math/test/test_jacobi_zeta.hpp
Matt Borland 1324401c92
Add GPU support to airy functions
Add SYCL testing of ariy functions

Add CUDA testing of airy functions

Add NVRTC testing of airy functions

Add GPU support to ellint rc

Add GPU support to ellint rd

Add GPU support to ellint rf

Add GPU support to ellint rg

Add GPU support to ellint rj

Add GPU support to ellint d

Add GPU support to ellint_1

Markup forward and add ellint_3 return type def for NVRTC platform

Add CUDA testing of ellint 1

NVRTC fixes

Add NVRTC testing of ellint_1

Add GPU support to ellint_2

Add CUDA testing of ellint_2

Fix NVRTC errors

Add NVRTC testing of ellint_2

Add GPU support to atanh

Add GPU support to ellint_3

Add NVRTC testing of ellint_3

Add CUDA testing of ellint_3

Replace use of static const char*

Add SYCL testing of ellint_1

Add SYCL testing of ellint 2 with slight tolerance bump

Remove recursion from ellint_rj

Add ellint_d CUDA testing

Add NVRTC testing of ellint_d

Add SYCL testing of ellint_d

Remove SYCL ellint_3 support

Update docs

Add GPU support to jacobi zeta

Add CUDA testing of jacobi zeta

Add NVRTC testing of jacobi zeta

Add SYCL testing of jacobi zeta

Add GPU support to heuman_lambda

Add NVRTC testing of heuman lambda

Add CUDA testing of heuman_lambda

Add SYCL testing of heuman lambda

Add markers to docs

Add marker for CUDA only functions in the docs
2024-09-16 14:04:14 -04:00

101 lines
4.4 KiB
C++

// Copyright John Maddock 2015.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifdef _MSC_VER
# pragma warning(disable : 4756) // overflow in constant arithmetic
// Constants are too big for float case, but this doesn't matter for test.
#endif
#include <boost/math/tools/config.hpp>
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#include <boost/math/concepts/real_concept.hpp>
#endif
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/jacobi_zeta.hpp>
#include <boost/math/constants/constants.hpp>
//#include <boost/math/special_functions/next.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#include "handle_test_result.hpp"
#include "table_type.hpp"
#ifndef SC_
#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
#endif
template <class Real, typename T>
void do_test_jacobi_zeta(const T& data, const char* type_name, const char* test)
{
#if !(defined(ERROR_REPORTING_MODE) && !defined(JACOBI_ZETA_FUNCTION_TO_TEST))
typedef Real value_type;
std::cout << "Testing: " << test << std::endl;
#ifdef JACOBI_ZETA_FUNCTION_TO_TEST
value_type(*fp2)(value_type, value_type) = JACOBI_ZETA_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
value_type (*fp2)(value_type, value_type) = boost::math::ellint_d<value_type, value_type>;
#else
value_type(*fp2)(value_type, value_type) = boost::math::jacobi_zeta;
#endif
boost::math::tools::test_result<value_type> result;
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(fp2, 1, 0),
extract_result<Real>(2));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "jacobi_zeta", test);
std::cout << std::endl;
#endif
}
template <typename T>
void test_spots(T, const char* type_name)
{
BOOST_MATH_STD_USING
// Function values calculated on http://functions.wolfram.com/
// Note that Mathematica's EllipticE accepts k^2 as the second parameter.
static const std::array<std::array<T, 3>, 18> data1 = {{
{ { SC_(0.5), SC_(0.5), SC_(0.055317014255129651475392155709691519) } },
{ { SC_(-0.5), SC_(0.5), SC_(-0.055317014255129651475392155709691519) } },
{ { SC_(0), SC_(0.5), SC_(0) } },
{ { SC_(1), T(0.5), SC_(0.061847782565098669252626761181452815) } },
// { { boost::math::float_prior(boost::math::constants::half_pi<T>()), T(0.5), SC_(0) } },
{ { SC_(1), T(0), SC_(0) } },
{ { SC_(1), T(1), SC_(0.84147098480789650665250232163029900) } },
{ { SC_(2), T(0.5), SC_(-0.051942537457672732722176231281435254) } },
{ { SC_(5), T(0.5), SC_(-0.037609329968145259476447488930872898) } },
{ { SC_(0.5), SC_(1), SC_(0.479425538604203000273287935215571388081803367940600675188616) } },
{ { boost::math::constants::half_pi<T>() - static_cast<T>(1) / 1024, SC_(1), SC_(0.999999523162879692486369202949889069215510235208243466564977) } },
{ { boost::math::constants::half_pi<T>() + static_cast<T>(1) / 1024, SC_(1), SC_(-0.999999523162879692486369202949889069215510235208243466564977) } },
{ { SC_(2), SC_(1), SC_(-0.90929742682568169539601986591174484270225497144789026837897) } },
{ { SC_(3), SC_(1), SC_(-0.14112000805986722210074480280811027984693326425226558415188) } },
{ { SC_(4), SC_(1), SC_(0.756802495307928251372639094511829094135912887336472571485416) } },
{ { SC_(-0.5), SC_(1), SC_(-0.479425538604203000273287935215571388081803367940600675188616) } },
{ { SC_(-2), SC_(1), SC_(0.90929742682568169539601986591174484270225497144789026837897) } },
{ { SC_(-3), SC_(1), SC_(0.14112000805986722210074480280811027984693326425226558415188) } },
{ { SC_(-4), SC_(1), SC_(-0.756802495307928251372639094511829094135912887336472571485416) } },
}};
do_test_jacobi_zeta<T>(data1, type_name, "Elliptic Integral Jacobi Zeta: Mathworld Data");
#include "jacobi_zeta_data.ipp"
do_test_jacobi_zeta<T>(jacobi_zeta_data, type_name, "Elliptic Integral Jacobi Zeta: Random Data");
#include "jacobi_zeta_big_phi.ipp"
do_test_jacobi_zeta<T>(jacobi_zeta_big_phi, type_name, "Elliptic Integral Jacobi Zeta: Large Phi Values");
}