multi_array/doc/xml/multi_array.xml
2002-09-10 16:27:21 +00:00

300 lines
9.1 KiB
XML

<sect2 id="multi_array">
<title><literal>multi_array</literal></title>
<para>
<literal>multi_array</literal> is a multi-dimensional container that
supports random access iteration. Its number of dimensions is
fixed at compile time, but its shape and the number of elements it
contains are specified during its construction. The number of elements
will remain fixed for the duration of a
<literal>multi_array</literal>'s lifetime, but the shape of the container can
be changed. A <literal>multi_array</literal> manages its data elements
using a replaceable allocator.
</para>
<formalpara>
<title>Model Of.</title>
<para>
<link linkend="MultiArray">MultiArray</link>,
<ulink url="../../../libs/utility/CopyConstructible.html">CopyConstructible</ulink>. Depending on the element type,
it may also model <ulink url="http://www.sgi.com/tech/stl/EqualityComparable.html">EqualityComparable</ulink> and <ulink url="http://www.sgi.com/tech/stl/LessThanComparable.html">LessThanComparable</ulink>.
</para>
</formalpara>
<formalpara>
<title>Synopsis</title>
<programlisting>
<![CDATA[
namespace boost {
template <typename ValueType,
std::size_t NumDims,
typename Allocator = std::allocator<ValueType> >
class multi_array {
public:
// types:
typedef ValueType element;
typedef *implementation-defined* value_type;
typedef *implementation-defined* reference;
typedef *implementation-defined* const_reference;
typedef *implementation-defined* difference_type;
typedef *implementation-defined* iterator;
typedef *implementation-defined* const_iterator;
typedef *implementation-defined* reverse_iterator;
typedef *implementation-defined* const_reverse_iterator;
typedef multi_array_types::size_type size_type;
typedef multi_array_types::index index;
typedef multi_array_types::index_gen index_gen;
typedef multi_array_types::index_range index_range;
typedef multi_array_types::extent_gen extent_gen;
typedef multi_array_types::extent_range extent_range;
// template typedefs
template <std::size_t Dims> struct subarray;
template <std::size_t Dims> struct const_subarray;
template <std::size_t Dims> struct array_view;
template <std::size_t Dims> struct const_array_view;
// constructors and destructors
template <typename ExtentList>
explicit multi_array(const ExtentList& sizes,
const storage_order& store = c_storage_order(),
const Allocator& alloc = Allocator());
explicit multi_array(const extents_tuple& ranges,
const storage_order& store = c_storage_order(),
const Allocator& alloc = Allocator());
multi_array(const multi_array& x);
~multi_array();
// modifiers
multi_array& operator=(const multi_array& x);
template <class Array> multi_array& operator=(const Array& x);
// iterators:
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
reverse_iterator rbegin();
reverse_iterator rend();
const_reverse_iterator rbegin() const;
const_reverse_iterator rend() const;
// capacity:
size_type size() const;
size_type num_elements() const;
size_type num_dimensions() const;
// element access:
template <typename IndexList>
element& operator()(const IndexList& indices);
template <typename IndexList>
const element& operator()(const IndexList& indices) const;
reference operator[](index i);
const_reference operator[](index i) const;
array_view<Dims>::type operator[](const indices_tuple& r);
const_array_view<Dims>::type operator[](const indices_tuple& r) const;
// queries
element* data();
const element* data() const;
element* origin();
const element* origin() const;
const size_type* shape() const;
const index* strides() const;
const index* index_bases() const;
// comparators
bool operator==(const multi_array& rhs);
bool operator!=(const multi_array& rhs);
bool operator<(const multi_array& rhs);
bool operator>(const multi_array& rhs);
bool operator>=(const multi_array& rhs);
bool operator<=(const multi_array& rhs);
// modifiers:
template <typename InputIterator>
void assign(InputIterator begin, InputIterator end);
template <typename SizeList>
void reshape(const SizeList& sizes)
template <typename BaseList> void reindex(const BaseList& values);
void reindex(index value);
};
]]>
</programlisting>
</formalpara>
<formalpara>
<title>Constructors</title>
<variablelist>
<varlistentry>
<term><programlisting>template &lt;typename ExtentList&gt;
explicit multi_array(const ExtentList&amp; sizes,
const storage_order&amp; store = c_storage_order(),
const Allocator&amp; alloc = Allocator());
</programlisting></term>
<listitem>
<para>
This constructs a <literal>multi_array</literal> using the specified
parameters. <literal>sizes</literal> specifies the shape of the
constructed <literal>multi_array</literal>. <literal>store</literal>
specifies the storage order or layout in memory of the array
dimensions. <literal>alloc</literal> is used to
allocate the contained elements.
</para>
<formalpara><title><literal>ExtentList</literal> Requirements</title>
<para>
<literal>ExtentList</literal> must model <ulink url="../../utility/Collection.html">Collection</ulink>.
</para>
</formalpara>
<formalpara><title>Preconditions</title>
<para><literal>sizes.size() == NumDims;</literal></para>
</formalpara>
</listitem>
</varlistentry>
<varlistentry>
<term>
<programlisting><![CDATA[explicit multi_array(extent_gen::gen_type<NumDims>::type ranges,
const storage_order& store = c_storage_order(),
const Allocator& alloc = Allocator());]]>
</programlisting></term>
<listitem>
<para>
This constructs a <literal>multi_array</literal> using the specified
parameters. <literal>ranges</literal> specifies the shape and
index bases of the constructed multi_array. It is the result of
<literal>NumDims</literal> chained calls to
<literal>extent_gen::operator[]</literal>. <literal>store</literal>
specifies the storage order or layout in memory of the array
dimensions. <literal>alloc</literal> is the allocator used to
allocate the memory used to store <literal>multi_array</literal>
elements.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><programlisting>
<![CDATA[multi_array(const multi_array& x);]]>
</programlisting></term>
<listitem>
<para>This constructs a <literal>multi_array</literal> and performs a deep
copy of <literal>x</literal>.
</para>
<formalpara>
<title>Complexity</title>
<para> This performs O(<literal>x.num_elements()</literal>) calls to
<literal>element</literal>'s copy
constructor.
</para></formalpara>
</listitem>
</varlistentry>
</variablelist>
<formalpara><title>Note on Constructors</title>
<para>
The <literal>multi_array</literal> construction expressions,
<programlisting>
multi_array&lt;int,3&gt; A(boost::extents[5][4][3]);
</programlisting>
and
<programlisting>
boost::array&lt;multi_array_base::index,3&gt; my_extents = {{5, 4, 3}};
multi_array&lt;int,3&gt; A(my_extents);
</programlisting>
are equivalent.
</para>
</formalpara>
</formalpara>
<formalpara>
<title>Modifiers</title>
<variablelist>
<varlistentry>
<term><programlisting>
<![CDATA[multi_array& operator=(const multi_array& x);
template <class Array> multi_array& operator=(const Array& x);]]>
</programlisting>
</term>
<listitem>
<para>This performs an element-wise copy of <literal>x</literal>
into the current <literal>multi_array</literal>.</para>
<formalpara>
<title><literal>Array</literal> Requirements</title>
<para><literal>Array</literal> must model MultiArray.
</para></formalpara>
<formalpara>
<title>Preconditions</title>
<para>
<programlisting>std::equal(this->shape(),this->shape()+this->num_dimensions(),
x.shape());</programlisting></para>
</formalpara>
<formalpara>
<title>Postconditions</title>
<para>
<programlisting>(*.this) == x;</programlisting>
</para>
</formalpara>
<formalpara>
<title>Complexity</title>
<para>The assignment operators perform
O(<literal>x.num_elements()</literal>) calls to <literal>element</literal>'s
copy constructor.</para></formalpara>
</listitem>
</varlistentry>
<varlistentry>
<term>
<programlisting>
<![CDATA[
template <typename InputIterator>
void assign(InputIterator begin, InputIterator end);]]>
</programlisting>
</term>
<listitem>
<para>This copies the elements in the range
<literal>[begin,end)</literal> into the array. It is equivalent to
<literal>std::copy(begin,end,this->data())</literal>.
</para>
<formalpara><title>Preconditions</title>
<para><literal>std::distance(begin,end) == this->num_elements();</literal>
</para>
</formalpara>
<formalpara>
<title>Complexity</title>
<para>
The <literal>assign</literal> member function performs
O(<literal>this->num_elements()</literal>) calls to
<literal>ValueType</literal>'s copy constructor.
</para>
</formalpara>
</listitem>
</varlistentry>
</variablelist>
</formalpara>
</sect2>