multi_index/doc/advanced_topics.html
Joaquín M. López Muñoz b35bef74e4 initial commit
[SVN r22759]
2004-05-07 10:44:23 +00:00

1322 lines
84 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0.1 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Boost.MultiIndex Documentation - Advanced topics</title>
<link rel="stylesheet" href="style.css" type="text/css">
</head>
<body>
<h1><img src="../../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align=
"middle" width="277" height="86">Boost.MultiIndex Advanced topics</h1>
<div class="prev_link"><a href="tutorial.html"><img src="prev.gif" alt="tutorial" border="0"><br>
Tutorial
</a></div>
<div class="up_link"><a href="index.html"><img src="up.gif" alt="index" border="0"><br>
Index
</a></div>
<div class="next_link"><a href="reference/index.html"><img src="next.gif" alt="reference" border="0"><br>
Reference
</a></div><br clear="all" style="clear: all;">
<hr>
<h2>Contents</h2>
<ul>
<li><a href="#composite_keys">Composite keys</a></li>
<li><a href="#advanced_key_extractors">Advanced features of Boost.MultiIndex key
extractors</a>
<ul>
<li><a href="#member_offset">Use of <code>member_offset</code></a></li>
<li><a href="#mem_fun_explicit">Use of <code>const_mem_fun_explicit</code> and
<code>mem_fun_explicit</code></a></li>
<li><a href="#composite_key_no_pts"><code>composite_key</code> in compilers
without partial template specialization</a></li>
</ul>
</li>
<li><a href="#ctor_args_list">Use of <code>ctor_args_list</code></a></li>
<li><a href="#debugging_support">Debugging support</a>
<ul>
<li><a href="#safe_mode">Safe mode</a></li>
<li><a href="#invariant_check">Invariant-checking mode</a></li>
</ul>
</li>
<li><a href="#simulate_std_containers">Simulating standard containers with
<code>multi_index_container</code></a>
<ul>
<li><a href="#simulate_assoc_containers">Simulation of associative
containers</a></li>
<li><a href="#simulate_std_list">Simulation of <code>std::list</code></a></li>
</ul>
</li>
<li><a href="#metaprogrammming">Metaprogramming and <code>multi_index_container</code></a>
<ul>
<li><a href="#mpl_analysis">MPL analysis</a></li>
<li><a href="#mpl_synthesis">MPL synthesis</a></li>
</ul>
</li>
</ul>
<h2><a name="composite_keys">Composite keys</a></h2>
<p>
In relational databases, composite keys depend on two or more fields of a given table.
The analogous concept in Boost.MultiIndex is modeled by means of
<a href="reference/key_extraction.html#composite_key">
<code>composite_key</code></a>, as shown in the example:
</p>
<blockquote><pre>
<span class=keyword>struct</span> <span class=identifier>phonebook_entry</span>
<span class=special>{</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>family_name</span><span class=special>;</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>given_name</span><span class=special>;</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>phone_number</span><span class=special>;</span>
<span class=identifier>phonebook_entry</span><span class=special>(</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>family_name</span><span class=special>,</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>given_name</span><span class=special>,</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>phone_number</span><span class=special>):</span>
<span class=identifier>family_name</span><span class=special>(</span><span class=identifier>family_name</span><span class=special>),</span><span class=identifier>given_name</span><span class=special>(</span><span class=identifier>given_name</span><span class=special>),</span><span class=identifier>phone_number</span><span class=special>(</span><span class=identifier>phone_number</span><span class=special>)</span>
<span class=special>{}</span>
<span class=special>};</span>
<span class=comment>// define a multi_index_container with a composite key on
// (family_name,given_name)</span>
<span class=keyword>typedef</span> <span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=identifier>phonebook_entry</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span>
<span class=comment>//non-unique as some subscribers might have more than one number</span>
<span class=identifier>ordered_non_unique</span><span class=special>&lt;</span>
<span class=identifier>composite_key</span><span class=special>&lt;</span>
<span class=identifier>phonebook_entry</span><span class=special>,</span>
<span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>phonebook_entry</span><span class=special>,</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>,&amp;</span><span class=identifier>phonebook_entry</span><span class=special>::</span><span class=identifier>family_name</span><span class=special>&gt;,</span>
<span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>phonebook_entry</span><span class=special>,</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>,&amp;</span><span class=identifier>phonebook_entry</span><span class=special>::</span><span class=identifier>given_name</span><span class=special>&gt;</span>
<span class=special>&gt;</span>
<span class=special>&gt;,</span>
<span class=identifier>ordered_unique</span><span class=special>&lt;</span> <span class=comment>// unique as numbers belong to only one subscriber</span>
<span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>phonebook_entry</span><span class=special>,</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>,&amp;</span><span class=identifier>phonebook_entry</span><span class=special>::</span><span class=identifier>phone_number</span><span class=special>&gt;</span>
<span class=special>&gt;</span>
<span class=special>&gt;</span>
<span class=special>&gt;</span> <span class=identifier>phonebook</span><span class=special>;</span>
</pre></blockquote>
<p>
<code>composite_key</code> accepts two or more key extractors on the same
value (here, <code>phonebook_entry</code>). Lookup operations on a composite
key are accomplished by passing tuples with the values searched:
</p>
<blockquote><pre>
<span class=identifier>phonebook</span> <span class=identifier>pb</span><span class=special>;</span>
<span class=special>...</span>
<span class=comment>// search for Dorothea White's number</span>
<span class=identifier>phonebook</span><span class=special>::</span><span class=identifier>iterator</span> <span class=identifier>it</span><span class=special>=</span><span class=identifier>pb</span><span class=special>.</span><span class=identifier>find</span><span class=special>(</span>
<span class=identifier>boost</span><span class=special>::</span><span class=identifier>make_tuple</span><span class=special>(</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>(</span><span class=string>&quot;White&quot;</span><span class=special>),</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>(</span><span class=string>&quot;Dorothea&quot;</span><span class=special>)));</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>number</span><span class=special>=</span><span class=identifier>it</span><span class=special>-&gt;</span><span class=identifier>phone_number</span><span class=special>;</span>
</pre></blockquote>
<p>
Composite keys are sorted by lexicographical order, i.e. sorting is performed
by the first key, then the second key if the first one is equal, etc. This
order allows for partial searches where only the first keys are specified:
</p>
<blockquote><pre>
<span class=identifier>phonebook</span> <span class=identifier>pb</span><span class=special>;</span>
<span class=special>...</span>
<span class=comment>// look for all Whites</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>pair</span><span class=special>&lt;</span><span class=identifier>phonebook</span><span class=special>::</span><span class=identifier>iterator</span><span class=special>,</span><span class=identifier>phonebook</span><span class=special>::</span><span class=identifier>iterator</span><span class=special>&gt;</span> <span class=identifier>p</span><span class=special>=</span>
<span class=identifier>pb</span><span class=special>.</span><span class=identifier>equal_range</span><span class=special>(</span><span class=identifier>boost</span><span class=special>::</span><span class=identifier>make_tuple</span><span class=special>(</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>(</span><span class=string>&quot;White&quot;</span><span class=special>)));</span>
</pre></blockquote>
<p>
On the other hand, partial searches without specifying the first keys are not
allowed.
</p>
<p>
By default, the corresponding <code>std::less</code> predicate is used
for each subkey of a composite key. Alternate comparison predicates can
be specified with <a href="reference/key_extraction.html#composite_key_compare">
<code>composite_key_compare</code></a>:
</p>
<blockquote><pre>
<span class=comment>// phonebook with given names in reverse order</span>
<span class=keyword>typedef</span> <span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=identifier>phonebook_entry</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span>
<span class=identifier>ordered_non_unique</span><span class=special>&lt;</span>
<span class=identifier>composite_key</span><span class=special>&lt;</span>
<span class=identifier>phonebook_entry</span><span class=special>,</span>
<span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>phonebook_entry</span><span class=special>,</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>,&amp;</span><span class=identifier>phonebook_entry</span><span class=special>::</span><span class=identifier>family_name</span><span class=special>&gt;,</span>
<span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>phonebook_entry</span><span class=special>,</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>,&amp;</span><span class=identifier>phonebook_entry</span><span class=special>::</span><span class=identifier>given_name</span><span class=special>&gt;</span>
<span class=special>&gt;,</span>
<span class=identifier>composite_key_compare</span><span class=special>&lt;</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>less</span><span class=special>&lt;</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>&gt;,</span> <span class=comment>// family names sorted as by default</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>greater</span><span class=special>&lt;</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>&gt;</span> <span class=comment>// given names reversed</span>
<span class=special>&gt;</span>
<span class=special>&gt;,</span>
<span class=identifier>ordered_unique</span><span class=special>&lt;</span>
<span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>phonebook_entry</span><span class=special>,</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>,&amp;</span><span class=identifier>phonebook_entry</span><span class=special>::</span><span class=identifier>phone_number</span><span class=special>&gt;</span>
<span class=special>&gt;</span>
<span class=special>&gt;</span>
<span class=special>&gt;</span> <span class=identifier>phonebook</span><span class=special>;</span>
</pre></blockquote>
<p>
See <a href="examples.html#example7">Example 7</a> in the examples section
for an application of <code>composite_key</code>.
</p>
<h2><a name="advanced_key_extractors">Advanced features of Boost.MultiIndex key
extractors</a></h2>
<p>
The <a href="reference/key_extraction.html#key_extractors"><code>Key Extractor</code></a>
concept allows the same object to extract keys from several different types,
possibly through suitably defined overloads of <code>operator()</code>:
</p>
<blockquote><pre>
<span class=comment>// example of a name extractor from employee and employee *</span>
<span class=keyword>struct</span> <span class=identifier>name_extractor</span>
<span class=special>{</span>
<span class=keyword>const</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>&amp;</span> <span class=keyword>operator</span><span class=special>()(</span><span class=keyword>const</span> <span class=identifier>employee</span><span class=special>&amp;</span> <span class=identifier>e</span><span class=special>)</span><span class=keyword>const</span><span class=special>{</span><span class=keyword>return</span> <span class=identifier>e</span><span class=special>.</span><span class=identifier>name</span><span class=special>;}</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>&amp;</span> <span class=keyword>operator</span><span class=special>()(</span><span class=identifier>employee</span><span class=special>&amp;</span> <span class=identifier>e</span><span class=special>)</span><span class=keyword>const</span><span class=special>{</span><span class=keyword>return</span> <span class=identifier>e</span><span class=special>.</span><span class=identifier>name</span><span class=special>;}</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>&amp;</span> <span class=keyword>operator</span><span class=special>()(</span><span class=identifier>employee</span><span class=special>*</span> <span class=identifier>e</span><span class=special>)</span><span class=keyword>const</span><span class=special>{</span><span class=keyword>return</span> <span class=identifier>e</span><span class=special>-&gt;</span><span class=identifier>name</span><span class=special>;}</span>
<span class=special>};</span>
</pre></blockquote>
<p>
This possibility is fully exploited by predefined key extractors provided
by Boost.MultiIndex, making it simpler to define <code>multi_index_container</code>s
where elements are pointers or references to the actual objects. The following
specifies a <code>multi_index_container</code> of pointers to employees sorted by their
names.
</p>
<blockquote><pre>
<span class=keyword>typedef</span> <span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=identifier>employee</span> <span class=special>*,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span>
<span class=identifier>ordered_non_unique</span><span class=special>&lt;</span><span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>employee</span><span class=special>,</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>,&amp;</span><span class=identifier>employee</span><span class=special>::</span><span class=identifier>name</span><span class=special>&gt;</span> <span class=special>&gt;</span> <span class=special>&gt;</span>
<span class=special>&gt;</span> <span class=identifier>employee_set</span><span class=special>;</span>
</pre></blockquote>
<p>
Note that this is specified in exactly the same manner as a <code>multi_index_container</code>
of actual <code>employee</code> objects: <code>member</code> takes care of the
extra dereferencing needed to gain access to <code>employee::name</code>. A similar
functionality is provided for interoperability with reference wrappers from
<a href="../../../doc/html/ref.html">Boost.Ref</a>:
</p>
<blockquote><pre>
<span class=keyword>typedef</span> <span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=identifier>boost</span><span class=special>::</span><span class=identifier>reference_wrapper</span><span class=special>&lt;</span><span class=keyword>const</span> <span class=identifier>employee</span><span class=special>&gt;,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span>
<span class=identifier>ordered_non_unique</span><span class=special>&lt;</span><span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>employee</span><span class=special>,</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>,&amp;</span><span class=identifier>employee</span><span class=special>::</span><span class=identifier>name</span><span class=special>&gt;</span> <span class=special>&gt;</span> <span class=special>&gt;</span>
<span class=special>&gt;</span> <span class=identifier>employee_set</span><span class=special>;</span>
</pre></blockquote>
<p>
In fact, support for pointers is further extended to accept what we call
<i>chained pointers</i>. Such a chained pointer is defined by induction as a raw or
smart pointer or iterator to the actual element, to a reference wrapper of the
element or <i>to another chained pointer</i>; that is, chained pointers are arbitrary
compositions of pointer-like types ultimately dereferencing
to the element from where the key is to be extracted. Examples of chained
pointers to <code>employee</code> are:
<ul>
<li><code>employee *</code>,</li>
<li><code>const employee *</code>,</li>
<li><code>std::auto_ptr&lt;employee></code>,</li>
<li><code>std::list&lt;boost::reference_wrapper&lt;employee> >::iterator</code>,</li>
<li><code>employee **</code>,</li>
<li><code>boost::shared_ptr&lt;const employee *></code>.</li>
</ul>
In general, chained pointers with dereferencing distance greater than 1 are not
likely to be used in a normal program, but they can arise in frameworks
which construct "views" as <code>multi_index_container</code>s from preexisting
<code>multi_index_container</code>s.
</p>
<p>
In order to present a short summary of the different usages of Boost.MultiIndex
key extractors in the presence of reference wrappers and pointers, consider the
following final type:
</p>
<blockquote><pre>
<span class=keyword>struct</span> <span class=identifier>T</span>
<span class=special>{</span>
<span class=keyword>int</span> <span class=identifier>i</span><span class=special>;</span>
<span class=keyword>const</span> <span class=keyword>int</span> <span class=identifier>j</span><span class=special>;</span>
<span class=keyword>int</span> <span class=identifier>f</span><span class=special>()</span><span class=keyword>const</span><span class=special>;</span>
<span class=keyword>int</span> <span class=identifier>g</span><span class=special>();</span>
<span class=special>};</span>
</pre></blockquote>
<p>
The table below lists the appropriate key extractors to be used for
different pointer and reference wrapper types based on <code>T</code>, for
each of its members.
</p>
<p align="center">
<table cellspacing="0">
<caption><b>Use cases for Boost.MultiIndex key extractors.</b></caption>
<tr>
<th>element type</th>
<th>sorted by</th>
<th>key extractor</th>
<th>applicable to<br><code>const</code> elements?</th>
<th>read/write?</th>
</tr>
<tr>
<td align="center" rowspan="4"><code>T</code></td>
<td><code>i</code></td>
<td><code>member&lt;T,int,&amp;T::i></code></td>
<td align="center">yes</td>
<td align="center">yes</td>
</tr>
<tr>
<td><code>j</code></td>
<td><code>member&lt;T,const int,&amp;T::j></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr>
<td><code>f()</code></td>
<td><code>const_mem_fun&lt;T,int,&amp;T::f></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr>
<td><code>g()</code></td>
<td><code>mem_fun&lt;T,int,&amp;T::g></code></td>
<td align="center">no</td>
<td align="center">no</td>
</tr>
<tr class="odd_tr">
<td align="center" rowspan="4"><code>reference_wrapper&lt;T></code></td>
<td><code>i</code></td>
<td><code>member&lt;T,int,&amp;T::i></code></td>
<td align="center">yes</td>
<td align="center">yes</td>
</tr>
<tr class="odd_tr">
<td><code>j</code></td>
<td><code>member&lt;T,const int,&amp;T::j></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr class="odd_tr">
<td><code>f()</code></td>
<td><code>const_mem_fun&lt;T,int,&amp;T::f></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr class="odd_tr">
<td><code>g()</code></td>
<td><code>mem_fun&lt;T,int,&amp;T::g></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr>
<td align="center" rowspan="4"><code>reference_wrapper&lt;const T></code></td>
<td><code>i</code></td>
<td><code>member&lt;T,const int,&amp;T::i></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr>
<td><code>j</code></td>
<td><code>member&lt;T,const int,&amp;T::j></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr>
<td><code>f()</code></td>
<td><code>const_mem_fun&lt;T,int,&amp;T::f></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr>
<td><code>g()</code></td>
<td colspan="3">&nbsp;</td>
</tr>
<tr class="odd_tr">
<td align="center" rowspan="4">chained pointer to <code>T</code><br>
or to <code>reference_wrapper&lt;T></code></td>
<td><code>i</code></td>
<td><code>member&lt;T,int,&amp;T::i></code></td>
<td align="center">yes</td>
<td align="center">yes</td>
</tr>
<tr class="odd_tr">
<td><code>j</code></td>
<td><code>member&lt;T,const int,&amp;T::j></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr class="odd_tr">
<td><code>f()</code></td>
<td><code>const_mem_fun&lt;T,int,&amp;T::f></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr class="odd_tr">
<td><code>g()</code></td>
<td><code>mem_fun&lt;T,int,&amp;T::g></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr>
<td align="center" rowspan="4">chained pointer to <code>const T</code><br>
or to <code>reference_wrapper&lt;const T></code></td>
<td><code>i</code></td>
<td><code>member&lt;T,const int,&amp;T::i></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr>
<td><code>j</code></td>
<td><code>member&lt;T,const int,&amp;T::j></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr>
<td><code>f()</code></td>
<td><code>const_mem_fun&lt;T,int,&amp;T::f></code></td>
<td align="center">yes</td>
<td align="center">no</td>
</tr>
<tr>
<td><code>g()</code></td>
<td colspan="3">&nbsp;</td>
</tr>
</table>
</p>
<p>
The column "applicable to <code>const</code> elements?" states whether the
corresponding key extractor can be used when passed constant elements (this
relates to the elements specified in the first column, not the referenced
<code>T</code> objects). The only negative case is for <code>T::g</code> when
the elements are raw <code>T</code> objects, which make sense as we are dealing
with a non-constant member function: this also implies that <code>multi_index_container</code>s
of elements of <code>T</code> cannot be sorted by <code>T::g</code>, because
elements contained within a <code>multi_index_container</code> are treated as constant.
</p>
<p>
A key extractor is called <i>read/write</i> if it returns a non-constant reference
to the key when passed a non-constant element, and it is called <i>read-only</i>
otherwise. In order to use <code>multi_index_container::modify_key</code>, the associated
key extractor must be read/write. The column "read/write?" shows that most
combinations yield read-only extractors.
</p>
<p>
Some care has to be taken to preserve <code>const</code>-correctness in the
specification of the key extractors: in some sense, the <code>const</code>
qualifier is carried along to the member part, even if that particular
member is not defined as <code>const</code>. For instance, if the elements
are of type <code>const T *</code>, sorting by <code>T::i</code> is <i>not</i>
specified as <code>member&lt;const T,int,&amp;T::i></code>, but rather as
<code>member&lt;T,const int,&amp;T::i></code>.
</p>
<p>
For practical demonstrations of use of these key extractors, refer to
<a href="examples.html#example2">example 2</a> and
<a href="examples.html#example6">example 6</a> in the examples section.
</p>
<h3><a name="member_offset">Use of <code>member_offset</code></a></h3>
<p>
The <code>member</code> key extractor poses some problems in compilers
that do not properly support pointers to members as non-type
template arguments. The following compilers have been confirmed not
to work correctly with <code>member</code>:
<ul>
<li>MSVC++ 6.0,
<li>Intel C++ 7.0/7.1 for Windows.
</ul>
In these cases, a replacement utility
<a href="reference/key_extraction.html#member_offset"><code>member_offset</code></a>
has been provided that does the work of <code>member</code> at the
expense of less convenient notation and the possibility of
non-conformance with the standard. Please consult
the reference for further information on <code>member_offset</code>.
<p>
<p>
The following test program can help determine if your compiler
properly supports pointers to members as non-type template parameters:
</p>
<blockquote><pre>
<span class=preprocessor>#include</span> <span class=special>&lt;</span><span class=identifier>boost</span><span class=special>/</span><span class=identifier>multi_index_container</span><span class=special>/</span><span class=identifier>member</span><span class=special>.</span><span class=identifier>hpp</span><span class=special>&gt;</span>
<span class=preprocessor>#include</span> <span class=special>&lt;</span><span class=identifier>utility</span><span class=special>&gt;</span>
<span class=preprocessor>#include</span> <span class=special>&lt;</span><span class=identifier>iostream</span><span class=special>&gt;</span>
<span class=keyword>using</span> <span class=keyword>namespace</span> <span class=identifier>std</span><span class=special>;</span>
<span class=keyword>using</span> <span class=identifier>boost</span><span class=special>::</span><span class=identifier>multi_index</span><span class=special>::</span><span class=identifier>member</span><span class=special>;</span>
<span class=keyword>typedef</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>pair</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>,</span><span class=keyword>int</span><span class=special>&gt;</span> <span class=identifier>pair_of_ints</span><span class=special>;</span>
<span class=keyword>int</span> <span class=identifier>main</span><span class=special>()</span>
<span class=special>{</span>
<span class=identifier>pair_of_ints</span> <span class=identifier>p</span><span class=special>(</span><span class=number>0</span><span class=special>,</span><span class=number>1</span><span class=special>);</span>
<span class=keyword>int</span> <span class=identifier>i</span><span class=special>=</span><span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>pair_of_ints</span><span class=special>,</span><span class=keyword>int</span><span class=special>,&amp;</span><span class=identifier>pair_of_ints</span><span class=special>::</span><span class=identifier>first</span><span class=special>&gt;()(</span><span class=identifier>p</span><span class=special>);</span>
<span class=keyword>int</span> <span class=identifier>j</span><span class=special>=</span><span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>pair_of_ints</span><span class=special>,</span><span class=keyword>int</span><span class=special>,&amp;</span><span class=identifier>pair_of_ints</span><span class=special>::</span><span class=identifier>second</span><span class=special>&gt;()(</span><span class=identifier>p</span><span class=special>);</span>
<span class=keyword>if</span><span class=special>(</span><span class=identifier>i</span><span class=special>!=</span><span class=number>0</span><span class=special>||</span><span class=identifier>j</span><span class=special>!=</span><span class=number>1</span><span class=special>){</span>
<span class=identifier>cout</span><span class=special>&lt;&lt;</span><span class=string>&quot;WARNING: compiler does not properly support\n&quot;</span>
<span class=string>&quot;pointers as non-type template parameters&quot;</span><span class=special>&lt;&lt;</span><span class=identifier>endl</span><span class=special>;</span>
<span class=keyword>return</span> <span class=number>1</span><span class=special>;</span>
<span class=special>}</span>
<span class=identifier>cout</span><span class=special>&lt;&lt;</span><span class=string>&quot;test succesful&quot;</span><span class=special>&lt;&lt;</span><span class=identifier>endl</span><span class=special>;</span>
<span class=keyword>return</span> <span class=number>0</span><span class=special>;</span>
<span class=special>}</span>
</pre></blockquote>
<p>
If you find a compiler not listed here that does not pass the test,
please report to the maintainer of the library. As an example of use,
given the class</p>
<blockquote><pre>
<span class=keyword>class</span> <span class=identifier>A</span>
<span class=special>{</span>
<span class=keyword>int</span> <span class=identifier>x</span><span class=special>;</span>
<span class=special>}</span>
</pre></blockquote>
<p>
the instantiation <code>member&lt;A,int,&amp;A::x></code> can be simulated then
as <code>member_offset&lt;A,int,offsetof(A,x)></code>.
</p>
<p>
For those writing portable code, Boost.MultiIndex provides the ternary macro
<code>BOOST_MULTI_INDEX_MEMBER</code>. Continuing with the example above, the
expression
</p>
<blockquote><pre>
<span class=identifier>BOOST_MULTI_INDEX_MEMBER</span><span class=special>(</span><span class=identifier>A</span><span class=special>,</span><span class=keyword>int</span><span class=special>,</span><span class=identifier>x</span><span class=special>)</span>
</pre></blockquote>
<p>
expands to either
</p>
<blockquote><pre>
<span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>A</span><span class=special>,</span><span class=keyword>int</span><span class=special>,&amp;</span><span class=identifier>A</span><span class=special>::</span><span class=identifier>x</span><span class=special>&gt;</span>
</pre></blockquote>
<p>
or alternatively to
</p>
<blockquote><pre>
<span class=identifier>member_offset</span><span class=special>&lt;</span><span class=identifier>A</span><span class=special>,</span><span class=keyword>int</span><span class=special>,</span><span class=identifier>offsetof</span><span class=special>(</span><span class=identifier>A</span><span class=special>,</span><span class=identifier>x</span><span class=special>)&gt;</span>
</pre></blockquote>
<p>
depending on whether the current compiler supports pointer to members as
non-type template arguments or not. The alternative expansion is driven by
the defect macro <code>BOOST_NO_POINTER_TO_MEMBER_TEMPLATE_PARAMETERS</code>,
which has been proposed for inclusion in the
<a href="../../../libs/config/config.htm">Boost Configuration Library</a>.
Until the defect macro is accepted, Boost.MultiIndex treats it as if defined for
<ul>
<li>MSVC++ 6.0 or lower,
<li>Intel C++ 7.1 or lower for Windows.
</ul>
If you detect this defect in a compiler other than these, you can take
advantage of <code>BOOST_MULTI_INDEX_MEMBER</code> by manually defining
<code>BOOST_NO_POINTER_TO_MEMBER_TEMPLATE_PARAMETERS</code> prior to the
inclusion of Boost.MultiIndex headers.
</p>
<h3><a name="mem_fun_explicit">Use of <code>const_mem_fun_explicit</code> and
<code>mem_fun_explicit</code></a></h3>
<p>
MSVC++ 6.0 has problems with <code>const</code> member functions as non-type
template parameters, and thus does not accept the <code>const_mem_fun</code>
key extractor. A simple workaround, fortunately, has been found, consisting
in specifying the <i>type</i> of these pointers as an additional template
parameter. The alternative <code>const_mem_fun_explicit</code> extractor
adopts this solution; for instance, given the type
</p>
<blockquote><pre>
<span class=keyword>struct</span> <span class=identifier>A</span>
<span class=special>{</span>
<span class=keyword>int</span> <span class=identifier>f</span><span class=special>()</span><span class=keyword>const</span><span class=special>;</span>
<span class=special>};</span>
</pre></blockquote>
<p>
the extractor <code>const_mem_fun&lt;A,int,&amp;A::f></code> can be replaced by
<code>const_mem_fun_explicit&lt;A,int,int (A::*)()const,&amp;A::f></code>. A similar
<code>mem_fun_explicit</code> class template is provided for non-constant
member functions.
</p>
<p>
If you are writing cross-platform code, the selection of either key extractor
is transparently handled by the macro <code>BOOST_MULTI_INDEX_CONST_MEM_FUN</code>,
so that
</p>
<blockquote><pre>
<span class=identifier>BOOST_MULTI_INDEX_CONST_MEM_FUN</span><span class=special>(</span><span class=identifier>A</span><span class=special>,</span><span class=keyword>int</span><span class=special>,</span><span class=identifier>f</span><span class=special>)</span>
</pre></blockquote>
<p>
expands by default to
</p>
<blockquote><pre>
<span class=identifier>const_mem_fun</span><span class=special>&lt;</span><span class=identifier>A</span><span class=special>,</span><span class=keyword>int</span><span class=special>,&amp;</span><span class=identifier>A</span><span class=special>::</span><span class=identifier>f</span><span class=special>&gt;</span>
</pre></blockquote>
<p>
but resolves to
</p>
<blockquote><pre>
<span class=identifier>const_mem_fun_explicit</span><span class=special>&lt;</span><span class=identifier>A</span><span class=special>,</span><span class=keyword>int</span><span class=special>,</span><span class=keyword>int</span> <span class=special>(</span><span class=identifier>A</span><span class=special>::*)()</span><span class=keyword>const</span><span class=special>,&amp;</span><span class=identifier>A</span><span class=special>::</span><span class=identifier>f</span><span class=special>&gt;</span>
</pre></blockquote>
<p>
in MSVC++ 6.0. An analogous macro <code>BOOST_MULTI_INDEX_MEM_FUN</code> is
provided as well.
</p>
<h3><a name="composite_key_no_pts"><code>composite_key</code> in compilers
without partial template specialization</a></h3>
<p>
Much of the power of <code>composite_key</code> derives from the ability
to perform searches when only the first elements of the compound key are
given. In order to enable this functionality, <code>std::less</code> and
<code>std::greater</code> are specialized for
<a href="reference/key_extraction.html#composite_key_result">
<code>composite_key_result</code></a> instantiations to provide
overloads accepting tuples of values.
</p>
<p>
In those compilers that do not support partial template specialization,
tuple-based comparisons are not available by default. In this case,
<code>multi_index_container</code> instantiations using composite keys
will work as expected (elements are sorted lexicographically on the
results of the combined keys), except that lookup operations will not
accept tuples as an argument. The most obvious workaround
to this deficiency involves explicitly specifying the comparison
predicate with <code>composite_key_compare</code>: this is tedious as
the comparison predicates for all the element key extractors must be
explicitly typed. For this reason, Boost.MultiIndex provides the replacement
class template
<a href="reference/key_extraction.html#composite_key_result_less">
<code>composite_key_result_less</code></a>, that
acts as the missing specialization of <code>std::less</code> for
<code>composite_key_result</code>s:
</p>
<blockquote><pre>
<span class=keyword>typedef</span> <span class=identifier>composite_key</span><span class=special>&lt;</span>
<span class=identifier>phonebook_entry</span><span class=special>,</span>
<span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>phonebook_entry</span><span class=special>,</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>,&amp;</span><span class=identifier>phonebook_entry</span><span class=special>::</span><span class=identifier>family_name</span><span class=special>&gt;,</span>
<span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>phonebook_entry</span><span class=special>,</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>,&amp;</span><span class=identifier>phonebook_entry</span><span class=special>::</span><span class=identifier>given_name</span><span class=special>&gt;</span>
<span class=special>&gt;</span> <span class=identifier>ckey_t</span><span class=special>;</span>
<span class=keyword>typedef</span> <span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=identifier>phonebook_entry</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span>
<span class=identifier>ordered_non_unique</span><span class=special>&lt;</span>
<span class=identifier>ckey_t</span><span class=special>,</span>
<span class=comment>// composite_key_result_less plays the role of
// std::less&lt;ckey_t::result_type&gt;</span>
<span class=identifier>composite_key_result_less</span><span class=special>&lt;</span><span class=identifier>ckey_t</span><span class=special>::</span><span class=identifier>result_type</span><span class=special>&gt;</span>
<span class=special>&gt;,</span>
<span class=identifier>ordered_unique</span><span class=special>&lt;</span>
<span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>phonebook_entry</span><span class=special>,</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>,&amp;</span><span class=identifier>phonebook_entry</span><span class=special>::</span><span class=identifier>phone_number</span><span class=special>&gt;</span>
<span class=special>&gt;</span>
<span class=special>&gt;</span>
<span class=special>&gt;</span> <span class=identifier>phonebook</span><span class=special>;</span>
</pre></blockquote>
<p>
There is also an analogous
<a href="reference/key_extraction.html#composite_key_result_greater">
<code>composite_key_result_greater</code></a> class to substitute for
specializations of <code>std::greater</code>.
</p>
<h2><a name="ctor_args_list">Use of <code>ctor_args_list</code></a></h2>
<p>
Although in most cases <code>multi_index_container</code>s will be default constructed
(or copied from a preexisting <code>multi_index_container</code>), sometimes it is
necessary to specify particular values for the internal objects used (key extractors,
comparison predicates, allocator), for instance if some of these objects do not have
a default constructor. The same situation can arise with standard STL containers,
which allow for the optional specification of such objects:
</p>
<blockquote><pre>
<span class=comment>// example of non-default constructed std::set</span>
<span class=keyword>template</span><span class=special>&lt;</span><span class=keyword>typename</span> <span class=identifier>IntegralType</span><span class=special>&gt;</span>
<span class=keyword>struct</span> <span class=identifier>modulo_less</span>
<span class=special>{</span>
<span class=identifier>modulo_less</span><span class=special>(</span><span class=identifier>IntegralType</span> <span class=identifier>m</span><span class=special>):</span><span class=identifier>modulo</span><span class=special>(</span><span class=identifier>m</span><span class=special>){}</span>
<span class=keyword>bool</span> <span class=keyword>operator</span><span class=special>()(</span><span class=identifier>IntegralType</span> <span class=identifier>x</span><span class=special>,</span><span class=identifier>IntegralType</span> <span class=identifier>y</span><span class=special>)</span><span class=keyword>const</span>
<span class=special>{</span>
<span class=keyword>return</span> <span class=special>(</span><span class=identifier>x</span><span class=special>%</span><span class=identifier>modulo</span><span class=special>)&lt;(</span><span class=identifier>y</span><span class=special>%</span><span class=identifier>modulo</span><span class=special>);</span>
<span class=special>}</span>
<span class=keyword>private</span><span class=special>:</span>
<span class=identifier>IntegralType</span> <span class=identifier>modulo</span><span class=special>;</span>
<span class=special>};</span>
<span class=keyword>typedef</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>set</span><span class=special>&lt;</span><span class=keyword>unsigned</span> <span class=keyword>int</span><span class=special>,</span><span class=identifier>modulo_less</span><span class=special>&lt;</span><span class=keyword>unsigned</span> <span class=keyword>int</span><span class=special>&gt;</span> <span class=special>&gt;</span> <span class=identifier>modulo_set</span><span class=special>;</span>
<span class=identifier>modulo_set</span> <span class=identifier>m</span><span class=special>(</span><span class=identifier>modulo_less</span><span class=special>&lt;</span><span class=keyword>unsigned</span> <span class=keyword>int</span><span class=special>&gt;(</span><span class=number>10</span><span class=special>));</span>
</pre></blockquote>
<p>
<code>multi_index_container</code> does also provide this functionality, though in a
considerably more complex fashion, due to the fact that the constructor
of a <code>multi_index_container</code> has to accept values for all the internal
objects of its indices. The full form of <code>multi_index_container</code> constructor
is
</p>
<blockquote><pre>
<span class=keyword>explicit</span> <span class=identifier>multi_index_container</span><span class=special>(</span>
<span class=keyword>const</span> <span class=identifier>ctor_args_list</span><span class=special>&amp;</span> <span class=identifier>args_list</span><span class=special>=</span><span class=identifier>ctor_args_list</span><span class=special>(),</span>
<span class=keyword>const</span> <span class=identifier>allocator_type</span><span class=special>&amp;</span> <span class=identifier>al</span><span class=special>=</span><span class=identifier>allocator_type</span><span class=special>());</span>
</pre></blockquote>
<p>
The specification of the allocator object poses no particular problems;
as for the <code>ctor_args_list</code>, this object is designed so as to hold
the necessary construction values for every index in the <code>multi_index_container</code>.
From the point of view of the user, <code>ctor_args_list</code> is equivalent
to the type
</p>
<blockquote><pre>
<span class=identifier>boost</span><span class=special>::</span><span class=identifier>tuple</span><span class=special>&lt;</span><span class=identifier>C<sub>0</sub></span><span class=special>,...,</span><span class=identifier>C<sub>I-1</sub></span><span class=special>&gt;</span>
</pre></blockquote>
<p>
where <code>I</code> is the number of indices, and <code>C<sub>i</sub></code> is
</p>
<blockquote><pre>
<span class=identifier>nth_index</span><span class=special>&lt;</span><span class=identifier>i</span><span class=special>&gt;::</span><span class=identifier>type</span><span class=special>::</span><span class=identifier>ctor_args</span>
</pre></blockquote>
<p>
that is, the nested type <code>ctor_args</code> of the <code>i</code>-th index. Each
<code>ctor_args</code> type is in turn a tuple holding values for constructor
arguments of the associated index: so, ordered indices demand a key extractor object
and a comparison predicate, while sequenced indices do not need any construction
argument. For instance, given the definition
</p>
<blockquote><pre>
<span class=keyword>typedef</span> <span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=keyword>unsigned</span> <span class=keyword>int</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span>
<span class=identifier>ordered_unique</span><span class=special>&lt;</span><span class=identifier>identity</span><span class=special>&lt;</span><span class=keyword>unsigned</span> <span class=keyword>int</span><span class=special>&gt;</span> <span class=special>&gt;,</span>
<span class=identifier>ordered_non_unique</span><span class=special>&lt;</span><span class=identifier>identity</span><span class=special>&lt;</span><span class=keyword>unsigned</span> <span class=keyword>int</span><span class=special>&gt;,</span> <span class=identifier>modulo_less</span><span class=special>&lt;</span><span class=keyword>unsigned</span> <span class=keyword>int</span><span class=special>&gt;</span> <span class=special>&gt;,</span>
<span class=identifier>sequenced</span><span class=special>&lt;&gt;</span>
<span class=special>&gt;</span>
<span class=special>&gt;</span> <span class=identifier>modulo_indexed_set</span><span class=special>;</span>
</pre></blockquote>
<p>
the corresponding <code>ctor_args_list</code> type is equivalent to
</p>
<blockquote><pre>
<span class=identifier>boost</span><span class=special>::</span><span class=identifier>tuple</span><span class=special>&lt;</span>
<span class=comment>// ctr_args of index #0</span>
<span class=identifier>boost</span><span class=special>::</span><span class=identifier>tuple</span><span class=special>&lt;</span><span class=identifier>identity</span><span class=special>&lt;</span><span class=keyword>unsigned</span> <span class=keyword>int</span><span class=special>&gt;,</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>less</span><span class=special>&lt;</span><span class=keyword>unsigned</span> <span class=keyword>int</span><span class=special>&gt;</span> <span class=special>&gt;,</span>
<span class=comment>// ctr_args of index #1</span>
<span class=identifier>boost</span><span class=special>::</span><span class=identifier>tuple</span><span class=special>&lt;</span><span class=identifier>identity</span><span class=special>&lt;</span><span class=keyword>unsigned</span> <span class=keyword>int</span><span class=special>&gt;,</span><span class=identifier>modulo_less</span><span class=special>&lt;</span><span class=keyword>unsigned</span> <span class=keyword>int</span><span class=special>&gt;</span> <span class=special>&gt;,</span>
<span class=comment>// sequenced indices do not have any construction argument</span>
<span class=identifier>boost</span><span class=special>::</span><span class=identifier>tuple</span><span class=special>&lt;&gt;</span>
<span class=special>&gt;</span>
</pre></blockquote>
<p>
Such a <code>modulo_indexed_set</code> cannot be default constructed, because
<code>modulo_less</code> does not provide a default constructor. The following shows
how the construction can be done:
</p>
<blockquote><pre>
<span class=identifier>modulo_indexed_set</span><span class=special>::</span><span class=identifier>ctor_args_list</span> <span class=identifier>args_list</span><span class=special>=</span>
<span class=identifier>boost</span><span class=special>::</span><span class=identifier>make_tuple</span><span class=special>(</span>
<span class=comment>// ctor_args for index #0 is default constructible</span>
<span class=identifier>modulo_indexed_set</span><span class=special>::</span><span class=identifier>nth_index</span><span class=special>&lt;</span><span class=number>0</span><span class=special>&gt;::</span><span class=identifier>type</span><span class=special>::</span><span class=identifier>ctor_args</span><span class=special>(),</span>
<span class=identifier>boost</span><span class=special>::</span><span class=identifier>make_tuple</span><span class=special>(</span><span class=identifier>identity</span><span class=special>&lt;</span><span class=keyword>unsigned</span> <span class=keyword>int</span><span class=special>&gt;(),</span><span class=identifier>modulo_less</span><span class=special>&lt;</span><span class=keyword>unsigned</span> <span class=keyword>int</span><span class=special>&gt;(</span><span class=number>10</span><span class=special>)),</span>
<span class=comment>// this is also default constructible (actually, an empty tuple)</span>
<span class=identifier>modulo_indexed_set</span><span class=special>::</span><span class=identifier>nth_index</span><span class=special>&lt;</span><span class=number>2</span><span class=special>&gt;::</span><span class=identifier>type</span><span class=special>::</span><span class=identifier>ctor_args</span><span class=special>(),</span>
<span class=special>);</span>
<span class=identifier>modulo_indexed_set</span> <span class=identifier>m</span><span class=special>(</span><span class=identifier>args_list</span><span class=special>);</span>
</pre></blockquote>
<p>
A program is provided in the <a href="examples.html#example3">examples section</a> that
puts in practise these concepts.
</p>
<h2><a name="debugging_support">Debugging support</a></h2>
<p>
The concept of <i>Design by Contract</i>, originally developed as part
of Bertrand Meyer's <a href="http://www.eiffel.com">Eiffel</a> language,
revolves around the formulation of a <i>contract</i> between the user
of a library and the implementor, by which the first is required to
respect some <i>preconditions</i> on the values passed when invoking
methods of the library, and the implementor guarantees in return
that certain constraints on the results are met (<i>postconditions</i>),
as well as the honoring of specified internal consistency rules, called
<i>invariants</i>. Eiffel natively supports the three parts of the
contract just described by means of constructs <code>require</code>,
<code>ensure</code> and <code>invariant</code>, respectively.
</p>
<p>
C++ does not enjoy direct support for Design by Contract techniques: these
are customarily implemented as assertion code, often turned off in
release mode for performance reasons. Following this approach,
Boost.MultiIndex provides two distinct debugging modes:
<ul>
<li><i>Safe mode</i> checks preconditions on the invocations to the
facilities of the library,</li>
<li><i>invariant-checking mode</i> performs post-execution checks aimed
at ensuring that the internal consistency of the library is preserved.
</ul>
These two modes are independent of each other and can be set on or off
individually. It is important to note that errors detected by safe mode are
due in principle to faulty code in the user's program, while
invariant-checking mode detects potential <i>internal</i> bugs in the
implementation of Boost.MultiIndex.
</p>
<h3><a name="safe_mode">Safe mode</a></h3>
<p>
The idea of adding precondition checking facilities to STL as a debugging aid
was first introduced by Cay S. Horstmann in his
<a href="http://www.horstmann.com/safestl.html">Safe STL</a> library and later
adopted by <a href="http://www.stlport.org/doc/debug_mode.html">STLport Debug
Mode</a>. Similarly, Boost.MultiIndex features the so-called <i>safe mode</i>
in which all sorts of preconditions are checked when dealing with iterators
and functions of the library.
</p>
<p>
Boost.MultiIndex safe mode is set by globally defining the macro
<code>BOOST_MULTI_INDEX_ENABLE_SAFE_MODE</code>. Error conditions
are checked via the macro <code>BOOST_MULTI_INDEX_SAFE_MODE_ASSERT</code>, which
by default resolves to a call to <a href="../../../libs/utility/assert.html">
<code>BOOST_ASSERT</code></a>.
</p>
<p>
If the user decides to define her own version of
<code>BOOST_MULTI_INDEX_SAFE_MODE_ASSERT</code>, it has to take the form
</p>
<blockquote><pre>
<span class=identifier>BOOST_MULTI_INDEX_SAFE_MODE_ASSERT</span><span class=special>(</span><span class=identifier>expr</span><span class=special>,</span><span class=identifier>error_code</span><span class=special>)</span>
</pre></blockquote>
<p>
where <code>expr</code> is the condition checked and <code>error_code</code>
is one value of the <code>safe_mode::error_code</code> enumeration:
</p>
<blockquote><pre>
<span class=keyword>namespace</span> <span class=identifier>boost</span><span class=special>{</span>
<span class=keyword>namespace</span> <span class=identifier>multi_index</span><span class=special>{</span>
<span class=keyword>namespace</span> <span class=identifier>safe_mode</span><span class=special>{</span>
<span class=keyword>enum</span> <span class=identifier>error_code</span>
<span class=special>{</span>
<span class=identifier>invalid_iterator</span><span class=special>,</span> <span class=comment>// default initialized iterator</span>
<span class=identifier>not_dereferenceable_iterator</span><span class=special>,</span> <span class=comment>// iterator is not dereferenceable</span>
<span class=identifier>not_incrementable_iterator</span><span class=special>,</span> <span class=comment>// iterator points to end of sequence</span>
<span class=identifier>not_decrementable_iterator</span><span class=special>,</span> <span class=comment>// iterator points to beginning of sequence</span>
<span class=identifier>not_owner</span><span class=special>,</span> <span class=comment>// iterator does not belong to the container</span>
<span class=identifier>not_same_owner</span><span class=special>,</span> <span class=comment>// iterators belong to different containers</span>
<span class=identifier>invalid_range</span><span class=special>,</span> <span class=comment>// last not reachable from first</span>
<span class=identifier>inside_range</span><span class=special>,</span> <span class=comment>// iterator lies within a range (and it mustn't)</span>
<span class=identifier>same_container</span> <span class=comment>// containers ought to be different</span>
<span class=special>};</span>
<span class=special>}</span> <span class=comment>// namespace multi_index::safe_mode</span>
<span class=special>}</span> <span class=comment>// namespace multi_index</span>
<span class=special>}</span> <span class=comment>// namespace boost</span>
</pre></blockquote>
<p>
For instance, the following replacement of
<code>BOOST_MULTI_INDEX_SAFE_MODE_ASSERT</code> throws an exception instead of
asserting:
</p>
<blockquote><pre>
<span class=preprocessor>#include</span> <span class=special>&lt;</span><span class=identifier>boost</span><span class=special>/</span><span class=identifier>multi_index_container</span><span class=special>/</span><span class=identifier>safe_mode_errors</span><span class=special>.</span><span class=identifier>hpp</span><span class=special>&gt;</span>
<span class=keyword>struct</span> <span class=identifier>safe_mode_exception</span>
<span class=special>{</span>
<span class=identifier>safe_mode_exception</span><span class=special>(</span><span class=identifier>boost</span><span class=special>::</span><span class=identifier>multi_index</span><span class=special>::</span><span class=identifier>safe_mode</span><span class=special>::</span><span class=identifier>error_code</span> <span class=identifier>error_code</span><span class=special>):</span>
<span class=identifier>error_code</span><span class=special>(</span><span class=identifier>error_code</span><span class=special>)</span>
<span class=special>{}</span>
<span class=identifier>boost</span><span class=special>::</span><span class=identifier>multi_index</span><span class=special>::</span><span class=identifier>safe_mode</span><span class=special>::</span><span class=identifier>error_code</span> <span class=identifier>error_code</span><span class=special>;</span>
<span class=special>};</span>
<span class=preprocessor>#define</span> <span class=identifier>BOOST_MULTI_INDEX_SAFE_MODE_ASSERT</span><span class=special>(</span><span class=identifier>expr</span><span class=special>,</span><span class=identifier>error_code</span><span class=special>)</span> <span class=special>\</span>
<span class=keyword>if</span><span class=special>(!(</span><span class=identifier>expr</span><span class=special>)){</span><span class=keyword>throw</span> <span class=identifier>safe_mode_exception</span><span class=special>(</span><span class=identifier>error_code</span><span class=special>);}</span>
<span class=comment>// This has to go before the inclusion of any header from Boost.MultiIndex,
// except possibly safe_error_codes.hpp.</span>
</pre></blockquote>
<p>
Other possibilites, like outputting to a log or firing some kind of alert, are
also implementable.
</p>
<p>
<b>Warning:</b> Safe mode adds a very important overhead to the program
both in terms of space and time used, so in general it should not be set for
<code>NDEBUG</code> builds. Also, this mode is intended solely as a debugging aid,
and programs must not rely on it as part of their normal execution flow: in
particular, no guarantee is made that all possible precondition errors are diagnosed,
or that the checks remain stable across different versions of the library.
</p>
<h3><a name="invariant_check">Invariant-checking mode</a></h3>
<p>
The so called <i>invariant-checking mode</i> of Boost.MultiIndex can be
set by globally defining the macro
<code>BOOST_MULTI_INDEX_ENABLE_INVARIANT_CHECKING</code>.
When this mode is in effect, all public functions of Boost.MultiIndex
will perform post-execution tests aimed at ensuring that the basic
internal invariants of the data structures managed are preserved.
</p>
<p>
If an invariant test fails, Boost.MultiIndex will indicate the failure
by means of the unary macro <code>BOOST_MULTI_INDEX_INVARIANT_ASSERT</code>.
Unless the user provides a definition for this macro, it defaults to
<a href="../../../libs/utility/assert.html">
<code>BOOST_ASSERT</code></a>. Any assertion of this kind should
be regarded in principle as a bug in the library. Please report such
problems, along with as much contextual information as possible, to the
maintainer of the library.
</p>
<p>
It is recommended that users of Boost.MultiIndex always set the
invariant-checking mode in debug builds.
</p>
<h2><a name="simulate_std_containers">Simulating standard containers with
<code>multi_index_container</code></a></h2>
<h3><a name="simulate_assoc_containers">Simulation of associative
containers</a></h3>
<p>
Academic movitations aside, there is a practical interest in simulating standard
associative containers by means of <code>multi_index_container</code>, namely to take
advantage of extended functionalities provided by <code>multi_index_container</code> for
lookup, range querying and updating.
</p>
<p>
In order to simulate a <code>std::set</code> one can follow the substitution
rule:
</p>
<blockquote><pre>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>set</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>,</span><span class=identifier>Compare</span><span class=special>,</span><span class=identifier>Allocator</span><span class=special>&gt;</span> <span class=special>-&gt;</span>
<span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=identifier>Key</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span><span class=identifier>ordered_unique</span><span class=special>&lt;</span><span class=identifier>identity</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>&gt;,</span><span class=identifier>Compare</span><span class=special>&gt;</span> <span class=special>&gt;,</span>
<span class=identifier>Allocator</span>
<span class=special>&gt;</span>
</pre></blockquote>
<p>
In the default case where <code>Compare=std::less&lt;Key></code> and
<code>Allocator=std::allocator&lt;Key></code>, the substitution rule is
simplified as
</p>
<blockquote><pre>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>set</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>&gt;</span> <span class=special>-&gt;</span> <span class=identifier>multi_index_container</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>&gt;</span>
</pre></blockquote>
<p>
The substitution of <code>multi_index_container</code> for <code>std::set</code> keeps
the whole set of functionality provided by <code>std::set</code>, so in
principle it is a drop-in replacement needing no further adjustments.
</p>
<p>
<code>std::multiset</code> can be simulated in a similar manner, according to the
following rule:
</p>
<blockquote><pre>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>multiset</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>,</span><span class=identifier>Compare</span><span class=special>,</span><span class=identifier>Allocator</span><span class=special>&gt;</span> <span class=special>-&gt;</span>
<span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=identifier>Key</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span><span class=identifier>ordered_non_unique</span><span class=special>&lt;</span><span class=identifier>identity</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>&gt;,</span><span class=identifier>Compare</span><span class=special>&gt;</span> <span class=special>&gt;,</span>
<span class=identifier>Allocator</span>
<span class=special>&gt;</span>
</pre></blockquote>
<p>
When default values are taken into consideration, the rule takes the form
</p>
<blockquote><pre>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>multiset</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>&gt;</span> <span class=special>-&gt;</span>
<span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=identifier>Key</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span><span class=identifier>ordered_non_unique</span><span class=special>&lt;</span><span class=identifier>identity</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>&gt;</span> <span class=special>&gt;</span> <span class=special>&gt;</span>
<span class=special>&gt;</span>
</pre></blockquote>
<p>
The simulation of <code>std::multiset</code>s with <code>multi_index_container</code>
results in a slight difference with respect to the interface offered: the member
function <code>insert(const value_type&amp;)</code> does not return an
<code>iterator</code> as in <code>std::multiset</code>s, but rather a
<code>std::pair&lt;iterator,bool></code> in the spirit of <code>std::set</code>s.
In this particular case, however, the <code>bool</code> member of the returned
pair is always <code>true</code>.
</p>
<p>
The case of <code>std::map</code>s and <code>std::multimap</code>s does not lend
itself to such a direct simulation by means of <code>multi_index_container</code>. The main
problem lies in the fact that elements of a <code>multi_index_container</code> are treated
as constant, while the <code>std::map</code> and <code>std::multimap</code> handle
objects of type <code>std::pair&lt;const Key,T></code>, thus allowing for free
modification of the value part. To overcome this difficulty we need to create an ad
hoc pair class:
</p>
<blockquote><pre>
<span class=keyword>template</span> <span class=special>&lt;</span><span class=keyword>typename</span> <span class=identifier>T1</span><span class=special>,</span><span class=keyword>typename</span> <span class=identifier>T2</span><span class=special>&gt;</span>
<span class=keyword>struct</span> <span class=identifier>mutable_pair</span>
<span class=special>{</span>
<span class=keyword>typedef</span> <span class=identifier>T1</span> <span class=identifier>first_type</span><span class=special>;</span>
<span class=keyword>typedef</span> <span class=identifier>T2</span> <span class=identifier>second_type</span><span class=special>;</span>
<span class=identifier>mutable_pair</span><span class=special>():</span><span class=identifier>first</span><span class=special>(</span><span class=identifier>T1</span><span class=special>()),</span><span class=identifier>second</span><span class=special>(</span><span class=identifier>T2</span><span class=special>()){}</span>
<span class=identifier>mutable_pair</span><span class=special>(</span><span class=keyword>const</span> <span class=identifier>T1</span><span class=special>&amp;</span> <span class=identifier>f</span><span class=special>,</span><span class=keyword>const</span> <span class=identifier>T2</span><span class=special>&amp;</span> <span class=identifier>s</span><span class=special>):</span><span class=identifier>first</span><span class=special>(</span><span class=identifier>f</span><span class=special>),</span><span class=identifier>second</span><span class=special>(</span><span class=identifier>s</span><span class=special>){}</span>
<span class=identifier>mutable_pair</span><span class=special>(</span><span class=keyword>const</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>pair</span><span class=special>&lt;</span><span class=identifier>T1</span><span class=special>,</span><span class=identifier>T2</span><span class=special>&gt;&amp;</span> <span class=identifier>p</span><span class=special>):</span><span class=identifier>first</span><span class=special>(</span><span class=identifier>p</span><span class=special>.</span><span class=identifier>first</span><span class=special>),</span><span class=identifier>second</span><span class=special>(</span><span class=identifier>p</span><span class=special>.</span><span class=identifier>second</span><span class=special>){}</span>
<span class=identifier>T1</span> <span class=identifier>first</span><span class=special>;</span>
<span class=keyword>mutable</span> <span class=identifier>T2</span> <span class=identifier>second</span><span class=special>;</span>
<span class=special>};</span>
</pre></blockquote>
<p>
and so the substitution rules are:
</p>
<blockquote><pre>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>map</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>,</span><span class=identifier>T</span><span class=special>,</span><span class=identifier>Compare</span><span class=special>,</span><span class=identifier>Allocator</span><span class=special>&gt;</span> <span class=special>-&gt;</span>
<span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=identifier>Element</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span>
<span class=identifier>ordered_unique</span><span class=special>&lt;</span><span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>Element</span><span class=special>,</span><span class=identifier>Key</span><span class=special>,&amp;</span><span class=identifier>Element</span><span class=special>::</span><span class=identifier>first</span><span class=special>&gt;,</span><span class=identifier>Compare</span><span class=special>&gt;</span>
<span class=special>&gt;,</span>
<span class=keyword>typename</span> <span class=identifier>Allocator</span><span class=special>::</span><span class=keyword>template</span> <span class=identifier>rebind</span><span class=special>&lt;</span><span class=identifier>Element</span><span class=special>&gt;::</span><span class=identifier>other</span>
<span class=special>&gt;</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>multimap</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>,</span><span class=identifier>T</span><span class=special>,</span><span class=identifier>Compare</span><span class=special>,</span><span class=identifier>Allocator</span><span class=special>&gt;</span> <span class=special>-&gt;</span>
<span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=identifier>Element</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span>
<span class=identifier>ordered_non_unique</span><span class=special>&lt;</span><span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>Element</span><span class=special>,</span><span class=identifier>Key</span><span class=special>,&amp;</span><span class=identifier>Element</span><span class=special>::</span><span class=identifier>first</span><span class=special>&gt;,</span><span class=identifier>Compare</span><span class=special>&gt;</span>
<span class=special>&gt;,</span>
<span class=keyword>typename</span> <span class=identifier>Allocator</span><span class=special>::</span><span class=keyword>template</span> <span class=identifier>rebind</span><span class=special>&lt;</span><span class=identifier>Element</span><span class=special>&gt;::</span><span class=identifier>other</span>
<span class=special>&gt;</span>
(<span class=identifier>with</span> <span class=identifier>Element</span><span class=special>=</span><span class=identifier>mutable_pair</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>,</span><span class=identifier>T</span><span class=special>&gt;</span>)
</pre></blockquote>
<p>
If default values are considered, the rules take the form:
</p>
<blockquote><pre>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>map</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>,</span><span class=identifier>T</span><span class=special>&gt;</span> <span class=special>-&gt;</span>
<span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=identifier>Element</span><span class=special>,
</span><span class=identifier>indexed_by</span><span class=special>&lt;</span><span class=identifier>ordered_unique</span><span class=special>&lt;</span><span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>Element</span><span class=special>,</span><span class=identifier>Key</span><span class=special>,&amp;</span><span class=identifier>Element</span><span class=special>::</span><span class=identifier>first</span><span class=special>&gt;</span> <span class=special>&gt;</span> <span class=special>&gt;</span>
<span class=special>&gt;</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>multimap</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>,</span><span class=identifier>T</span><span class=special>&gt;</span> <span class=special>-&gt;</span>
<span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=identifier>Element</span><span class=special>,
</span><span class=identifier>indexed_by</span><span class=special>&lt;</span><span class=identifier>ordered_non_unique</span><span class=special>&lt;</span><span class=identifier>member</span><span class=special>&lt;</span><span class=identifier>Element</span><span class=special>,</span><span class=identifier>Key</span><span class=special>,&amp;</span><span class=identifier>Element</span><span class=special>::</span><span class=identifier>first</span><span class=special>&gt;</span> <span class=special>&gt;</span> <span class=special>&gt;</span>
<span class=special>&gt;</span>
(<span class=identifier>with</span> <span class=identifier>Element</span><span class=special>=</span><span class=identifier>mutable_pair</span><span class=special>&lt;</span><span class=identifier>Key</span><span class=special>,</span><span class=identifier>T</span><span class=special>&gt;</span>)
</pre></blockquote>
<p>
Unlike as with standard sets, the interface of these <code>multi_index_container</code>-simulated
maps does not exactly conform to that of <code>std::map</code>s and
<code>std::multimap</code>s. The most obvious difference is the lack of
<code>operator []</code>, either in read or write mode; this, however, can be
simulated with appropriate use of <code>find</code> and <code>insert</code>.
</p>
<p>
These simulations of standard associative containers with <code>multi_index_container</code>
are comparable to the original constructs in terms of space and time efficiency.
See the <a href="performance.html">performance section</a> for further details.
</p>
<h3><a name="simulate_std_list">Simulation of <code>std::list</code></a></h3>
<p>
Unlike the case of associative containers, simulating <code>std::list</code>
in Boost.MultiIndex does not add any significant functionality, so the following
is presented merely for completeness sake.
</p>
<p>
Much as with standard maps, the main difficulty to overcome when simulating
<code>std::list</code> derives from the constant nature of elements of an
<code>multi_index_container</code>. Again, some sort of adaption class is needed, like
for instance the following:
</p>
<blockquote><pre>
<span class=keyword>template</span> <span class=special>&lt;</span><span class=keyword>typename</span> <span class=identifier>T</span><span class=special>&gt;</span>
<span class=keyword>struct</span> <span class=identifier>mutable_value</span>
<span class=special>{</span>
<span class=identifier>mutable_value</span><span class=special>(</span><span class=keyword>const</span> <span class=identifier>T</span><span class=special>&amp;</span> <span class=identifier>t</span><span class=special>):</span><span class=identifier>t</span><span class=special>(</span><span class=identifier>t</span><span class=special>){}</span>
<span class=keyword>operator</span> <span class=identifier>T</span><span class=special>&amp;()</span><span class=keyword>const</span><span class=special>{</span><span class=keyword>return</span> <span class=identifier>t</span><span class=special>;}</span>
<span class=keyword>private</span><span class=special>:</span>
<span class=keyword>mutable</span> <span class=identifier>T</span> <span class=identifier>t</span><span class=special>;</span>
<span class=special>};</span>
</pre></blockquote>
<p>
which allows us to use the substitution rule:
</p>
<blockquote><pre>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>list</span><span class=special>&lt;</span><span class=identifier>T</span><span class=special>,</span><span class=identifier>Allocator</span><span class=special>&gt;</span> <span class=special>-&gt;</span>
<span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=identifier>Element</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span><span class=identifier>sequenced</span><span class=special>&lt;&gt;</span> <span class=special>&gt;,</span>
<span class=keyword>typename</span> <span class=identifier>Allocator</span><span class=special>::</span><span class=keyword>template</span> <span class=identifier>rebind</span><span class=special>&lt;</span><span class=identifier>Element</span><span class=special>&gt;::</span><span class=identifier>other</span>
<span class=special>&gt;</span>
(<span class=identifier>with</span> <span class=identifier>Element</span><span class=special>=</span><span class=identifier>mutable_value</span><span class=special>&lt;</span><span class=identifier>T</span><span class=special>&gt;</span>)
</pre></blockquote>
<p>
or, if the default value <code>Allocator=std::allocator&lt;T></code> is used:
</p>
<blockquote><pre>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>list</span><span class=special>&lt;</span><span class=identifier>T</span><span class=special>&gt;</span> <span class=special>-&gt;</span>
<span class=identifier>multi_index_container</span><span class=special>&lt;</span><span class=identifier>mutable_value</span><span class=special>&lt;</span><span class=identifier>T</span><span class=special>&gt;,</span><span class=identifier>indexed_by</span><span class=special>&lt;</span><span class=identifier>sequenced</span><span class=special>&lt;&gt;</span> <span class=special>&gt;</span> <span class=special>&gt;</span>
</pre></blockquote>
<h2><a name="metaprogrammming">Metaprogramming and <code>multi_index_container</code></a></h2>
<p>
Boost.MultiIndex provides a number of facilities intended to allow the analysis and
synthesis of <code>multi_index_container</code> instantiations by
<a href="../../../libs/mpl/doc/index.html">MPL</a> metaprograms.
</p>
<h3><a name="mpl_analysis">MPL analysis</a></h3>
<p>
Given a <code>multi_index_container</code> instantiation, the following nested types are
provided for compile-time inspection of the various types occurring in the
definition of the <code>multi_index_container</code>:
<ul>
<li><code>index_specifier_type_list</code>,</li>
<li><code>index_type_list</code>,</li>
<li><code>iterator_type_list</code>,</li>
<li><code>const_iterator_type_list</code>.</li>
</ul>
Each of these types is a <a href="../../../libs/mpl/doc/ref/Forward_Sequence.html">
<code>MPL Forward Sequence</code></a> with as many elements as indices
comprise the <code>multi_index_container</code>: for instance, the <code>n</code>-nth
element of <code>iterator_type_list</code> is the same as
<code>nth_index_iterator&lt;n>::type</code>.
</p>
<p>
A subtle but important distinction exists between
<code>index_specifier_type_list</code> and <code>index_type_list</code>:
the former typelist holds the index <i>specifiers</i>
with which the <code>multi_index_container</code> instantiation was defined,
while the latter gives access to the actual implementation classes
corresponding to each specifier. An example will help to clarify
this distinction. Given the instantiation:
</p>
<blockquote><pre>
<span class=keyword>typedef</span> <span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=keyword>int</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span>
<span class=identifier>ordered_unique</span><span class=special>&lt;</span><span class=identifier>identity</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>&gt;</span> <span class=special>&gt;,</span>
<span class=identifier>sequenced</span><span class=special>&lt;&gt;</span>
<span class=special>&gt;</span>
<span class=special>&gt;</span> <span class=identifier>indexed_t</span><span class=special>;</span>
</pre></blockquote>
<p>
<code>indexed_t::index_specifier_type_list</code> is a type list with
elements
</p>
<blockquote><pre>
<span class=identifier>ordered_unique</span><span class=special>&lt;</span><span class=identifier>identity</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>&gt;</span> <span class=special>&gt;</span>
<span class=identifier>sequenced</span><span class=special>&lt;&gt;</span>
</pre></blockquote>
<p>
while <code>indexed_t::index_type_list</code> holds the types
</p>
<blockquote><pre>
<span class=identifier>multi_index_container</span><span class=special>::</span><span class=identifier>nth_type</span><span class=special>&lt;</span><span class=number>0</span><span class=special>&gt;::</span><span class=identifier>type</span>
<span class=identifier>multi_index_container</span><span class=special>::</span><span class=identifier>nth_type</span><span class=special>&lt;</span><span class=number>1</span><span class=special>&gt;::</span><span class=identifier>type</span>
</pre></blockquote>
<p>
so the typelists are radically different.
</p>
<h3><a name="mpl_synthesis">MPL synthesis</a></h3>
<p>
Although typically indices are specified by means of the
<code>indexed_by</code> construct, actually any MPL sequence of
index specifiers can be provided instead:
</p>
<blockquote><pre>
<span class=keyword>typedef</span> <span class=identifier>mpl</span><span class=special>::</span><span class=identifier>vector</span><span class=special>&lt;</span><span class=identifier>ordered_unique</span><span class=special>&lt;</span><span class=identifier>identity</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>&gt;</span> <span class=special>&gt;,</span><span class=identifier>sequenced</span><span class=special>&lt;&gt;</span> <span class=special>&gt;</span> <span class=identifier>index_list_t</span><span class=special>;</span>
<span class=keyword>typedef</span> <span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=keyword>int</span><span class=special>,</span>
<span class=identifier>index_list_t</span>
<span class=special>&gt;</span> <span class=identifier>indexed_t</span><span class=special>;</span>
</pre></blockquote>
<p>
This possibility enables the synthesis of instantiations of
<code>multi_index_container</code> through MPL metaprograms, as the following
example shows:
</p>
<blockquote><pre>
<span class=comment>// original multi_index_container instantiation</span>
<span class=keyword>typedef</span> <span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=keyword>int</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special>&lt;</span>
<span class=identifier>ordered_unique</span><span class=special>&lt;</span><span class=identifier>identity</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>&gt;</span> <span class=special>&gt;</span>
<span class=special>&gt;</span>
<span class=special>&gt;</span> <span class=identifier>indexed_t1</span><span class=special>;</span>
<span class=comment>// we take its index list and add an index</span>
<span class=keyword>typedef</span> <span class=identifier>boost</span><span class=special>::</span><span class=identifier>mpl</span><span class=special>::</span><span class=identifier>push_front</span><span class=special>&lt;</span>
<span class=identifier>indexed_t1</span><span class=special>::</span><span class=identifier>index_specifier_type_list</span><span class=special>,</span>
<span class=identifier>sequenced</span><span class=special>&lt;&gt;</span>
<span class=special>&gt;::</span><span class=identifier>type</span> <span class=identifier>index_list_t</span><span class=special>;</span>
<span class=comment>// augmented multi_index_container</span>
<span class=keyword>typedef</span> <span class=identifier>multi_index_container</span><span class=special>&lt;</span>
<span class=keyword>int</span><span class=special>,</span>
<span class=identifier>index_list_t</span>
<span class=special>&gt;</span> <span class=identifier>indexed_t2</span><span class=special>;</span>
</pre></blockquote>
<hr>
<div class="prev_link"><a href="tutorial.html"><img src="prev.gif" alt="tutorial" border="0"><br>
Tutorial
</a></div>
<div class="up_link"><a href="index.html"><img src="up.gif" alt="index" border="0"><br>
Index
</a></div>
<div class="next_link"><a href="reference/index.html"><img src="next.gif" alt="reference" border="0"><br>
Reference
</a></div><br clear="all" style="clear: all;">
<br>
<p>Revised May 7th 2004</p>
<p>Copyright &copy; 2003-2004 Joaqu&iacute;n M L&oacute;pez Mu&ntilde;oz.
Use, modification, and distribution are subject to the Boost Software
License, Version 1.0. (See accompanying file <a href="../../../LICENSE_1_0.txt">
LICENSE_1_0.txt</a> or copy at <a href="http://www.boost.org/LICENSE_1_0.txt">
www.boost.org/LICENSE_1_0.txt</a>)
</p>
</body>
</html>