math/test/test_log1p_nvrtc_double.cpp
Matt Borland e4a01104d0
GPU Batch 7
Fix igamma_large support on device

Add GPU support to toms748

Add GPU support to igamma_inv

Add GPU markers to gamma_inva

Add GPU Markers to lgamma_small

Remove STL usage from gamma

Remove NVRTC workaround

Fix fraction use of STL headers

Mark gamma functions in fwd

Disable declval on all GPU platforms

Disable more unneeded code on device

Add forward decl for NVRTC tgamma

Disable unneeded items for all GPU

Change workaround for missing overloads

Rearrange definition location

Add include path to cuda now that workaround is removed

Fix NVRTC incompatibility with recursion and forward decls

Add tgamma_ratio CUDA and NVRTC testing

Fix NVRTC handling of gamma_p_derivative

Add gamma_p_derivative CUDA and NVRTC testing

Remove recursion from gamma_incomplete_imp

Add SYCL testing of igamma, igamma_inv, and igamma_inva

Ignore literal-range warnings

Remove use of static const char* for function name

Fix missing CUDA header

Remove calls under NVRTC to fwd decl

Add more nvrtc workarounds

Use builtin erfc instead of header cycle

Add CUDA and NVRTC testing of gamma_p_inv

Adjust tolerances

Add GPU support to chi squared dist

Fix static local variable

Add chi squared dist SYCL testing

Add chi squared dist CUDA testing

Add chi squared dist NVRTC testing

Add GPU support to weibull dist

Add weibull dist SYCL testing

Add weibull dist CUDA testing

Add weibull dist NVRTC testing
2024-08-27 15:32:21 -04:00

187 lines
6.4 KiB
C++

// Copyright John Maddock 2016.
// Copyright Matt Borland 2024.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#define BOOST_MATH_PROMOTE_DOUBLE_POLICY false
#include <iostream>
#include <iomanip>
#include <vector>
#include <random>
#include <exception>
#include <boost/math/special_functions/log1p.hpp>
#include <boost/math/special_functions/relative_difference.hpp>
#include <cuda.h>
#include <cuda_runtime.h>
#include <nvrtc.h>
typedef double float_type;
const char* cuda_kernel = R"(
typedef double float_type;
#include <boost/math/special_functions/log1p.hpp>
extern "C" __global__
void test_log1p_kernel(const float_type *in1, const float_type*, float_type *out, int numElements)
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < numElements)
{
out[i] = boost::math::log1p(in1[i]);
}
}
)";
void checkCUDAError(cudaError_t result, const char* msg)
{
if (result != cudaSuccess)
{
std::cerr << msg << ": " << cudaGetErrorString(result) << std::endl;
exit(EXIT_FAILURE);
}
}
void checkCUError(CUresult result, const char* msg)
{
if (result != CUDA_SUCCESS)
{
const char* errorStr;
cuGetErrorString(result, &errorStr);
std::cerr << msg << ": " << errorStr << std::endl;
exit(EXIT_FAILURE);
}
}
void checkNVRTCError(nvrtcResult result, const char* msg)
{
if (result != NVRTC_SUCCESS)
{
std::cerr << msg << ": " << nvrtcGetErrorString(result) << std::endl;
exit(EXIT_FAILURE);
}
}
int main()
{
try
{
// Initialize CUDA driver API
checkCUError(cuInit(0), "Failed to initialize CUDA");
// Create CUDA context
CUcontext context;
CUdevice device;
checkCUError(cuDeviceGet(&device, 0), "Failed to get CUDA device");
checkCUError(cuCtxCreate(&context, 0, device), "Failed to create CUDA context");
nvrtcProgram prog;
nvrtcResult res;
res = nvrtcCreateProgram(&prog, cuda_kernel, "test_log1p_kernel.cu", 0, nullptr, nullptr);
checkNVRTCError(res, "Failed to create NVRTC program");
nvrtcAddNameExpression(prog, "test_log1p_kernel");
#ifdef BOOST_MATH_NVRTC_CI_RUN
const char* opts[] = {"--std=c++14", "--gpu-architecture=compute_75", "--include-path=/home/runner/work/cuda-math/boost-root/libs/cuda-math/include/", "-I/usr/local/cuda/include"};
#else
const char* opts[] = {"--std=c++14", "--include-path=/home/mborland/Documents/boost/libs/cuda-math/include/", "-I/usr/local/cuda/include"};
#endif
// Compile the program
res = nvrtcCompileProgram(prog, sizeof(opts) / sizeof(const char*), opts);
if (res != NVRTC_SUCCESS)
{
size_t log_size;
nvrtcGetProgramLogSize(prog, &log_size);
char* log = new char[log_size];
nvrtcGetProgramLog(prog, log);
std::cerr << "Compilation failed:\n" << log << std::endl;
delete[] log;
exit(EXIT_FAILURE);
}
// Get PTX from the program
size_t ptx_size;
nvrtcGetPTXSize(prog, &ptx_size);
char* ptx = new char[ptx_size];
nvrtcGetPTX(prog, ptx);
// Load PTX into CUDA module
CUmodule module;
CUfunction kernel;
checkCUError(cuModuleLoadDataEx(&module, ptx, 0, 0, 0), "Failed to load module");
checkCUError(cuModuleGetFunction(&kernel, module, "test_log1p_kernel"), "Failed to get kernel function");
int numElements = 5000;
float_type *h_in1, *h_in2, *h_out;
float_type *d_in1, *d_in2, *d_out;
// Allocate memory on the host
h_in1 = new float_type[numElements];
h_in2 = new float_type[numElements];
h_out = new float_type[numElements];
// Initialize input arrays
std::mt19937_64 rng(42);
std::uniform_real_distribution<float_type> dist(0.0f, 1.0f);
for (int i = 0; i < numElements; ++i)
{
h_in1[i] = static_cast<float_type>(dist(rng));
h_in2[i] = static_cast<float_type>(dist(rng));
}
checkCUDAError(cudaMalloc(&d_in1, numElements * sizeof(float_type)), "Failed to allocate device memory for d_in1");
checkCUDAError(cudaMalloc(&d_in2, numElements * sizeof(float_type)), "Failed to allocate device memory for d_in2");
checkCUDAError(cudaMalloc(&d_out, numElements * sizeof(float_type)), "Failed to allocate device memory for d_out");
checkCUDAError(cudaMemcpy(d_in1, h_in1, numElements * sizeof(float_type), cudaMemcpyHostToDevice), "Failed to copy data to device for d_in1");
checkCUDAError(cudaMemcpy(d_in2, h_in2, numElements * sizeof(float_type), cudaMemcpyHostToDevice), "Failed to copy data to device for d_in2");
int blockSize = 256;
int numBlocks = (numElements + blockSize - 1) / blockSize;
void* args[] = { &d_in1, &d_in2, &d_out, &numElements };
checkCUError(cuLaunchKernel(kernel, numBlocks, 1, 1, blockSize, 1, 1, 0, 0, args, 0), "Kernel launch failed");
checkCUDAError(cudaMemcpy(h_out, d_out, numElements * sizeof(float_type), cudaMemcpyDeviceToHost), "Failed to copy data back to host for h_out");
// Verify Result
for (int i = 0; i < numElements; ++i)
{
auto res = boost::math::log1p(h_in1[i]);
if (std::isfinite(res))
{
if (boost::math::epsilon_difference(res, h_out[i]) > 300)
{
std::cout << "error at line: " << i
<< "\nParallel: " << h_out[i]
<< "\n Serial: " << res
<< "\n Dist: " << boost::math::epsilon_difference(res, h_out[i]) << std::endl;
}
}
}
cudaFree(d_in1);
cudaFree(d_in2);
cudaFree(d_out);
delete[] h_in1;
delete[] h_in2;
delete[] h_out;
nvrtcDestroyProgram(&prog);
delete[] ptx;
cuCtxDestroy(context);
std::cout << "Kernel executed successfully." << std::endl;
return 0;
}
catch(const std::exception& e)
{
std::cerr << "Stopped with exception: " << e.what() << std::endl;
return EXIT_FAILURE;
}
}