mirror of
https://github.com/boostorg/math.git
synced 2025-05-11 21:33:52 +00:00
Add SYCL testing of fisher f dist Add CUDA fisher f dist testing Add NVRTC fisher f dist testing Add GPU support to gamma dist Add SYCL testing of gamma dist Add CUDA gamma dist testing Add NVRTC gamma dist testing Reduce number of threads per block since it can crash CI Add GPU support to the geometric dist Add SYCL testing of geometric dist Add cuda::std::tie Add GPU support to inv_discrete_quantile Add CUDA testing of geometric dist Add NVRTC testing of geometric dist Add SYCL testing of inverse_chi_squared dist Adjust tol Add NVRTC inverse chi squared dist testing Add CUDA inverse chi squared dist testing Add GPU support to inverse gamma dist Add SYCL testing to inverse gamma dist Add NVRTC testing of inverse gamma dist Add CUDA testing of inverse gamma dist
192 lines
6.6 KiB
C++
192 lines
6.6 KiB
C++
// Copyright John Maddock 2016.
|
|
// Copyright Matt Borland 2024.
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
|
#define BOOST_MATH_PROMOTE_DOUBLE_POLICY false
|
|
|
|
// Must be included first
|
|
#include <nvrtc.h>
|
|
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <vector>
|
|
#include <random>
|
|
#include <exception>
|
|
#include <boost/math/distributions/inverse_gamma.hpp>
|
|
#include <boost/math/special_functions/fpclassify.hpp>
|
|
#include <boost/math/special_functions/relative_difference.hpp>
|
|
|
|
typedef double float_type;
|
|
|
|
const char* cuda_kernel = R"(
|
|
typedef double float_type;
|
|
#include <cuda/std/type_traits>
|
|
#include <boost/math/distributions/inverse_gamma.hpp>
|
|
extern "C" __global__
|
|
void test_inverse_gamma_kernel(const float_type *in1, const float_type*, float_type *out, int numElements)
|
|
{
|
|
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
|
if (i < numElements)
|
|
{
|
|
out[i] = pdf(boost::math::inverse_gamma_distribution<float_type>(), in1[i]);
|
|
}
|
|
}
|
|
)";
|
|
|
|
void checkCUDAError(cudaError_t result, const char* msg)
|
|
{
|
|
if (result != cudaSuccess)
|
|
{
|
|
std::cerr << msg << ": " << cudaGetErrorString(result) << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
void checkCUError(CUresult result, const char* msg)
|
|
{
|
|
if (result != CUDA_SUCCESS)
|
|
{
|
|
const char* errorStr;
|
|
cuGetErrorString(result, &errorStr);
|
|
std::cerr << msg << ": " << errorStr << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
void checkNVRTCError(nvrtcResult result, const char* msg)
|
|
{
|
|
if (result != NVRTC_SUCCESS)
|
|
{
|
|
std::cerr << msg << ": " << nvrtcGetErrorString(result) << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
int main()
|
|
{
|
|
try
|
|
{
|
|
// Initialize CUDA driver API
|
|
checkCUError(cuInit(0), "Failed to initialize CUDA");
|
|
|
|
// Create CUDA context
|
|
CUcontext context;
|
|
CUdevice device;
|
|
checkCUError(cuDeviceGet(&device, 0), "Failed to get CUDA device");
|
|
checkCUError(cuCtxCreate(&context, 0, device), "Failed to create CUDA context");
|
|
|
|
nvrtcProgram prog;
|
|
nvrtcResult res;
|
|
|
|
res = nvrtcCreateProgram(&prog, cuda_kernel, "test_inverse_gamma_kernel.cu", 0, nullptr, nullptr);
|
|
checkNVRTCError(res, "Failed to create NVRTC program");
|
|
|
|
nvrtcAddNameExpression(prog, "test_inverse_gamma_kernel");
|
|
|
|
#ifdef BOOST_MATH_NVRTC_CI_RUN
|
|
const char* opts[] = {"--std=c++14", "--gpu-architecture=compute_75", "--include-path=/home/runner/work/cuda-math/boost-root/libs/cuda-math/include/", "-I/usr/local/cuda/include"};
|
|
#else
|
|
const char* opts[] = {"--std=c++14", "--include-path=/home/mborland/Documents/boost/libs/cuda-math/include/", "-I/usr/local/cuda/include"};
|
|
#endif
|
|
|
|
// Compile the program
|
|
res = nvrtcCompileProgram(prog, sizeof(opts) / sizeof(const char*), opts);
|
|
if (res != NVRTC_SUCCESS)
|
|
{
|
|
size_t log_size;
|
|
nvrtcGetProgramLogSize(prog, &log_size);
|
|
char* log = new char[log_size];
|
|
nvrtcGetProgramLog(prog, log);
|
|
std::cerr << "Compilation failed:\n" << log << std::endl;
|
|
delete[] log;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// Get PTX from the program
|
|
size_t ptx_size;
|
|
nvrtcGetPTXSize(prog, &ptx_size);
|
|
char* ptx = new char[ptx_size];
|
|
nvrtcGetPTX(prog, ptx);
|
|
|
|
// Load PTX into CUDA module
|
|
CUmodule module;
|
|
CUfunction kernel;
|
|
checkCUError(cuModuleLoadDataEx(&module, ptx, 0, 0, 0), "Failed to load module");
|
|
checkCUError(cuModuleGetFunction(&kernel, module, "test_inverse_gamma_kernel"), "Failed to get kernel function");
|
|
|
|
int numElements = 5000;
|
|
float_type *h_in1, *h_in2, *h_out;
|
|
float_type *d_in1, *d_in2, *d_out;
|
|
|
|
// Allocate memory on the host
|
|
h_in1 = new float_type[numElements];
|
|
h_in2 = new float_type[numElements];
|
|
h_out = new float_type[numElements];
|
|
|
|
// Initialize input arrays
|
|
std::mt19937_64 rng(42);
|
|
std::uniform_real_distribution<float_type> dist(0.0f, 1.0f);
|
|
for (int i = 0; i < numElements; ++i)
|
|
{
|
|
h_in1[i] = static_cast<float_type>(dist(rng));
|
|
h_in2[i] = static_cast<float_type>(dist(rng));
|
|
}
|
|
|
|
checkCUDAError(cudaMalloc(&d_in1, numElements * sizeof(float_type)), "Failed to allocate device memory for d_in1");
|
|
checkCUDAError(cudaMalloc(&d_in2, numElements * sizeof(float_type)), "Failed to allocate device memory for d_in2");
|
|
checkCUDAError(cudaMalloc(&d_out, numElements * sizeof(float_type)), "Failed to allocate device memory for d_out");
|
|
|
|
checkCUDAError(cudaMemcpy(d_in1, h_in1, numElements * sizeof(float_type), cudaMemcpyHostToDevice), "Failed to copy data to device for d_in1");
|
|
checkCUDAError(cudaMemcpy(d_in2, h_in2, numElements * sizeof(float_type), cudaMemcpyHostToDevice), "Failed to copy data to device for d_in2");
|
|
|
|
int blockSize = 256;
|
|
int numBlocks = (numElements + blockSize - 1) / blockSize;
|
|
void* args[] = { &d_in1, &d_in2, &d_out, &numElements };
|
|
checkCUError(cuLaunchKernel(kernel, numBlocks, 1, 1, blockSize, 1, 1, 0, 0, args, 0), "Kernel launch failed");
|
|
|
|
checkCUDAError(cudaMemcpy(h_out, d_out, numElements * sizeof(float_type), cudaMemcpyDeviceToHost), "Failed to copy data back to host for h_out");
|
|
|
|
// Verify Result
|
|
for (int i = 0; i < numElements; ++i)
|
|
{
|
|
auto res = pdf(boost::math::inverse_gamma_distribution<float_type>(), h_in1[i]);
|
|
|
|
if (boost::math::isfinite(res))
|
|
{
|
|
if (boost::math::epsilon_difference(res, h_out[i]) > 300)
|
|
{
|
|
std::cout << "error at line: " << i
|
|
<< "\nParallel: " << h_out[i]
|
|
<< "\n Serial: " << res
|
|
<< "\n Dist: " << boost::math::epsilon_difference(res, h_out[i]) << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
cudaFree(d_in1);
|
|
cudaFree(d_in2);
|
|
cudaFree(d_out);
|
|
delete[] h_in1;
|
|
delete[] h_in2;
|
|
delete[] h_out;
|
|
|
|
nvrtcDestroyProgram(&prog);
|
|
delete[] ptx;
|
|
|
|
cuCtxDestroy(context);
|
|
|
|
std::cout << "Kernel executed successfully." << std::endl;
|
|
return 0;
|
|
}
|
|
catch(const std::exception& e)
|
|
{
|
|
std::cerr << "Stopped with exception: " << e.what() << std::endl;
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|