math/test/test_uniform.cpp
Matt Borland e9cd6c96fd
Add GPU support to normal dist
Add SYCL testing of normal dist

Add CUDA testing of normal dist

Add NVRTC testing of normal dist

NVRTC fixes

Move headers for NVRTC support

Add GPU support to inverse gaussian dist

Add NVRTC testing of inverse Gaussian dist

Add CUDA testing of inverse gaussian dist

Add SYCL testing of inverse gaussian dist

Add GPU support to lognormal dist

Add SYCL testing of lognormal dist

Add CUDA testing of lognormal dist

Add nvrtc testing of lognormal dist

Add GPU support to negative binomial dist

Avoid float_prior on GPU platform

Add NVRTC testing of negative binomial dist

Fix ambiguous use of nextafter

Add CUDA testing of negative binomial dist

Fix float_prior workaround

Add SYCL testing of negative binomial dist

Add GPU support to non_central_beta dist

Add SYCL testing of nc beta dist

Add CUDA testing of nc beta dist

Enable generic dist handling on GPU

Add GPU support to brent_find_minima

Add NVRTC testing of nc beta dist

Add utility header

Replace non-functional macro with new function

Add GPU support to non central chi squared dist

Add SYCL testing of non central chi squared dist

Add missing macro definition

Markup generic quantile finder

Add CUDA testing of non central chi squared dist

Add NVRTC testing of non central chi squared dist

Add GPU support to the non-central f dist

Add SYCL testing of ncf

Add CUDA testing of ncf dist

Add NVRTC testing of ncf dist

Add GPU support to students_t dist

Add SYCL testing of students_t dist

Add CUDA testing of students_t

Add NVRTC testing of students_t dist

Workaround for header cycle

Add GPU support to pareto dist

Add SYCL testing of pareto dist

Add CUDA testing of pareto dist

Add NVRTC testing of pareto dist

Add missing header

Add GPU support to poisson dist

Add SYCL testing of poisson dist

Add CUDA testing of poisson dist

Add NVRTC testing of poisson dist

Add forward decl for NVRTC platform

Add GPU support to rayleigh dist

Add CUDA testing of rayleigh dist

Add SYCL testing of rayleigh dist

Add NVRTC testing of rayleigh dist

Add GPU support to triangular dist

Add SYCL testing of triangular dist

Add NVRTC testing of triangular dist

Add CUDA testing of triangular dist

Add GPU support to the uniform dist

Add CUDA testing of uniform dist

Add SYCL testing of uniform dist

Add NVRTC testing of uniform dist

Fix missing header

Add markers to docs
2024-09-06 12:10:18 -04:00

472 lines
21 KiB
C++

// Copyright Paul Bristow 2007.
// Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// test_uniform.cpp
#ifndef SYCL_LANGUAGE_VERSION
#include <pch.hpp>
#endif
#ifdef _MSC_VER
# pragma warning(disable: 4127) // conditional expression is constant.
# pragma warning(disable: 4100) // unreferenced formal parameter.
#endif
#include <boost/math/tools/config.hpp>
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#endif
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // Boost.Test
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/distributions/uniform.hpp>
using boost::math::uniform_distribution;
#include "../include_private/boost/math/tools/test.hpp"
#include "test_out_of_range.hpp"
#include <iostream>
#include <iomanip>
using std::cout;
using std::endl;
using std::setprecision;
#include <limits>
using std::numeric_limits;
template <class RealType>
void check_uniform(RealType lower, RealType upper, RealType x, RealType p, RealType q, RealType tol)
{
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
uniform_distribution<RealType>(lower, upper), // distribution.
x), // random variable.
p, // probability.
tol); // tolerance.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
complement(
uniform_distribution<RealType>(lower, upper), // distribution.
x)), // random variable.
q, // probability complement.
tol); // tolerance.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile(
uniform_distribution<RealType>(lower, upper), // distribution.
p), // probability.
x, // random variable.
tol); // tolerance.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile(
complement(
uniform_distribution<RealType>(lower, upper), // distribution.
q)), // probability complement.
x, // random variable.
tol); // tolerance.
} // void check_uniform
template <class RealType>
void test_spots(RealType)
{
// Basic sanity checks
//
// These test values were generated for the normal distribution
// using the online calculator at
// http://espse.ed.psu.edu/edpsych/faculty/rhale/hale/507Mat/statlets/free/pdist.htm
//
// Tolerance is just over 5 decimal digits expressed as a fraction:
// that's the limit of the test data.
RealType tolerance = 2e-5f;
cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << "." << endl;
using std::exp;
// Tests for PDF
//
BOOST_CHECK_CLOSE_FRACTION( // x == upper
pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0)),
static_cast<RealType>(1),
tolerance);
BOOST_CHECK_CLOSE_FRACTION( // x == lower
pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(1)),
static_cast<RealType>(1),
tolerance);
BOOST_CHECK_CLOSE_FRACTION( // x > upper
pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(-1)),
static_cast<RealType>(0),
tolerance);
BOOST_CHECK_CLOSE_FRACTION( // x < lower
pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(2)),
static_cast<RealType>(0),
tolerance);
if(std::numeric_limits<RealType>::has_infinity)
{ // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
// Note that infinity is not implemented for real_concept, so these tests
// are only done for types, like built-in float, double.. that have infinity.
// Note that these assume that BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
// #define BOOST_MATH_OVERFLOW_ERROR_POLICY == throw_on_error would give a throw here.
// #define BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error IS defined, so the throw path
// of error handling is tested below with BOOST_MATH_CHECK_THROW tests.
BOOST_MATH_CHECK_THROW( // x == infinity should NOT be OK.
pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(std::numeric_limits<RealType>::infinity())),
std::domain_error);
BOOST_MATH_CHECK_THROW( // x == minus infinity should be OK too.
pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(-std::numeric_limits<RealType>::infinity())),
std::domain_error);
}
if(std::numeric_limits<RealType>::has_quiet_NaN)
{ // BOOST_CHECK tests for NaN using std::numeric_limits<>::has_quiet_NaN() - should throw.
BOOST_MATH_CHECK_THROW(
pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(std::numeric_limits<RealType>::quiet_NaN())),
std::domain_error);
BOOST_MATH_CHECK_THROW(
pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(-std::numeric_limits<RealType>::quiet_NaN())),
std::domain_error);
} // test for x = NaN using std::numeric_limits<>::quiet_NaN()
// cdf
BOOST_CHECK_EQUAL( // x < lower
cdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(-1)),
static_cast<RealType>(0) );
BOOST_CHECK_CLOSE_FRACTION(
cdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0)),
static_cast<RealType>(0),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
cdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.5)),
static_cast<RealType>(0.5),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
cdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.1)),
static_cast<RealType>(0.1),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
cdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.9)),
static_cast<RealType>(0.9),
tolerance);
BOOST_CHECK_EQUAL( // x > upper
cdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(2)),
static_cast<RealType>(1));
// cdf complement
BOOST_CHECK_EQUAL( // x < lower
cdf(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0))),
static_cast<RealType>(1));
BOOST_CHECK_EQUAL( // x == 0
cdf(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0))),
static_cast<RealType>(1));
BOOST_CHECK_CLOSE_FRACTION( // x = 0.1
cdf(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.1))),
static_cast<RealType>(0.9),
tolerance);
BOOST_CHECK_CLOSE_FRACTION( // x = 0.5
cdf(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.5))),
static_cast<RealType>(0.5),
tolerance);
BOOST_CHECK_EQUAL( // x == 1
cdf(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(1))),
static_cast<RealType>(0));
BOOST_CHECK_EQUAL( // x > upper
cdf(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(2))),
static_cast<RealType>(0));
// quantile
BOOST_CHECK_CLOSE_FRACTION(
quantile(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.9)),
static_cast<RealType>(0.9),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
quantile(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.1)),
static_cast<RealType>(0.1),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
quantile(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.5)),
static_cast<RealType>(0.5),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
quantile(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0)),
static_cast<RealType>(0),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
quantile(uniform_distribution<RealType>(0, 1), static_cast<RealType>(1)),
static_cast<RealType>(1),
tolerance);
// quantile complement
BOOST_CHECK_CLOSE_FRACTION(
quantile(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.1))),
static_cast<RealType>(0.9),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
quantile(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.9))),
static_cast<RealType>(0.1),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
quantile(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.5))),
static_cast<RealType>(0.5),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
quantile(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0))),
static_cast<RealType>(1),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
quantile(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(1))),
static_cast<RealType>(0),
tolerance);
// Some tests using a different location & scale, neight zero or unity.
BOOST_CHECK_CLOSE_FRACTION( // x == mid
pdf(uniform_distribution<RealType>(-1, 2), static_cast<RealType>(1)),
static_cast<RealType>(0.3333333333333333333333333333333333333333333333333333),
tolerance);
BOOST_CHECK_CLOSE_FRACTION( // x == upper
pdf(uniform_distribution<RealType>(-1, 2), static_cast<RealType>(+2)),
static_cast<RealType>(0.3333333333333333333333333333333333333333333333333333), // 1 / (2 - -1) = 1/3
tolerance);
BOOST_CHECK_CLOSE_FRACTION( // x == lower
cdf(uniform_distribution<RealType>(-1, 2), static_cast<RealType>(-1)),
static_cast<RealType>(0),
tolerance);
BOOST_CHECK_CLOSE_FRACTION( // x == upper
cdf(uniform_distribution<RealType>(-1, 2), static_cast<RealType>(0)),
static_cast<RealType>(0.3333333333333333333333333333333333333333333333333333),
tolerance);
BOOST_CHECK_CLOSE_FRACTION( // x == upper
cdf(uniform_distribution<RealType>(-1, 2), static_cast<RealType>(1)),
static_cast<RealType>(0.6666666666666666666666666666666666666666666666666667),
tolerance);
BOOST_CHECK_CLOSE_FRACTION( // x == lower
cdf(uniform_distribution<RealType>(-1, 2), static_cast<RealType>(2)),
static_cast<RealType>(1),
tolerance);
BOOST_CHECK_CLOSE_FRACTION( // x == upper
quantile(uniform_distribution<RealType>(-1, 2), static_cast<RealType>(0.6666666666666666666666666666666666666666666666666667)),
static_cast<RealType>(1),
tolerance);
check_uniform(
static_cast<RealType>(0), // lower
static_cast<RealType>(1), // upper
static_cast<RealType>(0.5), // x
static_cast<RealType>(0.5), // p
static_cast<RealType>(1 - 0.5), // q
tolerance);
// Some Not-standard uniform tests.
check_uniform(
static_cast<RealType>(-1), // lower
static_cast<RealType>(1), // upper
static_cast<RealType>(0), // x
static_cast<RealType>(0.5), // p
static_cast<RealType>(1 - 0.5), // q = 1 - p
tolerance);
check_uniform(
static_cast<RealType>(1), // lower
static_cast<RealType>(3), // upper
static_cast<RealType>(2), // x
static_cast<RealType>(0.5), // p
static_cast<RealType>(1 - 0.5), // q = 1 - p
tolerance);
check_uniform(
static_cast<RealType>(-1), // lower
static_cast<RealType>(2), // upper
static_cast<RealType>(1), // x
static_cast<RealType>(0.66666666666666666666666666666666666666666667), // p
static_cast<RealType>(0.33333333333333333333333333333333333333333333), // q = 1 - p
tolerance);
tolerance = (std::max)(
boost::math::tools::epsilon<RealType>(),
static_cast<RealType>(boost::math::tools::epsilon<double>())) * 5; // 5 eps as a fraction.
cout << "Tolerance (as fraction) for type " << typeid(RealType).name() << " is " << tolerance << "." << endl;
uniform_distribution<RealType> distu01(0, 1);
RealType x = static_cast<RealType>(0.5);
using namespace std; // ADL of std names.
// mean:
BOOST_CHECK_CLOSE_FRACTION(
mean(distu01), static_cast<RealType>(0.5), tolerance);
// variance:
BOOST_CHECK_CLOSE_FRACTION(
variance(distu01), static_cast<RealType>(0.0833333333333333333333333333333333333333333), tolerance);
// std deviation:
BOOST_CHECK_CLOSE_FRACTION(
standard_deviation(distu01), sqrt(variance(distu01)), tolerance);
// hazard:
BOOST_CHECK_CLOSE_FRACTION(
hazard(distu01, x), pdf(distu01, x) / cdf(complement(distu01, x)), tolerance);
// cumulative hazard:
BOOST_CHECK_CLOSE_FRACTION(
chf(distu01, x), -log(cdf(complement(distu01, x))), tolerance);
// coefficient_of_variation:
BOOST_CHECK_CLOSE_FRACTION(
coefficient_of_variation(distu01), standard_deviation(distu01) / mean(distu01), tolerance);
// mode:
BOOST_CHECK_CLOSE_FRACTION(
mode(distu01), static_cast<RealType>(0), tolerance);
BOOST_CHECK_CLOSE_FRACTION(
median(distu01), static_cast<RealType>(0.5), tolerance);
// skewness:
BOOST_CHECK_EQUAL(
skewness(distu01), static_cast<RealType>(0));
// kurtosis:
BOOST_CHECK_CLOSE_FRACTION(
kurtosis(distu01), kurtosis_excess(distu01) + static_cast<RealType>(3), tolerance);
// kurtosis excess:
BOOST_CHECK_CLOSE_FRACTION(
kurtosis_excess(distu01), static_cast<RealType>(-1.2), tolerance);
BOOST_CHECK_SMALL(
entropy(distu01), tolerance);
if(std::numeric_limits<RealType>::has_infinity)
{ // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
// Note that infinity is not implemented for real_concept, so these tests
// are only done for types, like built-in float, double, long double, that have infinity.
// Note that these assume that BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
// #define BOOST_MATH_OVERFLOW_ERROR_POLICY == throw_on_error would give a throw here.
// #define BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error IS defined, so the throw path
// of error handling is tested below with BOOST_MATH_CHECK_THROW tests.
BOOST_MATH_CHECK_THROW(pdf(distu01, std::numeric_limits<RealType>::infinity()), std::domain_error);
BOOST_MATH_CHECK_THROW(pdf(distu01, -std::numeric_limits<RealType>::infinity()), std::domain_error);
} // test for infinity using std::numeric_limits<>::infinity()
else
{ // real_concept case, does has_infinfity == false, so can't check it throws.
// cout << std::numeric_limits<RealType>::infinity() << ' '
// << (boost::math::fpclassify)(std::numeric_limits<RealType>::infinity()) << endl;
// value of std::numeric_limits<RealType>::infinity() is zero, so FPclassify is zero,
// so (boost::math::isfinite)(std::numeric_limits<RealType>::infinity()) does not detect infinity.
// so these tests would never throw.
//BOOST_MATH_CHECK_THROW(pdf(distu01, std::numeric_limits<RealType>::infinity()), std::domain_error);
//BOOST_MATH_CHECK_THROW(pdf(distu01, std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
// BOOST_MATH_CHECK_THROW(pdf(distu01, boost::math::tools::max_value<RealType>() * 2), std::domain_error); // Doesn't throw.
BOOST_CHECK_EQUAL(pdf(distu01, boost::math::tools::max_value<RealType>()), 0);
}
// Special cases:
BOOST_CHECK(pdf(distu01, 0) == 1);
BOOST_CHECK(cdf(distu01, 0) == 0);
BOOST_CHECK(pdf(distu01, 1) == 1);
BOOST_CHECK(cdf(distu01, 1) == 1);
BOOST_CHECK(cdf(complement(distu01, 0)) == 1);
BOOST_CHECK(cdf(complement(distu01, 1)) == 0);
BOOST_CHECK(quantile(distu01, 0) == 0);
BOOST_CHECK(quantile(complement(distu01, 0)) == 1);
BOOST_CHECK(quantile(distu01, 1) == 1);
BOOST_CHECK(quantile(complement(distu01, 1)) == 0);
// Error checks:
if(std::numeric_limits<RealType>::has_quiet_NaN)
{ // BOOST_CHECK tests for constructing with quiet_NaN (not for real_concept, for example - see notes above).
BOOST_MATH_CHECK_THROW(uniform_distribution<RealType>(0, std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
BOOST_MATH_CHECK_THROW(uniform_distribution<RealType>(0, -std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
}
BOOST_MATH_CHECK_THROW(uniform_distribution<RealType>(1, 0), std::domain_error); // lower > upper!
BOOST_MATH_CHECK_THROW(uniform_distribution<RealType>(1, 1), std::domain_error); // lower == upper!
check_out_of_range<uniform_distribution<RealType> >(1, 5);
} // template <class RealType>void test_spots(RealType)
BOOST_AUTO_TEST_CASE( test_main )
{
// Check that can construct uniform distribution using the two convenience methods:
using namespace boost::math;
uniform unistd; // Using typedef
// == uniform_distribution<double> unistd;
BOOST_CHECK_EQUAL(unistd.lower(), 0); // Check defaults.
BOOST_CHECK_EQUAL(unistd.upper(), 1);
uniform_distribution<> myu01(0, 1); // Using default RealType double.
BOOST_CHECK_EQUAL(myu01.lower(), 0); // Check defaults again.
BOOST_CHECK_EQUAL(myu01.upper(), 1);
// Test on extreme values of random variate x, using just double because it has numeric_limit infinity etc..
// No longer allow x to be + or - infinity, then these tests should throw.
BOOST_MATH_CHECK_THROW(pdf(unistd, +std::numeric_limits<double>::infinity()), std::domain_error); // x = + infinity
BOOST_MATH_CHECK_THROW(pdf(unistd, -std::numeric_limits<double>::infinity()), std::domain_error); // x = - infinity
BOOST_MATH_CHECK_THROW(cdf(unistd, +std::numeric_limits<double>::infinity()), std::domain_error); // x = + infinity
BOOST_MATH_CHECK_THROW(cdf(unistd, -std::numeric_limits<double>::infinity()), std::domain_error); // x = - infinity
BOOST_CHECK_EQUAL(pdf(unistd, +(std::numeric_limits<double>::max)()), 0); // x = + max
BOOST_CHECK_EQUAL(pdf(unistd, -(std::numeric_limits<double>::min)()), 0); // x = - min
BOOST_CHECK_EQUAL(cdf(unistd, +(std::numeric_limits<double>::max)()), 1); // x = + max
BOOST_CHECK_EQUAL(cdf(unistd, -(std::numeric_limits<double>::min)()), 0); // x = - min
#ifndef BOOST_NO_EXCEPTIONS
BOOST_MATH_CHECK_THROW(uniform_distribution<> zinf(0, +std::numeric_limits<double>::infinity()), std::domain_error); // zero to infinity using default RealType double.
#else
BOOST_MATH_CHECK_THROW(uniform_distribution<>(0, +std::numeric_limits<double>::infinity()), std::domain_error); // zero to infinity using default RealType double.
#endif
uniform_distribution<> zmax(0, +(std::numeric_limits<double>::max)()); // zero to max using default RealType double.
BOOST_CHECK_EQUAL(zmax.lower(), 0); // Check defaults again.
BOOST_CHECK_EQUAL(zmax.upper(), +(std::numeric_limits<double>::max)());
BOOST_CHECK_EQUAL(pdf(zmax, -1), 0); // pdf is 1/(0 - max) = almost zero for all x
BOOST_CHECK_EQUAL(pdf(zmax, 0), (std::numeric_limits<double>::min)()/4); // x =
BOOST_CHECK_EQUAL(pdf(zmax, 1), (std::numeric_limits<double>::min)()/4); // x =
BOOST_MATH_CHECK_THROW(pdf(zmax, +std::numeric_limits<double>::infinity()), std::domain_error); // pdf is 1/(0 - infinity) = zero for all x
BOOST_MATH_CHECK_THROW(pdf(zmax, -std::numeric_limits<double>::infinity()), std::domain_error);
BOOST_CHECK_EQUAL(pdf(zmax, +(std::numeric_limits<double>::max)()), (std::numeric_limits<double>::min)()/4); // x =
BOOST_CHECK_EQUAL(pdf(zmax, -(std::numeric_limits<double>::max)()), 0); // x =
#ifndef BOOST_NO_EXCEPTIONS
// Ensure NaN throws an exception.
BOOST_MATH_CHECK_THROW(uniform_distribution<> zNaN(0, std::numeric_limits<double>::quiet_NaN()), std::domain_error);
BOOST_MATH_CHECK_THROW(pdf(unistd, std::numeric_limits<double>::quiet_NaN()), std::domain_error);
#else
BOOST_MATH_CHECK_THROW(uniform_distribution<>(0, std::numeric_limits<double>::quiet_NaN()), std::domain_error);
BOOST_MATH_CHECK_THROW(pdf(unistd, std::numeric_limits<double>::quiet_NaN()), std::domain_error);
#endif
// Basic sanity-check spot values.
// (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L); // Test long double.
#if !BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x0582)) && !defined(BOOST_MATH_NO_REAL_CONCEPT_TESTS)
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::endl;
#endif
} // BOOST_AUTO_TEST_CASE( test_main )
/*
Output:
Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_uniform.exe"
Running 1 test case...
Tolerance for type float is 2e-005.
Tolerance (as fraction) for type float is 5.96046e-007.
Tolerance for type double is 2e-005.
Tolerance (as fraction) for type double is 1.11022e-015.
Tolerance for type long double is 2e-005.
Tolerance (as fraction) for type long double is 1.11022e-015.
Tolerance for type class boost::math::concepts::real_concept is 2e-005.
Tolerance (as fraction) for type class boost::math::concepts::real_concept is 1.11022e-015.
*** No errors detected
*/