math/test/test_nc_chi_squared.hpp
Matt Borland e9cd6c96fd
Add GPU support to normal dist
Add SYCL testing of normal dist

Add CUDA testing of normal dist

Add NVRTC testing of normal dist

NVRTC fixes

Move headers for NVRTC support

Add GPU support to inverse gaussian dist

Add NVRTC testing of inverse Gaussian dist

Add CUDA testing of inverse gaussian dist

Add SYCL testing of inverse gaussian dist

Add GPU support to lognormal dist

Add SYCL testing of lognormal dist

Add CUDA testing of lognormal dist

Add nvrtc testing of lognormal dist

Add GPU support to negative binomial dist

Avoid float_prior on GPU platform

Add NVRTC testing of negative binomial dist

Fix ambiguous use of nextafter

Add CUDA testing of negative binomial dist

Fix float_prior workaround

Add SYCL testing of negative binomial dist

Add GPU support to non_central_beta dist

Add SYCL testing of nc beta dist

Add CUDA testing of nc beta dist

Enable generic dist handling on GPU

Add GPU support to brent_find_minima

Add NVRTC testing of nc beta dist

Add utility header

Replace non-functional macro with new function

Add GPU support to non central chi squared dist

Add SYCL testing of non central chi squared dist

Add missing macro definition

Markup generic quantile finder

Add CUDA testing of non central chi squared dist

Add NVRTC testing of non central chi squared dist

Add GPU support to the non-central f dist

Add SYCL testing of ncf

Add CUDA testing of ncf dist

Add NVRTC testing of ncf dist

Add GPU support to students_t dist

Add SYCL testing of students_t dist

Add CUDA testing of students_t

Add NVRTC testing of students_t dist

Workaround for header cycle

Add GPU support to pareto dist

Add SYCL testing of pareto dist

Add CUDA testing of pareto dist

Add NVRTC testing of pareto dist

Add missing header

Add GPU support to poisson dist

Add SYCL testing of poisson dist

Add CUDA testing of poisson dist

Add NVRTC testing of poisson dist

Add forward decl for NVRTC platform

Add GPU support to rayleigh dist

Add CUDA testing of rayleigh dist

Add SYCL testing of rayleigh dist

Add NVRTC testing of rayleigh dist

Add GPU support to triangular dist

Add SYCL testing of triangular dist

Add NVRTC testing of triangular dist

Add CUDA testing of triangular dist

Add GPU support to the uniform dist

Add CUDA testing of uniform dist

Add SYCL testing of uniform dist

Add NVRTC testing of uniform dist

Fix missing header

Add markers to docs
2024-09-06 12:10:18 -04:00

464 lines
19 KiB
C++

// (C) Copyright John Maddock 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_OVERFLOW_ERROR_POLICY
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#endif
#include <boost/math/concepts/real_concept.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/distributions/non_central_chi_squared.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#include "handle_test_result.hpp"
#include "table_type.hpp"
#include <iostream>
#include <iomanip>
#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK_CLOSE(a, b, prec); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
#define BOOST_CHECK_EX(a, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK(a); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
template <class RealType>
RealType naive_pdf(RealType v, RealType lam, RealType x)
{
// Formula direct from
// http://mathworld.wolfram.com/NoncentralChi-SquaredDistribution.html
// with no simplification:
RealType sum, term, prefix(1);
RealType eps = boost::math::tools::epsilon<RealType>();
term = sum = pdf(boost::math::chi_squared_distribution<RealType>(v), x);
for(int i = 1;; ++i)
{
prefix *= lam / (2 * i);
term = prefix * pdf(boost::math::chi_squared_distribution<RealType>(v + 2 * i), x);
sum += term;
if(term / sum < eps)
break;
}
return sum * exp(-lam / 2);
}
template <class RealType>
void test_spot(
RealType df, // Degrees of freedom
RealType ncp, // non-centrality param
RealType cs, // Chi Square statistic
RealType P, // CDF
RealType Q, // Complement of CDF
RealType tol) // Test tolerance
{
boost::math::non_central_chi_squared_distribution<RealType> dist(df, ncp);
BOOST_CHECK_CLOSE(
cdf(dist, cs), P, tol);
#if !defined(BOOST_NO_EXCEPTIONS) && !defined(BOOST_MATH_NO_EXCEPTIONS)
try{
BOOST_CHECK_CLOSE(
pdf(dist, cs), naive_pdf(dist.degrees_of_freedom(), ncp, cs), tol * 150);
}
catch(const std::overflow_error&)
{
}
#endif
if((P < 0.99) && (Q < 0.99))
{
//
// We can only check this if P is not too close to 1,
// so that we can guarantee Q is reasonably free of error:
//
BOOST_CHECK_CLOSE(
cdf(complement(dist, cs)), Q, tol);
BOOST_CHECK_CLOSE(
quantile(dist, P), cs, tol * 10);
BOOST_CHECK_CLOSE(
quantile(complement(dist, Q)), cs, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_degrees_of_freedom(ncp, cs, P), df, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_degrees_of_freedom(boost::math::complement(ncp, cs, Q)), df, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_non_centrality(df, cs, P), ncp, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_non_centrality(boost::math::complement(df, cs, Q)), ncp, tol * 10);
}
}
template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
#ifndef ERROR_REPORTING_MODE
RealType tolerance = (std::max)(
boost::math::tools::epsilon<RealType>(),
(RealType)boost::math::tools::epsilon<double>() * 5) * 150;
//
// At float precision we need to up the tolerance, since
// the input values are rounded off to inexact quantities
// the results get thrown off by a noticeable amount.
//
if(boost::math::tools::digits<RealType>() < 50)
tolerance *= 50;
if(boost::is_floating_point<RealType>::value != 1)
tolerance *= 20; // real_concept special functions are less accurate
std::cout << "Tolerance = " << tolerance << "%." << std::endl;
using boost::math::chi_squared_distribution;
using ::boost::math::chi_squared;
using ::boost::math::cdf;
using ::boost::math::pdf;
//
// Test against the data from Table 6 of:
//
// "Self-Validating Computations of Probabilities for Selected
// Central and Noncentral Univariate Probability Functions."
// Morgan C. Wang; William J. Kennedy
// Journal of the American Statistical Association,
// Vol. 89, No. 427. (Sep., 1994), pp. 878-887.
//
test_spot(
static_cast<RealType>(1), // degrees of freedom
static_cast<RealType>(6), // non centrality
static_cast<RealType>(0.00393), // Chi Squared statistic
static_cast<RealType>(0.2498463724258039e-2), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.2498463724258039e-2), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(5), // degrees of freedom
static_cast<RealType>(1), // non centrality
static_cast<RealType>(9.23636), // Chi Squared statistic
static_cast<RealType>(0.8272918751175548), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.8272918751175548), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(11), // degrees of freedom
static_cast<RealType>(21), // non centrality
static_cast<RealType>(24.72497), // Chi Squared statistic
static_cast<RealType>(0.2539481822183126), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.2539481822183126), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(31), // degrees of freedom
static_cast<RealType>(6), // non centrality
static_cast<RealType>(44.98534), // Chi Squared statistic
static_cast<RealType>(0.8125198785064969), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.8125198785064969), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(51), // degrees of freedom
static_cast<RealType>(1), // non centrality
static_cast<RealType>(38.56038), // Chi Squared statistic
static_cast<RealType>(0.8519497361859118e-1), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.8519497361859118e-1), // Q = 1 - P
tolerance * 2);
test_spot(
static_cast<RealType>(100), // degrees of freedom
static_cast<RealType>(16), // non centrality
static_cast<RealType>(82.35814), // Chi Squared statistic
static_cast<RealType>(0.1184348822747824e-1), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.1184348822747824e-1), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(300), // degrees of freedom
static_cast<RealType>(16), // non centrality
static_cast<RealType>(331.78852), // Chi Squared statistic
static_cast<RealType>(0.7355956710306709), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.7355956710306709), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(500), // degrees of freedom
static_cast<RealType>(21), // non centrality
static_cast<RealType>(459.92612), // Chi Squared statistic
static_cast<RealType>(0.2797023600800060e-1), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.2797023600800060e-1), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(1), // degrees of freedom
static_cast<RealType>(1), // non centrality
static_cast<RealType>(0.00016), // Chi Squared statistic
static_cast<RealType>(0.6121428929881423e-2), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.6121428929881423e-2), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(1), // degrees of freedom
static_cast<RealType>(1), // non centrality
static_cast<RealType>(0.00393), // Chi Squared statistic
static_cast<RealType>(0.3033814229753780e-1), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.3033814229753780e-1), // Q = 1 - P
tolerance);
RealType tol2 = boost::math::tools::epsilon<RealType>() * 5 * 100; // 5 eps as a percentage
boost::math::non_central_chi_squared_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(12));
RealType x = 7;
using namespace std; // ADL of std names.
// mean:
BOOST_CHECK_CLOSE(
mean(dist)
, static_cast<RealType>(8 + 12), tol2);
// variance:
BOOST_CHECK_CLOSE(
variance(dist)
, static_cast<RealType>(64), tol2);
// std deviation:
BOOST_CHECK_CLOSE(
standard_deviation(dist)
, static_cast<RealType>(8), tol2);
// hazard:
BOOST_CHECK_CLOSE(
hazard(dist, x)
, pdf(dist, x) / cdf(complement(dist, x)), tol2);
// cumulative hazard:
BOOST_CHECK_CLOSE(
chf(dist, x)
, -log(cdf(complement(dist, x))), tol2);
// coefficient_of_variation:
BOOST_CHECK_CLOSE(
coefficient_of_variation(dist)
, standard_deviation(dist) / mean(dist), tol2);
// mode:
BOOST_CHECK_CLOSE(
mode(dist)
, static_cast<RealType>(17.184201184730857030170788677340294070728990862663L), sqrt(tolerance * 500));
BOOST_CHECK_CLOSE(
median(dist),
quantile(
boost::math::non_central_chi_squared_distribution<RealType>(
static_cast<RealType>(8),
static_cast<RealType>(12)),
static_cast<RealType>(0.5)), static_cast<RealType>(tol2));
// skewness:
BOOST_CHECK_CLOSE(
skewness(dist)
, static_cast<RealType>(0.6875), tol2);
// kurtosis:
BOOST_CHECK_CLOSE(
kurtosis(dist)
, static_cast<RealType>(3.65625), tol2);
// kurtosis excess:
BOOST_CHECK_CLOSE(
kurtosis_excess(dist)
, static_cast<RealType>(0.65625), tol2);
// Error handling checks:
check_out_of_range<boost::math::non_central_chi_squared_distribution<RealType> >(1, 1);
BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(0, 1), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(-1, 1), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(1, -1), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_chi_squared_distribution<RealType>(1, 1), -1), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_chi_squared_distribution<RealType>(1, 1), 2), std::domain_error);
//
// Some special error handling tests, if the non-centrality param is too large
// then we have no evaluation method and should get a domain_error:
//
using std::ldexp;
using distro1 = boost::math::non_central_chi_squared_distribution<RealType>;
using distro2 = boost::math::non_central_chi_squared_distribution<RealType, boost::math::policies::policy<boost::math::policies::domain_error<boost::math::policies::ignore_error>>>;
using de = std::domain_error;
BOOST_MATH_CHECK_THROW(distro1(2, ldexp(RealType(1), 100)), de);
if (std::numeric_limits<RealType>::has_quiet_NaN)
{
distro2 d2(2, ldexp(RealType(1), 100));
BOOST_CHECK(boost::math::isnan(pdf(d2, 0.5)));
BOOST_CHECK(boost::math::isnan(cdf(d2, 0.5)));
BOOST_CHECK(boost::math::isnan(cdf(complement(d2, 0.5))));
}
#endif
} // template <class RealType>void test_spots(RealType)
template <class T>
T nccs_cdf(T df, T nc, T x)
{
return cdf(boost::math::non_central_chi_squared_distribution<T>(df, nc), x);
}
template <class T>
T nccs_ccdf(T df, T nc, T x)
{
return cdf(complement(boost::math::non_central_chi_squared_distribution<T>(df, nc), x));
}
template <typename Real, typename T>
void do_test_nc_chi_squared(T& data, const char* type_name, const char* test)
{
typedef Real value_type;
std::cout << "Testing: " << test << std::endl;
#ifdef NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST
value_type(*fp1)(value_type, value_type, value_type) = NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST;
#else
value_type(*fp1)(value_type, value_type, value_type) = nccs_cdf;
#endif
boost::math::tools::test_result<value_type> result;
#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST))
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(fp1, 0, 1, 2),
extract_result<Real>(3));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "non central chi squared CDF", test);
#endif
#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST))
#ifdef NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST
fp1 = NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST;
#else
fp1 = nccs_ccdf;
#endif
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(fp1, 0, 1, 2),
extract_result<Real>(4));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "non central chi squared CDF complement", test);
std::cout << std::endl;
#endif
}
template <typename Real, typename T>
void quantile_sanity_check(T& data, const char* type_name, const char* test)
{
#ifndef ERROR_REPORTING_MODE
typedef Real value_type;
//
// Tests with type real_concept take rather too long to run, so
// for now we'll disable them:
//
if(!boost::is_floating_point<value_type>::value)
return;
std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;
//
// These sanity checks test for a round trip accuracy of one half
// of the bits in T, unless T is type float, in which case we check
// for just one decimal digit. The problem here is the sensitivity
// of the functions, not their accuracy. This test data was generated
// for the forward functions, which means that when it is used as
// the input to the inverses then it is necessarily inexact. This rounding
// of the input is what makes the data unsuitable for use as an accuracy check,
// and also demonstrates that you can't in general round-trip these functions.
// It is however a useful sanity check.
//
value_type precision = static_cast<value_type>(ldexp(1.0, 1 - boost::math::policies::digits<value_type, boost::math::policies::policy<> >() / 2)) * 100;
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float
for(unsigned i = 0; i < data.size(); ++i)
{
if(Real(data[i][3]) == 0)
{
BOOST_CHECK(0 == quantile(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3]));
}
else if(data[i][3] < 0.9999f)
{
value_type p = quantile(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3]);
value_type pt = data[i][2];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(data[i][4] == 0)
{
BOOST_CHECK(0 == quantile(complement(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3])));
}
else if(data[i][4] < 0.9999f)
{
value_type p = quantile(complement(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][4]));
value_type pt = data[i][2];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(boost::math::tools::digits<value_type>() > 50)
{
//
// Sanity check mode, the accuracy of
// the mode is at *best* the square root of the accuracy of the PDF:
//
#if !defined(BOOST_NO_EXCEPTIONS) && !defined(BOOST_MATH_NO_EXCEPTIONS)
try{
value_type m = mode(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]));
value_type p = pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m);
BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m * (1 + sqrt(precision) * 50)) <= p, i);
BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m * (1 - sqrt(precision)) * 50) <= p, i);
}
catch(const boost::math::evaluation_error&) {}
#endif
//
// Sanity check degrees-of-freedom finder, don't bother at float
// precision though as there's not enough data in the probability
// values to get back to the correct degrees of freedom or
// non-centrality parameter:
//
#if !defined(BOOST_NO_EXCEPTIONS) && !defined(BOOST_MATH_NO_EXCEPTIONS)
try{
#endif
if((data[i][3] < 0.99) && (data[i][3] != 0))
{
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_chi_squared_distribution<value_type>::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]),
data[i][0], precision, i);
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_chi_squared_distribution<value_type>::find_non_centrality(data[i][0], data[i][2], data[i][3]),
data[i][1], precision, i);
}
if((data[i][4] < 0.99) && (data[i][4] != 0))
{
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_chi_squared_distribution<value_type>::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])),
data[i][0], precision, i);
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_chi_squared_distribution<value_type>::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])),
data[i][1], precision, i);
}
#if !defined(BOOST_NO_EXCEPTIONS) && !defined(BOOST_MATH_NO_EXCEPTIONS)
}
catch(const std::exception& e)
{
BOOST_ERROR(e.what());
}
#endif
}
}
#endif
}
template <typename T>
void test_accuracy(T, const char* type_name)
{
#include "nccs.ipp"
do_test_nc_chi_squared<T>(nccs, type_name, "Non Central Chi Squared, medium parameters");
quantile_sanity_check<T>(nccs, type_name, "Non Central Chi Squared, medium parameters");
#include "nccs_big.ipp"
do_test_nc_chi_squared<T>(nccs_big, type_name, "Non Central Chi Squared, large parameters");
quantile_sanity_check<T>(nccs_big, type_name, "Non Central Chi Squared, large parameters");
}