mirror of
https://github.com/boostorg/math.git
synced 2025-05-11 21:33:52 +00:00
Add SYCL testing of normal dist Add CUDA testing of normal dist Add NVRTC testing of normal dist NVRTC fixes Move headers for NVRTC support Add GPU support to inverse gaussian dist Add NVRTC testing of inverse Gaussian dist Add CUDA testing of inverse gaussian dist Add SYCL testing of inverse gaussian dist Add GPU support to lognormal dist Add SYCL testing of lognormal dist Add CUDA testing of lognormal dist Add nvrtc testing of lognormal dist Add GPU support to negative binomial dist Avoid float_prior on GPU platform Add NVRTC testing of negative binomial dist Fix ambiguous use of nextafter Add CUDA testing of negative binomial dist Fix float_prior workaround Add SYCL testing of negative binomial dist Add GPU support to non_central_beta dist Add SYCL testing of nc beta dist Add CUDA testing of nc beta dist Enable generic dist handling on GPU Add GPU support to brent_find_minima Add NVRTC testing of nc beta dist Add utility header Replace non-functional macro with new function Add GPU support to non central chi squared dist Add SYCL testing of non central chi squared dist Add missing macro definition Markup generic quantile finder Add CUDA testing of non central chi squared dist Add NVRTC testing of non central chi squared dist Add GPU support to the non-central f dist Add SYCL testing of ncf Add CUDA testing of ncf dist Add NVRTC testing of ncf dist Add GPU support to students_t dist Add SYCL testing of students_t dist Add CUDA testing of students_t Add NVRTC testing of students_t dist Workaround for header cycle Add GPU support to pareto dist Add SYCL testing of pareto dist Add CUDA testing of pareto dist Add NVRTC testing of pareto dist Add missing header Add GPU support to poisson dist Add SYCL testing of poisson dist Add CUDA testing of poisson dist Add NVRTC testing of poisson dist Add forward decl for NVRTC platform Add GPU support to rayleigh dist Add CUDA testing of rayleigh dist Add SYCL testing of rayleigh dist Add NVRTC testing of rayleigh dist Add GPU support to triangular dist Add SYCL testing of triangular dist Add NVRTC testing of triangular dist Add CUDA testing of triangular dist Add GPU support to the uniform dist Add CUDA testing of uniform dist Add SYCL testing of uniform dist Add NVRTC testing of uniform dist Fix missing header Add markers to docs
866 lines
35 KiB
C++
866 lines
35 KiB
C++
// test_negative_binomial.cpp
|
|
|
|
// Copyright Paul A. Bristow 2007.
|
|
// Copyright John Maddock 2006.
|
|
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// Tests for Negative Binomial Distribution.
|
|
|
|
// Note that these defines must be placed BEFORE #includes.
|
|
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
|
// because several tests overflow & underflow by design.
|
|
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(disable: 4127) // conditional expression is constant.
|
|
#endif
|
|
|
|
#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
|
|
# define TEST_FLOAT
|
|
# define TEST_DOUBLE
|
|
# define TEST_LDOUBLE
|
|
# define TEST_REAL_CONCEPT
|
|
#endif
|
|
|
|
#include <boost/math/tools/config.hpp>
|
|
#include "../include_private/boost/math/tools/test.hpp"
|
|
|
|
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
|
|
#include <boost/math/concepts/real_concept.hpp> // for real_concept
|
|
using ::boost::math::concepts::real_concept;
|
|
#endif
|
|
|
|
#include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution
|
|
using boost::math::negative_binomial_distribution;
|
|
|
|
#include <boost/math/special_functions/gamma.hpp>
|
|
using boost::math::lgamma; // log gamma
|
|
|
|
#define BOOST_TEST_MAIN
|
|
#include <boost/test/unit_test.hpp> // for test_main
|
|
#include <boost/test/tools/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
|
|
#include "table_type.hpp"
|
|
#include "test_out_of_range.hpp"
|
|
|
|
#include <iostream>
|
|
using std::cout;
|
|
using std::endl;
|
|
using std::setprecision;
|
|
using std::showpoint;
|
|
#include <limits>
|
|
using std::numeric_limits;
|
|
|
|
template <class RealType>
|
|
void test_spot( // Test a single spot value against 'known good' values.
|
|
RealType N, // Number of successes.
|
|
RealType k, // Number of failures.
|
|
RealType p, // Probability of success_fraction.
|
|
RealType P, // CDF probability.
|
|
RealType Q, // Complement of CDF.
|
|
RealType tol) // Test tolerance.
|
|
{
|
|
boost::math::negative_binomial_distribution<RealType> bn(N, p);
|
|
BOOST_CHECK_EQUAL(N, bn.successes());
|
|
BOOST_CHECK_EQUAL(p, bn.success_fraction());
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(bn, k), P, tol);
|
|
|
|
if((P < 0.99) && (Q < 0.99))
|
|
{
|
|
// We can only check this if P is not too close to 1,
|
|
// so that we can guarantee that Q is free of error:
|
|
//
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(complement(bn, k)), Q, tol);
|
|
if(k != 0)
|
|
{
|
|
BOOST_CHECK_CLOSE(
|
|
quantile(bn, P), k, tol);
|
|
}
|
|
else
|
|
{
|
|
// Just check quantile is very small:
|
|
if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
|
|
&& (boost::is_floating_point<RealType>::value))
|
|
{
|
|
// Limit where this is checked: if exponent range is very large we may
|
|
// run out of iterations in our root finding algorithm.
|
|
BOOST_CHECK(quantile(bn, P) < boost::math::tools::epsilon<RealType>() * 10);
|
|
}
|
|
}
|
|
if(k != 0)
|
|
{
|
|
BOOST_CHECK_CLOSE(
|
|
quantile(complement(bn, Q)), k, tol);
|
|
}
|
|
else
|
|
{
|
|
// Just check quantile is very small:
|
|
if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
|
|
&& (boost::is_floating_point<RealType>::value))
|
|
{
|
|
// Limit where this is checked: if exponent range is very large we may
|
|
// run out of iterations in our root finding algorithm.
|
|
BOOST_CHECK(quantile(complement(bn, Q)) < boost::math::tools::epsilon<RealType>() * 10);
|
|
}
|
|
}
|
|
// estimate success ratio:
|
|
BOOST_CHECK_CLOSE(
|
|
negative_binomial_distribution<RealType>::find_lower_bound_on_p(
|
|
N+k, N, P),
|
|
p, tol);
|
|
// Note we bump up the sample size here, purely for the sake of the test,
|
|
// internally the function has to adjust the sample size so that we get
|
|
// the right upper bound, our test undoes this, so we can verify the result.
|
|
BOOST_CHECK_CLOSE(
|
|
negative_binomial_distribution<RealType>::find_upper_bound_on_p(
|
|
N+k+1, N, Q),
|
|
p, tol);
|
|
|
|
if(Q < P)
|
|
{
|
|
//
|
|
// We check two things here, that the upper and lower bounds
|
|
// are the right way around, and that they do actually bracket
|
|
// the naive estimate of p = successes / (sample size)
|
|
//
|
|
BOOST_CHECK(
|
|
negative_binomial_distribution<RealType>::find_lower_bound_on_p(
|
|
N+k, N, Q)
|
|
<=
|
|
negative_binomial_distribution<RealType>::find_upper_bound_on_p(
|
|
N+k, N, Q)
|
|
);
|
|
BOOST_CHECK(
|
|
negative_binomial_distribution<RealType>::find_lower_bound_on_p(
|
|
N+k, N, Q)
|
|
<=
|
|
N / (N+k)
|
|
);
|
|
BOOST_CHECK(
|
|
N / (N+k)
|
|
<=
|
|
negative_binomial_distribution<RealType>::find_upper_bound_on_p(
|
|
N+k, N, Q)
|
|
);
|
|
}
|
|
else
|
|
{
|
|
// As above but when P is small.
|
|
BOOST_CHECK(
|
|
negative_binomial_distribution<RealType>::find_lower_bound_on_p(
|
|
N+k, N, P)
|
|
<=
|
|
negative_binomial_distribution<RealType>::find_upper_bound_on_p(
|
|
N+k, N, P)
|
|
);
|
|
BOOST_CHECK(
|
|
negative_binomial_distribution<RealType>::find_lower_bound_on_p(
|
|
N+k, N, P)
|
|
<=
|
|
N / (N+k)
|
|
);
|
|
BOOST_CHECK(
|
|
N / (N+k)
|
|
<=
|
|
negative_binomial_distribution<RealType>::find_upper_bound_on_p(
|
|
N+k, N, P)
|
|
);
|
|
}
|
|
|
|
// Estimate sample size:
|
|
BOOST_CHECK_CLOSE(
|
|
negative_binomial_distribution<RealType>::find_minimum_number_of_trials(
|
|
k, p, P),
|
|
N+k, tol);
|
|
BOOST_CHECK_CLOSE(
|
|
negative_binomial_distribution<RealType>::find_maximum_number_of_trials(
|
|
k, p, Q),
|
|
N+k, tol);
|
|
|
|
// Double check consistency of CDF and PDF by computing the finite sum:
|
|
RealType sum = 0;
|
|
for(unsigned i = 0; i <= k; ++i)
|
|
{
|
|
sum += pdf(bn, RealType(i));
|
|
}
|
|
BOOST_CHECK_CLOSE(sum, P, tol);
|
|
|
|
// Complement is not possible since sum is to infinity.
|
|
} //
|
|
} // test_spot
|
|
|
|
template <class RealType> // Any floating-point type RealType.
|
|
void test_spots(RealType)
|
|
{
|
|
// Basic sanity checks, test data is to double precision only
|
|
// so set tolerance to 1000 eps expressed as a percent, or
|
|
// 1000 eps of type double expressed as a percent, whichever
|
|
// is the larger.
|
|
|
|
RealType tolerance = (std::max)
|
|
(boost::math::tools::epsilon<RealType>(),
|
|
static_cast<RealType>(std::numeric_limits<double>::epsilon()));
|
|
tolerance *= 100 * 100000.0f;
|
|
|
|
cout << "Tolerance = " << tolerance << "%." << endl;
|
|
|
|
RealType tol1eps = boost::math::tools::epsilon<RealType>() * 2; // Very tight, suit exact values.
|
|
//RealType tol2eps = boost::math::tools::epsilon<RealType>() * 2; // Tight, suit exact values.
|
|
RealType tol5eps = boost::math::tools::epsilon<RealType>() * 5; // Wider 5 epsilon.
|
|
cout << "Tolerance 5 eps = " << tol5eps << "%." << endl;
|
|
|
|
// Sources of spot test values:
|
|
|
|
// MathCAD defines pbinom(k, r, p) (at about 64-bit double precision, about 16 decimal digits)
|
|
// returns pr(X , k) when random variable X has the binomial distribution with parameters r and p.
|
|
// 0 <= k
|
|
// r > 0
|
|
// 0 <= p <= 1
|
|
// P = pbinom(30, 500, 0.05) = 0.869147702104609
|
|
|
|
// And functions.wolfram.com
|
|
|
|
using boost::math::negative_binomial_distribution;
|
|
using ::boost::math::negative_binomial;
|
|
using ::boost::math::cdf;
|
|
using ::boost::math::pdf;
|
|
|
|
// Test negative binomial using cdf spot values from MathCAD cdf = pnbinom(k, r, p).
|
|
// These test quantiles and complements as well.
|
|
|
|
test_spot( // pnbinom(1,2,0.5) = 0.5
|
|
static_cast<RealType>(2), // successes r
|
|
static_cast<RealType>(1), // Number of failures, k
|
|
static_cast<RealType>(0.5), // Probability of success as fraction, p
|
|
static_cast<RealType>(0.5), // Probability of result (CDF), P
|
|
static_cast<RealType>(0.5), // complement CCDF Q = 1 - P
|
|
tolerance);
|
|
|
|
test_spot( // pbinom(0, 2, 0.25)
|
|
static_cast<RealType>(2), // successes r
|
|
static_cast<RealType>(0), // Number of failures, k
|
|
static_cast<RealType>(0.25),
|
|
static_cast<RealType>(0.0625), // Probability of result (CDF), P
|
|
static_cast<RealType>(0.9375), // Q = 1 - P
|
|
tolerance);
|
|
|
|
test_spot( // pbinom(48,8,0.25)
|
|
static_cast<RealType>(8), // successes r
|
|
static_cast<RealType>(48), // Number of failures, k
|
|
static_cast<RealType>(0.25), // Probability of success, p
|
|
static_cast<RealType>(9.826582228110670E-1), // Probability of result (CDF), P
|
|
static_cast<RealType>(1 - 9.826582228110670E-1), // Q = 1 - P
|
|
tolerance);
|
|
|
|
test_spot( // pbinom(2,5,0.4)
|
|
static_cast<RealType>(5), // successes r
|
|
static_cast<RealType>(2), // Number of failures, k
|
|
static_cast<RealType>(0.4), // Probability of success, p
|
|
static_cast<RealType>(9.625600000000020E-2), // Probability of result (CDF), P
|
|
static_cast<RealType>(1 - 9.625600000000020E-2), // Q = 1 - P
|
|
tolerance);
|
|
|
|
test_spot( // pbinom(10,100,0.9)
|
|
static_cast<RealType>(100), // successes r
|
|
static_cast<RealType>(10), // Number of failures, k
|
|
static_cast<RealType>(0.9), // Probability of success, p
|
|
static_cast<RealType>(4.535522887695670E-1), // Probability of result (CDF), P
|
|
static_cast<RealType>(1 - 4.535522887695670E-1), // Q = 1 - P
|
|
tolerance);
|
|
|
|
test_spot( // pbinom(1,100,0.991)
|
|
static_cast<RealType>(100), // successes r
|
|
static_cast<RealType>(1), // Number of failures, k
|
|
static_cast<RealType>(0.991), // Probability of success, p
|
|
static_cast<RealType>(7.693413044217000E-1), // Probability of result (CDF), P
|
|
static_cast<RealType>(1 - 7.693413044217000E-1), // Q = 1 - P
|
|
tolerance);
|
|
|
|
test_spot( // pbinom(10,100,0.991)
|
|
static_cast<RealType>(100), // successes r
|
|
static_cast<RealType>(10), // Number of failures, k
|
|
static_cast<RealType>(0.991), // Probability of success, p
|
|
static_cast<RealType>(9.999999940939000E-1), // Probability of result (CDF), P
|
|
static_cast<RealType>(1 - 9.999999940939000E-1), // Q = 1 - P
|
|
tolerance);
|
|
|
|
if(std::numeric_limits<RealType>::is_specialized)
|
|
{ // An extreme value test that takes 3 minutes using the real concept type
|
|
// for which numeric_limits<RealType>::is_specialized == false, deliberately
|
|
// and for which there is no Lanczos approximation defined (also deliberately)
|
|
// giving a very slow computation, but with acceptable accuracy.
|
|
// A possible enhancement might be to use a normal approximation for
|
|
// extreme values, but this is not implemented.
|
|
test_spot( // pbinom(100000,100,0.001)
|
|
static_cast<RealType>(100), // successes r
|
|
static_cast<RealType>(100000), // Number of failures, k
|
|
static_cast<RealType>(0.001), // Probability of success, p
|
|
static_cast<RealType>(5.173047534260320E-1), // Probability of result (CDF), P
|
|
static_cast<RealType>(1 - 5.173047534260320E-1), // Q = 1 - P
|
|
tolerance*1000); // *1000 is OK 0.51730475350664229 versus
|
|
|
|
// functions.wolfram.com
|
|
// for I[0.001](100, 100000+1) gives:
|
|
// Wolfram 0.517304753506834882009032744488738352004003696396461766326713
|
|
// JM nonLanczos 0.51730475350664229 differs at the 13th decimal digit.
|
|
// MathCAD 0.51730475342603199 differs at 10th decimal digit.
|
|
|
|
// Error tests:
|
|
check_out_of_range<negative_binomial_distribution<RealType> >(20, 0.5);
|
|
BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(0, 0.5), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(-2, 0.5), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(20, -0.5), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(20, 1.5), std::domain_error);
|
|
}
|
|
// End of single spot tests using RealType
|
|
|
|
|
|
// Tests on PDF:
|
|
BOOST_CHECK_CLOSE(
|
|
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0) ), // k = 0.
|
|
static_cast<RealType>(0.25), // 0
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(4), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0)), // k = 0.
|
|
static_cast<RealType>(0.0625), // exact 1/16
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(0)), // k = 0
|
|
static_cast<RealType>(9.094947017729270E-13), // pbinom(0,20,0.25) = 9.094947017729270E-13
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.2)),
|
|
static_cast<RealType>(0)), // k = 0
|
|
static_cast<RealType>(1.0485760000000003e-014), // MathCAD 1.048576000000000E-14
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(10), static_cast<RealType>(0.1)),
|
|
static_cast<RealType>(0)), // k = 0.
|
|
static_cast<RealType>(1e-10), // MathCAD says zero, but suffers cancellation error?
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.1)),
|
|
static_cast<RealType>(0)), // k = 0.
|
|
static_cast<RealType>(1e-20), // MathCAD says zero, but suffers cancellation error?
|
|
tolerance);
|
|
|
|
|
|
BOOST_CHECK_CLOSE( // .
|
|
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.9)),
|
|
static_cast<RealType>(0)), // k.
|
|
static_cast<RealType>(1.215766545905690E-1), // k=20 p = 0.9
|
|
tolerance);
|
|
|
|
// Tests on cdf:
|
|
// MathCAD pbinom k, r, p) == failures, successes, probability.
|
|
|
|
BOOST_CHECK_CLOSE(cdf(
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), // successes = 2,prob 0.25
|
|
static_cast<RealType>(0) ), // k = 0
|
|
static_cast<RealType>(0.25), // probability 1/4
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(cdf(complement(
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), // successes = 2,prob 0.25
|
|
static_cast<RealType>(0) )), // k = 0
|
|
static_cast<RealType>(0.75), // probability 3/4
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE( // k = 1.
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(1)), // k =1.
|
|
static_cast<RealType>(1.455191522836700E-11),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_SMALL( // Check within an epsilon with CHECK_SMALL
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(1)) -
|
|
static_cast<RealType>(1.455191522836700E-11),
|
|
tolerance );
|
|
|
|
// Some exact (probably - judging by trailing zeros) values.
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(0)), // k.
|
|
static_cast<RealType>(1.525878906250000E-5),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(0)), // k.
|
|
static_cast<RealType>(1.525878906250000E-5),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_SMALL(
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(0)) -
|
|
static_cast<RealType>(1.525878906250000E-5),
|
|
tolerance );
|
|
|
|
BOOST_CHECK_CLOSE( // k = 1.
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(1)), // k.
|
|
static_cast<RealType>(1.068115234375010E-4),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( // k = 2.
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(2)), // k.
|
|
static_cast<RealType>(4.158020019531300E-4),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( // k = 3.
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(3)), // k.bristow
|
|
static_cast<RealType>(1.188278198242200E-3),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( // k = 4.
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(4)), // k.
|
|
static_cast<RealType>(2.781510353088410E-3),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( // k = 5.
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(5)), // k.
|
|
static_cast<RealType>(5.649328231811500E-3),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( // k = 6.
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(6)), // k.
|
|
static_cast<RealType>(1.030953228473680E-2),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( // k = 7.
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(7)), // k.
|
|
static_cast<RealType>(1.729983836412430E-2),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( // k = 8.
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(8)), // k = n.
|
|
static_cast<RealType>(2.712995628826370E-2),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( //
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(48)), // k
|
|
static_cast<RealType>(9.826582228110670E-1),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( //
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(64)), // k
|
|
static_cast<RealType>(9.990295004935590E-1),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( //
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(5), static_cast<RealType>(0.4)),
|
|
static_cast<RealType>(26)), // k
|
|
static_cast<RealType>(9.989686246611190E-1),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( //
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(5), static_cast<RealType>(0.4)),
|
|
static_cast<RealType>(2)), // k failures
|
|
static_cast<RealType>(9.625600000000020E-2),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( //
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(50), static_cast<RealType>(0.9)),
|
|
static_cast<RealType>(20)), // k
|
|
static_cast<RealType>(9.999970854144170E-1),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( //
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(500), static_cast<RealType>(0.7)),
|
|
static_cast<RealType>(200)), // k
|
|
static_cast<RealType>(2.172846379930550E-1),
|
|
tolerance* 2);
|
|
|
|
BOOST_CHECK_CLOSE( //
|
|
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(50), static_cast<RealType>(0.7)),
|
|
static_cast<RealType>(20)), // k
|
|
static_cast<RealType>(4.550203671301790E-1),
|
|
tolerance);
|
|
|
|
// Tests of other functions, mean and other moments ...
|
|
|
|
negative_binomial_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(0.25));
|
|
using namespace std; // ADL of std names.
|
|
// mean:
|
|
BOOST_CHECK_CLOSE(
|
|
mean(dist), static_cast<RealType>(8 * (1 - 0.25) /0.25), tol5eps);
|
|
BOOST_CHECK_CLOSE(
|
|
mode(dist), static_cast<RealType>(21), tol1eps);
|
|
// variance:
|
|
BOOST_CHECK_CLOSE(
|
|
variance(dist), static_cast<RealType>(8 * (1 - 0.25) / (0.25 * 0.25)), tol5eps);
|
|
// std deviation:
|
|
BOOST_CHECK_CLOSE(
|
|
standard_deviation(dist), // 9.79795897113271239270
|
|
static_cast<RealType>(9.797958971132712392789136298823565567864L), // using functions.wolfram.com
|
|
// 9.79795897113271152534 == sqrt(8 * (1 - 0.25) / (0.25 * 0.25)))
|
|
tol5eps * 100);
|
|
BOOST_CHECK_CLOSE(
|
|
skewness(dist), //
|
|
static_cast<RealType>(0.71443450831176036),
|
|
// using http://mathworld.wolfram.com/skewness.html
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
kurtosis_excess(dist), //
|
|
static_cast<RealType>(0.7604166666666666666666666666666666666666L), // using Wikipedia Kurtosis(excess) formula
|
|
tol5eps * 100);
|
|
BOOST_CHECK_CLOSE(
|
|
kurtosis(dist), // true
|
|
static_cast<RealType>(3.76041666666666666666666666666666666666666L), //
|
|
tol5eps * 100);
|
|
// hazard:
|
|
RealType x = static_cast<RealType>(0.125);
|
|
BOOST_CHECK_CLOSE(
|
|
hazard(dist, x)
|
|
, pdf(dist, x) / cdf(complement(dist, x)), tol5eps);
|
|
// cumulative hazard:
|
|
BOOST_CHECK_CLOSE(
|
|
chf(dist, x), -log(cdf(complement(dist, x))), tol5eps);
|
|
// coefficient_of_variation:
|
|
BOOST_CHECK_CLOSE(
|
|
coefficient_of_variation(dist)
|
|
, standard_deviation(dist) / mean(dist), tol5eps);
|
|
|
|
// Special cases for PDF:
|
|
BOOST_CHECK_EQUAL(
|
|
pdf(
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)), //
|
|
static_cast<RealType>(0)),
|
|
static_cast<RealType>(0) );
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
pdf(
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)),
|
|
static_cast<RealType>(0.0001)),
|
|
static_cast<RealType>(0) );
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
pdf(
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
|
|
static_cast<RealType>(0.001)),
|
|
static_cast<RealType>(0) );
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
pdf(
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
|
|
static_cast<RealType>(8)),
|
|
static_cast<RealType>(0) );
|
|
|
|
BOOST_CHECK_SMALL(
|
|
pdf(
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(0))-
|
|
static_cast<RealType>(0.0625),
|
|
2 * boost::math::tools::epsilon<RealType>() ); // Expect exact, but not quite.
|
|
// numeric_limits<RealType>::epsilon()); // Not suitable for real concept!
|
|
|
|
// Quantile boundary cases checks:
|
|
BOOST_CHECK_EQUAL(
|
|
quantile( // zero P < cdf(0) so should be exactly zero.
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(0)),
|
|
static_cast<RealType>(0));
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
quantile( // min P < cdf(0) so should be exactly zero.
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(boost::math::tools::min_value<RealType>())),
|
|
static_cast<RealType>(0));
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
quantile( // Small P < cdf(0) so should be near zero.
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(boost::math::tools::epsilon<RealType>())), //
|
|
static_cast<RealType>(0),
|
|
tol5eps);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
quantile( // Small P < cdf(0) so should be exactly zero.
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(0.0001)),
|
|
static_cast<RealType>(0.95854156929288470),
|
|
tolerance);
|
|
|
|
//BOOST_CHECK( // Fails with overflow for real_concept
|
|
//quantile( // Small P near 1 so k failures should be big.
|
|
//negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
//static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>())) <=
|
|
//static_cast<RealType>(189.56999032670058) // 106.462769 for float
|
|
//);
|
|
|
|
if(std::numeric_limits<RealType>::has_infinity)
|
|
{ // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
|
|
// Note that infinity is not implemented for real_concept, so these tests
|
|
// are only done for types, like built-in float, double.. that have infinity.
|
|
// Note that these assume that BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
|
|
// #define BOOST_MATH_THROW_ON_OVERFLOW_POLICY == throw_on_error would throw here.
|
|
// #define BOOST_MAT_DOMAIN_ERROR_POLICY IS defined throw_on_error,
|
|
// so the throw path of error handling is tested below with BOOST_MATH_CHECK_THROW tests.
|
|
|
|
BOOST_CHECK(
|
|
quantile( // At P == 1 so k failures should be infinite.
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(1)) ==
|
|
//static_cast<RealType>(boost::math::tools::infinity<RealType>())
|
|
static_cast<RealType>(std::numeric_limits<RealType>::infinity()) );
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
quantile( // At 1 == P so should be infinite.
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(1)), //
|
|
std::numeric_limits<RealType>::infinity() );
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
quantile(complement( // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(0))),
|
|
std::numeric_limits<RealType>::infinity() );
|
|
} // test for infinity using std::numeric_limits<>::infinity()
|
|
else
|
|
{ // real_concept case, so check it throws rather than returning infinity.
|
|
BOOST_CHECK_EQUAL(
|
|
quantile( // At P == 1 so k failures should be infinite.
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(1)),
|
|
boost::math::tools::max_value<RealType>() );
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
quantile(complement( // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(0))),
|
|
boost::math::tools::max_value<RealType>());
|
|
}
|
|
BOOST_CHECK( // Should work for built-in and real_concept.
|
|
quantile(complement( // Q very near to 1 so P nearly 1 < so should be large > 384.
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(boost::math::tools::min_value<RealType>())))
|
|
>= static_cast<RealType>(384) );
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
quantile( // P == 0 < cdf(0) so should be zero.
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(0)),
|
|
static_cast<RealType>(0));
|
|
|
|
// Quantile Complement boundary cases:
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
quantile(complement( // Q = 1 so P = 0 < cdf(0) so should be exactly zero.
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(1))),
|
|
static_cast<RealType>(0)
|
|
);
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
quantile(complement( // Q very near 1 so P == epsilon < cdf(0) so should be exactly zero.
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>()))),
|
|
static_cast<RealType>(0)
|
|
);
|
|
|
|
// Check that duff arguments throw domain_error:
|
|
BOOST_MATH_CHECK_THROW(
|
|
pdf( // Negative successes!
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(-1), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(0)), std::domain_error
|
|
);
|
|
BOOST_MATH_CHECK_THROW(
|
|
pdf( // Negative success_fraction!
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
|
|
static_cast<RealType>(0)), std::domain_error
|
|
);
|
|
BOOST_MATH_CHECK_THROW(
|
|
pdf( // Success_fraction > 1!
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
|
|
static_cast<RealType>(0)),
|
|
std::domain_error
|
|
);
|
|
BOOST_MATH_CHECK_THROW(
|
|
pdf( // Negative k argument !
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(-1)),
|
|
std::domain_error
|
|
);
|
|
//BOOST_MATH_CHECK_THROW(
|
|
//pdf( // Unlike binomial there is NO limit on k (failures)
|
|
//negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
//static_cast<RealType>(9)), std::domain_error
|
|
//);
|
|
BOOST_MATH_CHECK_THROW(
|
|
cdf( // Negative k argument !
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
|
|
static_cast<RealType>(-1)),
|
|
std::domain_error
|
|
);
|
|
BOOST_MATH_CHECK_THROW(
|
|
cdf( // Negative success_fraction!
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
|
|
static_cast<RealType>(0)), std::domain_error
|
|
);
|
|
BOOST_MATH_CHECK_THROW(
|
|
cdf( // Success_fraction > 1!
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
|
|
static_cast<RealType>(0)), std::domain_error
|
|
);
|
|
BOOST_MATH_CHECK_THROW(
|
|
quantile( // Negative success_fraction!
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
|
|
static_cast<RealType>(0)), std::domain_error
|
|
);
|
|
BOOST_MATH_CHECK_THROW(
|
|
quantile( // Success_fraction > 1!
|
|
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
|
|
static_cast<RealType>(0)), std::domain_error
|
|
);
|
|
// End of check throwing 'duff' out-of-domain values.
|
|
|
|
#define T RealType
|
|
#include "negative_binomial_quantile.ipp"
|
|
|
|
for(unsigned i = 0; i < negative_binomial_quantile_data.size(); ++i)
|
|
{
|
|
using namespace boost::math::policies;
|
|
typedef policy<discrete_quantile<boost::math::policies::real> > P1;
|
|
typedef policy<discrete_quantile<integer_round_down> > P2;
|
|
typedef policy<discrete_quantile<integer_round_up> > P3;
|
|
typedef policy<discrete_quantile<integer_round_outwards> > P4;
|
|
typedef policy<discrete_quantile<integer_round_inwards> > P5;
|
|
typedef policy<discrete_quantile<integer_round_nearest> > P6;
|
|
RealType tol = boost::math::tools::epsilon<RealType>() * 700;
|
|
if(!boost::is_floating_point<RealType>::value)
|
|
tol *= 10; // no lanczos approximation implies less accuracy
|
|
//
|
|
// Check full real value first:
|
|
//
|
|
negative_binomial_distribution<RealType, P1> p1(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
|
|
RealType x = quantile(p1, negative_binomial_quantile_data[i][2]);
|
|
BOOST_CHECK_CLOSE_FRACTION(x, negative_binomial_quantile_data[i][3], tol);
|
|
x = quantile(complement(p1, negative_binomial_quantile_data[i][2]));
|
|
BOOST_CHECK_CLOSE_FRACTION(x, negative_binomial_quantile_data[i][4], tol);
|
|
//
|
|
// Now with round down to integer:
|
|
//
|
|
negative_binomial_distribution<RealType, P2> p2(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
|
|
x = quantile(p2, negative_binomial_quantile_data[i][2]);
|
|
BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][3]));
|
|
x = quantile(complement(p2, negative_binomial_quantile_data[i][2]));
|
|
BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][4]));
|
|
//
|
|
// Now with round up to integer:
|
|
//
|
|
negative_binomial_distribution<RealType, P3> p3(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
|
|
x = quantile(p3, negative_binomial_quantile_data[i][2]);
|
|
BOOST_CHECK_EQUAL(x, ceil(negative_binomial_quantile_data[i][3]));
|
|
x = quantile(complement(p3, negative_binomial_quantile_data[i][2]));
|
|
BOOST_CHECK_EQUAL(x, ceil(negative_binomial_quantile_data[i][4]));
|
|
//
|
|
// Now with round to integer "outside":
|
|
//
|
|
negative_binomial_distribution<RealType, P4> p4(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
|
|
x = quantile(p4, negative_binomial_quantile_data[i][2]);
|
|
BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? floor(negative_binomial_quantile_data[i][3]) : ceil(negative_binomial_quantile_data[i][3]));
|
|
x = quantile(complement(p4, negative_binomial_quantile_data[i][2]));
|
|
BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? ceil(negative_binomial_quantile_data[i][4]) : floor(negative_binomial_quantile_data[i][4]));
|
|
//
|
|
// Now with round to integer "inside":
|
|
//
|
|
negative_binomial_distribution<RealType, P5> p5(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
|
|
x = quantile(p5, negative_binomial_quantile_data[i][2]);
|
|
BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? ceil(negative_binomial_quantile_data[i][3]) : floor(negative_binomial_quantile_data[i][3]));
|
|
x = quantile(complement(p5, negative_binomial_quantile_data[i][2]));
|
|
BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? floor(negative_binomial_quantile_data[i][4]) : ceil(negative_binomial_quantile_data[i][4]));
|
|
//
|
|
// Now with round to nearest integer:
|
|
//
|
|
negative_binomial_distribution<RealType, P6> p6(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
|
|
x = quantile(p6, negative_binomial_quantile_data[i][2]);
|
|
BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][3] + 0.5f));
|
|
x = quantile(complement(p6, negative_binomial_quantile_data[i][2]));
|
|
BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][4] + 0.5f));
|
|
}
|
|
|
|
return;
|
|
} // template <class RealType> void test_spots(RealType) // Any floating-point type RealType.
|
|
|
|
BOOST_AUTO_TEST_CASE( test_main )
|
|
{
|
|
// Check that can generate negative_binomial distribution using the two convenience methods:
|
|
using namespace boost::math;
|
|
negative_binomial mynb1(2., 0.5); // Using typedef - default type is double.
|
|
negative_binomial_distribution<> myf2(2., 0.5); // Using default RealType double.
|
|
|
|
// Basic sanity-check spot values.
|
|
|
|
// Test some simple double only examples.
|
|
negative_binomial_distribution<double> my8dist(8., 0.25);
|
|
// 8 successes (r), 0.25 success fraction = 35% or 1 in 4 successes.
|
|
// Note: double values (matching the distribution definition) avoid the need for any casting.
|
|
|
|
// Check accessor functions return exact values for double at least.
|
|
BOOST_CHECK_EQUAL(my8dist.successes(), static_cast<double>(8));
|
|
BOOST_CHECK_EQUAL(my8dist.success_fraction(), static_cast<double>(1./4.));
|
|
|
|
// (Parameter value, arbitrarily zero, only communicates the floating point type).
|
|
#ifdef TEST_FLOAT
|
|
test_spots(0.0F); // Test float.
|
|
#endif
|
|
#ifdef TEST_DOUBLE
|
|
test_spots(0.0); // Test double.
|
|
#endif
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
#ifdef TEST_LDOUBLE
|
|
test_spots(0.0L); // Test long double.
|
|
#endif
|
|
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
|
|
#ifdef TEST_REAL_CONCEPT
|
|
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
|
|
#endif
|
|
#endif
|
|
#else
|
|
std::cout << "<note>The long double tests have been disabled on this platform "
|
|
"either because the long double overloads of the usual math functions are "
|
|
"not available at all, or because they are too inaccurate for these tests "
|
|
"to pass.</note>" << std::endl;
|
|
#endif
|
|
|
|
|
|
} // BOOST_AUTO_TEST_CASE( test_main )
|
|
|
|
/*
|
|
|
|
Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_negative_binomial.exe"
|
|
Running 1 test case...
|
|
Tolerance = 0.0119209%.
|
|
Tolerance 5 eps = 5.96046e-007%.
|
|
Tolerance = 2.22045e-011%.
|
|
Tolerance 5 eps = 1.11022e-015%.
|
|
Tolerance = 2.22045e-011%.
|
|
Tolerance 5 eps = 1.11022e-015%.
|
|
Tolerance = 2.22045e-011%.
|
|
Tolerance 5 eps = 1.11022e-015%.
|
|
*** No errors detected
|
|
|
|
*/
|