test_map_transparent_insert_or_assign<unordered_map>();
test_map_transparent_subscript<unordered_map>();
test_map_transparent_at<unordered_map>();
test_map_transparent_bucket<unordered_map>();
}
{
@ -1658,6 +2097,11 @@ void test_unordered_map()
test_map_non_transparent_equal_range<unordered_map>();
test_map_non_transparent_erase<unordered_map>();
test_map_non_transparent_extract<unordered_map>();
test_map_non_transparent_try_emplace<unordered_map>();
test_map_non_transparent_insert_or_assign<unordered_map>();
test_map_non_transparent_subscript<unordered_map>();
test_map_non_transparent_at<unordered_map>();
test_map_non_transparent_bucket<unordered_map>();
}
{
@ -1671,6 +2115,11 @@ void test_unordered_map()
test_map_non_transparent_equal_range<unordered_map>();
test_map_non_transparent_erase<unordered_map>();
test_map_non_transparent_extract<unordered_map>();
test_map_non_transparent_try_emplace<unordered_map>();
test_map_non_transparent_insert_or_assign<unordered_map>();
test_map_non_transparent_subscript<unordered_map>();
test_map_non_transparent_at<unordered_map>();
test_map_non_transparent_bucket<unordered_map>();
}
{
@ -1684,6 +2133,11 @@ void test_unordered_map()
test_map_non_transparent_equal_range<unordered_map>();
test_map_non_transparent_erase<unordered_map>();
test_map_non_transparent_extract<unordered_map>();
test_map_non_transparent_try_emplace<unordered_map>();
test_map_non_transparent_insert_or_assign<unordered_map>();
test_map_non_transparent_subscript<unordered_map>();
test_map_non_transparent_at<unordered_map>();
test_map_non_transparent_bucket<unordered_map>();
}
}
@ -1700,6 +2154,7 @@ void test_unordered_multimap()
test_map_transparent_equal_range<unordered_multimap>();
test_map_transparent_erase<unordered_multimap>();
test_map_transparent_extract<unordered_multimap>();
test_map_transparent_bucket<unordered_multimap>();
}
{
@ -1713,6 +2168,7 @@ void test_unordered_multimap()
test_map_non_transparent_equal_range<unordered_multimap>();
test_map_non_transparent_erase<unordered_multimap>();
test_map_non_transparent_extract<unordered_multimap>();
test_map_non_transparent_bucket<unordered_multimap>();
}
{
@ -1726,6 +2182,7 @@ void test_unordered_multimap()
test_map_non_transparent_equal_range<unordered_multimap>();
test_map_non_transparent_erase<unordered_multimap>();
test_map_non_transparent_extract<unordered_multimap>();
test_map_non_transparent_bucket<unordered_multimap>();
}
{
@ -1739,6 +2196,7 @@ void test_unordered_multimap()
test_map_non_transparent_equal_range<unordered_multimap>();
test_map_non_transparent_erase<unordered_multimap>();
test_map_non_transparent_extract<unordered_multimap>();
test_map_non_transparent_bucket<unordered_multimap>();
}
}
#endif
@ -1763,6 +2221,8 @@ void test_unordered_set()
test_set_transparent_erase<unordered_set>();
test_set_transparent_equal_range<unordered_set>();
test_set_transparent_extract<unordered_set>();
test_set_transparent_bucket<unordered_set>();
test_set_transparent_insert<unordered_set>();
}
{
@ -1775,6 +2235,8 @@ void test_unordered_set()
test_set_non_transparent_erase<unordered_set>();
test_set_non_transparent_equal_range<unordered_set>();
test_set_non_transparent_extract<unordered_set>();
test_set_non_transparent_bucket<unordered_set>();
test_set_non_transparent_insert<unordered_set>();
}
{
@ -1787,6 +2249,8 @@ void test_unordered_set()
test_set_non_transparent_erase<unordered_set>();
test_set_non_transparent_equal_range<unordered_set>();
test_set_non_transparent_extract<unordered_set>();
test_set_non_transparent_bucket<unordered_set>();
test_set_non_transparent_insert<unordered_set>();
}
{
@ -1799,6 +2263,8 @@ void test_unordered_set()
test_set_non_transparent_erase<unordered_set>();
test_set_non_transparent_equal_range<unordered_set>();
test_set_non_transparent_extract<unordered_set>();
test_set_non_transparent_bucket<unordered_set>();
test_set_non_transparent_insert<unordered_set>();
}
}
@ -1815,6 +2281,7 @@ void test_unordered_multiset()
test_set_transparent_erase<unordered_set>();
test_set_transparent_equal_range<unordered_set>();
test_set_transparent_extract<unordered_set>();
test_set_transparent_bucket<unordered_set>();
}
{
@ -1827,6 +2294,7 @@ void test_unordered_multiset()
test_set_non_transparent_erase<unordered_set>();
test_set_non_transparent_equal_range<unordered_set>();
test_set_non_transparent_extract<unordered_set>();
test_set_non_transparent_bucket<unordered_set>();
}
{
@ -1840,6 +2308,7 @@ void test_unordered_multiset()
test_set_non_transparent_erase<unordered_set>();
test_set_non_transparent_equal_range<unordered_set>();
test_set_non_transparent_extract<unordered_set>();
test_set_non_transparent_bucket<unordered_set>();
}
{
@ -1853,6 +2322,7 @@ void test_unordered_multiset()
test_set_non_transparent_erase<unordered_set>();
test_set_non_transparent_equal_range<unordered_set>();
test_set_non_transparent_extract<unordered_set>();
test_set_non_transparent_bucket<unordered_set>();
}
}
#endif