mirror of
https://github.com/boostorg/math.git
synced 2025-05-11 21:33:52 +00:00
Add SYCL testing of ariy functions Add CUDA testing of airy functions Add NVRTC testing of airy functions Add GPU support to ellint rc Add GPU support to ellint rd Add GPU support to ellint rf Add GPU support to ellint rg Add GPU support to ellint rj Add GPU support to ellint d Add GPU support to ellint_1 Markup forward and add ellint_3 return type def for NVRTC platform Add CUDA testing of ellint 1 NVRTC fixes Add NVRTC testing of ellint_1 Add GPU support to ellint_2 Add CUDA testing of ellint_2 Fix NVRTC errors Add NVRTC testing of ellint_2 Add GPU support to atanh Add GPU support to ellint_3 Add NVRTC testing of ellint_3 Add CUDA testing of ellint_3 Replace use of static const char* Add SYCL testing of ellint_1 Add SYCL testing of ellint 2 with slight tolerance bump Remove recursion from ellint_rj Add ellint_d CUDA testing Add NVRTC testing of ellint_d Add SYCL testing of ellint_d Remove SYCL ellint_3 support Update docs Add GPU support to jacobi zeta Add CUDA testing of jacobi zeta Add NVRTC testing of jacobi zeta Add SYCL testing of jacobi zeta Add GPU support to heuman_lambda Add NVRTC testing of heuman lambda Add CUDA testing of heuman_lambda Add SYCL testing of heuman lambda Add markers to docs Add marker for CUDA only functions in the docs
176 lines
19 KiB
C++
176 lines
19 KiB
C++
// Copyright John Maddock 2006.
|
|
// Copyright Paul A. Bristow 2007, 2009
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(disable : 4756) // overflow in constant arithmetic
|
|
// Constants are too big for float case, but this doesn't matter for test.
|
|
#endif
|
|
|
|
#include <boost/math/tools/config.hpp>
|
|
|
|
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
|
|
#include <boost/math/concepts/real_concept.hpp>
|
|
#endif
|
|
|
|
#define BOOST_TEST_MAIN
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <boost/test/tools/floating_point_comparison.hpp>
|
|
#include <boost/math/special_functions/math_fwd.hpp>
|
|
#include <boost/math/special_functions/ellint_2.hpp>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/array.hpp>
|
|
#include "functor.hpp"
|
|
|
|
#include "handle_test_result.hpp"
|
|
#include "table_type.hpp"
|
|
|
|
#ifndef SC_
|
|
#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
|
|
#endif
|
|
|
|
template <class Real, typename T>
|
|
void do_test_ellint_e2(const T& data, const char* type_name, const char* test)
|
|
{
|
|
#if !(defined(ERROR_REPORTING_MODE) && !defined(ELLINT_2_FUNCTION_TO_TEST))
|
|
typedef Real value_type;
|
|
|
|
std::cout << "Testing: " << test << std::endl;
|
|
#ifdef ELLINT_2_FUNCTION_TO_TEST
|
|
value_type(*fp2)(value_type, value_type) = ELLINT_2_FUNCTION_TO_TEST;
|
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
|
value_type (*fp2)(value_type, value_type) = boost::math::ellint_2<value_type, value_type>;
|
|
#else
|
|
value_type (*fp2)(value_type, value_type) = boost::math::ellint_2;
|
|
#endif
|
|
boost::math::tools::test_result<value_type> result;
|
|
|
|
result = boost::math::tools::test_hetero<Real>(
|
|
data,
|
|
bind_func<Real>(fp2, 1, 0),
|
|
extract_result<Real>(2));
|
|
handle_test_result(result, data[result.worst()], result.worst(),
|
|
type_name, "ellint_2", test);
|
|
|
|
std::cout << std::endl;
|
|
#endif
|
|
}
|
|
|
|
template <class Real, typename T>
|
|
void do_test_ellint_e1(T& data, const char* type_name, const char* test)
|
|
{
|
|
#if !(defined(ERROR_REPORTING_MODE) && !defined(ELLINT_2C_FUNCTION_TO_TEST))
|
|
typedef Real value_type;
|
|
boost::math::tools::test_result<value_type> result;
|
|
|
|
std::cout << "Testing: " << test << std::endl;
|
|
|
|
#ifdef ELLINT_2C_FUNCTION_TO_TEST
|
|
value_type(*fp1)(value_type) = ELLINT_2C_FUNCTION_TO_TEST;
|
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
|
value_type (*fp1)(value_type) = boost::math::ellint_2<value_type>;
|
|
#else
|
|
value_type (*fp1)(value_type) = boost::math::ellint_2;
|
|
#endif
|
|
result = boost::math::tools::test_hetero<Real>(
|
|
data,
|
|
bind_func<Real>(fp1, 0),
|
|
extract_result<Real>(1));
|
|
handle_test_result(result, data[result.worst()], result.worst(),
|
|
type_name, "ellint_2 (complete)", test);
|
|
|
|
std::cout << std::endl;
|
|
#endif
|
|
}
|
|
|
|
template <typename T>
|
|
void test_spots(T, const char* type_name)
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
// Function values calculated on http://functions.wolfram.com/
|
|
// Note that Mathematica's EllipticE accepts k^2 as the second parameter.
|
|
//
|
|
// We can't use these for variable precision types as the test values dependent on Pi
|
|
// get initialized once, and thereafter have the "wrong" precision when the function is
|
|
// called a second time.
|
|
//
|
|
#ifndef TEST_UDT
|
|
static const std::array<std::array<T, 3>, 28> data1 = {{
|
|
{{ SC_(0.0), SC_(0.0), SC_(0.0) }},
|
|
{{ SC_(-10.0), SC_(0.0), SC_(-10.0) }},
|
|
{{ SC_(-1.0), SC_(-1.0), SC_(-0.84147098480789650665250232163029899962256306079837) }},
|
|
{{ SC_(-4.0), SC_(0.87890625) /*T(900) / 1024*/, SC_(-3.1756145986492562317862928524528520686391383168377) }},
|
|
{{ SC_(8.0), SC_(-0.5859375) /*T(-600) / 1024*/, SC_(7.2473147180505693037677015377802777959345489333465) }},
|
|
{{ SC_(1e-05), SC_(0.78125) /*T(800) / 1024*/, SC_(9.999999999898274739584436515967055859383969942432E-6) }},
|
|
{{ SC_(1e+05), SC_(0.09765625) /*T(100) / 1024*/, SC_(99761.153306972066658135668386691227343323331995888) }},
|
|
{{ SC_(1e+10), SC_(-0.5), SC_(9.3421545766487137036576748555295222252286528414669e9) }},
|
|
{{ SC_(7.3786976294838206464e19) /*static_cast<T>(ldexp(T(1), 66))*/, SC_(0.390625) /*T(400) / 1024*/, SC_(7.0886102721911705466476846969992069994308167515242e19) }},
|
|
{{ SC_(9.3536104789177786765035829293842113257979682750464e49) /*static_cast<T>(ldexp(T(1), 166))*/, SC_(0.87890625) /*T(900) / 1024*/, SC_(7.1259011068364515942912094521783688927118026465790e49) }},
|
|
{{ SC_(0.25), SC_(1.5), SC_(0.244087118441983436818717707617920319373286836562840) }},
|
|
{{ SC_(0.125), SC_(4.5), SC_(0.118076756678411098995742003403224531993649663256045) }},
|
|
// Test k = 1, see https://github.com/boostorg/math/issues/321
|
|
{{ (boost::math::constants::pi<T>() * 9) / 10, SC_(1.0), SC_(1.69098300562505257589770658281718094113984541009711856893227568864736976859054877514639639790530443125762295596230) }},
|
|
{{ (boost::math::constants::pi<T>() * 11) / 10, SC_(1.0), SC_(2.30901699437494742410229341718281905886015458990288143106772431135263023140945122485360360209469556874237704403769) }},
|
|
{{ boost::math::constants::pi<T>(), SC_(1.0), SC_(2.0) }},
|
|
{{ boost::math::constants::pi<T>() / 2, SC_(1.0), SC_(1.0) }},
|
|
{{ (3 * boost::math::constants::pi<T>()) / 2, SC_(1.0), SC_(3.0) }},
|
|
{{ 2 * boost::math::constants::pi<T>(), SC_(1.0), SC_(4.0) }},
|
|
{{ (20 * boost::math::constants::pi<T>()) / 21, SC_(1.0), SC_(1.85095773382382555307064528472278244309033056100177750424044959888147151556780639619867349409562910808166870200808) }},
|
|
{{ (20 * boost::math::constants::pi<T>()) / 19, SC_(1.0), SC_(2.16459459028073389414365205908793841951217248335965412335147127404907690285247170629778731438009399303864259295133) }},
|
|
{{ -(boost::math::constants::pi<T>() * 9) / 10, SC_(1.0), SC_(-1.69098300562505257589770658281718094113984541009711856893227568864736976859054877514639639790530443125762295596230) }},
|
|
{{ -(boost::math::constants::pi<T>() * 11) / 10, SC_(1.0), SC_(-2.30901699437494742410229341718281905886015458990288143106772431135263023140945122485360360209469556874237704403769) }},
|
|
{{ -boost::math::constants::pi<T>(), SC_(1.0), SC_(-2.0) }},
|
|
{{ -boost::math::constants::pi<T>() / 2, SC_(1.0), SC_(-1.0) }},
|
|
{{ -(3 * boost::math::constants::pi<T>()) / 2, SC_(1.0), SC_(-3.0) }},
|
|
{{ -2 * boost::math::constants::pi<T>(), SC_(1.0), SC_(-4.0) }},
|
|
{{ -(20 * boost::math::constants::pi<T>()) / 21, SC_(1.0), SC_(-1.85095773382382555307064528472278244309033056100177750424044959888147151556780639619867349409562910808166870200808) }},
|
|
{{ -(20 * boost::math::constants::pi<T>()) / 19, SC_(1.0), SC_(-2.16459459028073389414365205908793841951217248335965412335147127404907690285247170629778731438009399303864259295133) }},
|
|
}};
|
|
|
|
do_test_ellint_e2<T>(data1, type_name, "Elliptic Integral E: Mathworld Data");
|
|
#endif
|
|
|
|
#include "ellint_e2_data.ipp"
|
|
|
|
do_test_ellint_e2<T>(ellint_e2_data, type_name, "Elliptic Integral E: Random Data");
|
|
|
|
// Function values calculated on http://functions.wolfram.com/
|
|
// Note that Mathematica's EllipticE accepts k^2 as the second parameter.
|
|
static const std::array<std::array<typename table_type<T>::type, 2>, 10> data2 = {{
|
|
{{ SC_(-1.0), SC_(1.0) }},
|
|
{{ SC_(0.0), SC_(1.5707963267948966192313216916397514420985846996876) }},
|
|
{{ SC_(0.09765625) /*T(100) / 1024*/, SC_(1.5670445330545086723323795143598956428788609133377) }},
|
|
{{ SC_(0.1953125) /*T(200) / 1024*/, SC_(1.5557071588766556854463404816624361127847775545087) }},
|
|
{{ SC_(0.29296875) /*T(300) / 1024*/, SC_(1.5365278991162754883035625322482669608948678755743) }},
|
|
{{ SC_(0.390625) /*T(400) / 1024*/, SC_(1.5090417763083482272165682786143770446401437564021) }},
|
|
{{ SC_(-0.5), SC_(1.4674622093394271554597952669909161360253617523272) }},
|
|
{{ SC_(-0.5859375) /*T(-600) / 1024*/, SC_(1.4257538571071297192428217218834579920545946473778) }},
|
|
{{ SC_(-0.78125) /*T(-800) / 1024*/, SC_(1.2927868476159125056958680222998765985004489572909) }},
|
|
{{ SC_(-0.87890625) /*T(-900) / 1024*/, SC_(1.1966864890248739524112920627353824133420353430982) }},
|
|
}};
|
|
|
|
do_test_ellint_e1<T>(data2, type_name, "Elliptic Integral E: Mathworld Data");
|
|
|
|
#include "ellint_e_data.ipp"
|
|
|
|
do_test_ellint_e1<T>(ellint_e_data, type_name, "Elliptic Integral E: Random Data");
|
|
|
|
static const std::array<std::array<typename table_type<T>::type, 3>, 72> small_angles = { {
|
|
{{ SC_(0.00097656250000000000000000000000000000000000000000000), SC_(0.5), SC_(0.00097656246119489873806295171767681128826061680891539) }},{{ SC_(0.00048828125000000000000000000000000000000000000000000), SC_(0.5), SC_(0.00048828124514936177847275804383491089917731651869089) }},{{ SC_(0.00024414062500000000000000000000000000000000000000000), SC_(0.5), SC_(0.00024414062439367020469080959924292294147407037569089) }},{{ SC_(0.00012207031250000000000000000000000000000000000000000), SC_(0.5), SC_(0.00012207031242420877503577978533579671450656676021144) }},{{ SC_(0.000061035156250000000000000000000000000000000000000000), SC_(0.5), SC_(0.000061035156240526096862267116434822602398026203555135) }},{{ SC_(0.000030517578125000000000000000000000000000000000000000), SC_(0.5), SC_(0.000030517578123815762107245722156263286910312978330942) }},{{ SC_(0.000015258789062500000000000000000000000000000000000000), SC_(0.5), SC_(0.000015258789062351970263388913163340973814136929083865) }},{{ SC_(7.6293945312500000000000000000000000000000000000000e-6), SC_(0.5), SC_(7.6293945312314962829230890795991108894734462126936e-6) }},{{ SC_(3.8146972656250000000000000000000000000000000000000e-6), SC_(0.5), SC_(3.8146972656226870353653697266430602974836595561218e-6) }},{{ SC_(1.9073486328125000000000000000000000000000000000000e-6), SC_(0.5), SC_(1.9073486328122108794206707030707941437882919842603e-6) }},{{ SC_(9.5367431640625000000000000000000000000000000000000e-7), SC_(0.5), SC_(9.5367431640621385992758382186011213067376941980499e-7) }},{{ SC_(4.7683715820312500000000000000000000000000000000000e-7), SC_(0.5), SC_(4.7683715820312048249094797723177223079355575583105e-7) }},{{ SC_(2.3841857910156250000000000000000000000000000000000e-7), SC_(0.5), SC_(2.3841857910156193531136849713832334805104830239272e-7) }},{{ SC_(1.1920928955078125000000000000000000000000000000000e-7), SC_(0.5), SC_(1.1920928955078117941392106214180141285643896716624e-7) }},{{ SC_(5.9604644775390625000000000000000000000000000000000e-8), SC_(0.5), SC_(5.9604644775390616176740132767709895180494181165759e-8) }},{{ SC_(2.9802322387695312500000000000000000000000000000000e-8), SC_(0.5), SC_(2.9802322387695311397092516595963259352981751091479e-8) }},{{ SC_(1.4901161193847656250000000000000000000000000000000e-8), SC_(0.5), SC_(1.4901161193847656112136564574495392495854593212863e-8) }},{{ SC_(7.4505805969238281250000000000000000000000000000000e-9), SC_(0.5), SC_(7.4505805969238281077670705718119235956296952243088e-9) }},{{ SC_(3.7252902984619140625000000000000000000000000000000e-9), SC_(0.5), SC_(3.7252902984619140603458838214764904348802078740605e-9) }},{{ SC_(1.8626451492309570312500000000000000000000000000000e-9), SC_(0.5), SC_(1.8626451492309570309807354776845613039046039833520e-9) }},{{ SC_(9.3132257461547851562500000000000000000000000000000e-10), SC_(0.5), SC_(9.3132257461547851559134193471057016297384356039070e-10) }},{{ SC_(4.6566128730773925781250000000000000000000000000000e-10), SC_(0.5), SC_(4.6566128730773925780829274183882127037128569700108e-10) }},{{ SC_(2.3283064365386962890625000000000000000000000000000e-10), SC_(0.5), SC_(2.3283064365386962890572409272985265879639681374864e-10) }},{{ SC_(1.1641532182693481445312500000000000000000000000000e-10), SC_(0.5), SC_(1.1641532182693481445305926159123158234954916739431e-10) }},{{ SC_(5.8207660913467407226562500000000000000000000000000e-11), SC_(0.5), SC_(5.8207660913467407226554282698903947793693632351656e-11) }},{{ SC_(2.9103830456733703613281250000000000000000000000000e-11), SC_(0.5), SC_(2.9103830456733703613280222837362993474211703619812e-11) }},{{ SC_(1.4551915228366851806640625000000000000000000000000e-11), SC_(0.5), SC_(1.4551915228366851806640496604670374184276462939222e-11) }},{{ SC_(7.2759576141834259033203125000000000000000000000000e-12), SC_(0.5), SC_(7.2759576141834259033202964505837967730345578669885e-12) }},{{ SC_(3.6379788070917129516601562500000000000000000000000e-12), SC_(0.5), SC_(3.6379788070917129516601542438229745966293197333606e-12) }},{{ SC_(1.8189894035458564758300781250000000000000000000000e-12), SC_(0.5), SC_(1.8189894035458564758300778742278718245786649666697e-12) }},{{ SC_(9.0949470177292823791503906250000000000000000000000e-13), SC_(0.5), SC_(9.0949470177292823791503903115348397807233312083370e-13) }},{{ SC_(4.5474735088646411895751953125000000000000000000000e-13), SC_(0.5), SC_(4.5474735088646411895751952733168549725904164010421e-13) }},{{ SC_(2.2737367544323205947875976562500000000000000000000e-13), SC_(0.5), SC_(2.2737367544323205947875976513521068715738020501303e-13) }},{{ SC_(1.1368683772161602973937988281250000000000000000000e-13), SC_(0.5), SC_(1.1368683772161602973937988275127633589467252562663e-13) }},{{ SC_(5.6843418860808014869689941406250000000000000000000e-14), SC_(0.5), SC_(5.6843418860808014869689941398597041986834065703329e-14) }},{{ SC_(2.8421709430404007434844970703125000000000000000000e-14), SC_(0.5), SC_(2.8421709430404007434844970702168380248354258212916e-14) }},{{ SC_(1.4210854715202003717422485351562500000000000000000e-14), SC_(0.5), SC_(1.4210854715202003717422485351442922531044282276615e-14) }},{{ SC_(7.1054273576010018587112426757812500000000000000000e-15), SC_(0.5), SC_(7.1054273576010018587112426757663028163805352845768e-15) }},{{ SC_(3.5527136788005009293556213378906250000000000000000e-15), SC_(0.5), SC_(3.5527136788005009293556213378887566020475669105721e-15) }},{{ SC_(1.7763568394002504646778106689453125000000000000000e-15), SC_(0.5), SC_(1.7763568394002504646778106689450789502559458638215e-15) }},{{ SC_(8.8817841970012523233890533447265625000000000000000e-16), SC_(0.5), SC_(8.8817841970012523233890533447262705628199323297769e-16) }},{{ SC_(4.4408920985006261616945266723632812500000000000000e-16), SC_(0.5), SC_(4.4408920985006261616945266723632447578524915412221e-16) }},{{ SC_(2.2204460492503130808472633361816406250000000000000e-16), SC_(0.5), SC_(2.2204460492503130808472633361816360634815614426528e-16) }},{{ SC_(1.1102230246251565404236316680908203125000000000000e-16), SC_(0.5), SC_(1.1102230246251565404236316680908197423101951803316e-16) }},{{ SC_(5.5511151231257827021181583404541015625000000000000e-17), SC_(0.5), SC_(5.5511151231257827021181583404541008497627439754145e-17) }},{{ SC_(2.7755575615628913510590791702270507812500000000000e-17), SC_(0.5), SC_(2.7755575615628913510590791702270506921578429969268e-17) }},{{ SC_(1.3877787807814456755295395851135253906250000000000e-17), SC_(0.5), SC_(1.3877787807814456755295395851135253794884803746159e-17) }},{{ SC_(6.9388939039072283776476979255676269531250000000000e-18), SC_(0.5), SC_(6.9388939039072283776476979255676269392043504682698e-18) }},{{ SC_(3.4694469519536141888238489627838134765625000000000e-18), SC_(0.5), SC_(3.4694469519536141888238489627838134748224188085337e-18) }},{{ SC_(1.7347234759768070944119244813919067382812500000000e-18), SC_(0.5), SC_(1.7347234759768070944119244813919067380637398510667e-18) }},{{ SC_(8.6736173798840354720596224069595336914062500000000e-19), SC_(0.5), SC_(8.6736173798840354720596224069595336911343623138334e-19) }},{{ SC_(4.3368086899420177360298112034797668457031250000000e-19), SC_(0.5), SC_(4.3368086899420177360298112034797668456691390392292e-19) }},{{ SC_(2.1684043449710088680149056017398834228515625000000e-19), SC_(0.5), SC_(2.1684043449710088680149056017398834228473142549036e-19) }},{{ SC_(1.0842021724855044340074528008699417114257812500000e-19), SC_(0.5), SC_(1.0842021724855044340074528008699417114252502193630e-19) }},{{ SC_(5.4210108624275221700372640043497085571289062500000e-20), SC_(0.5), SC_(5.4210108624275221700372640043497085571282424617037e-20) }},{{ SC_(2.7105054312137610850186320021748542785644531250000e-20), SC_(0.5), SC_(2.7105054312137610850186320021748542785643701514630e-20) }},{{ SC_(1.3552527156068805425093160010874271392822265625000e-20), SC_(0.5), SC_(1.3552527156068805425093160010874271392822161908079e-20) }},{{ SC_(6.7762635780344027125465800054371356964111328125000e-21), SC_(0.5), SC_(6.7762635780344027125465800054371356964111198478848e-21) }},{{ SC_(3.3881317890172013562732900027185678482055664062500e-21), SC_(0.5), SC_(3.3881317890172013562732900027185678482055647856731e-21) }},{{ SC_(1.6940658945086006781366450013592839241027832031250e-21), SC_(0.5), SC_(1.6940658945086006781366450013592839241027830005529e-21) }},{{ SC_(8.4703294725430033906832250067964196205139160156250e-22), SC_(0.5), SC_(8.4703294725430033906832250067964196205139157624099e-22) }},{{ SC_(4.2351647362715016953416125033982098102569580078125e-22), SC_(0.5), SC_(4.2351647362715016953416125033982098102569579761606e-22) }},{{ SC_(2.1175823681357508476708062516991049051284790039062e-22), SC_(0.5), SC_(2.1175823681357508476708062516991049051284789999498e-22) }},{{ SC_(1.0587911840678754238354031258495524525642395019531e-22), SC_(0.5), SC_(1.0587911840678754238354031258495524525642395014586e-22) }},{{ SC_(5.2939559203393771191770156292477622628211975097656e-23), SC_(0.5), SC_(5.2939559203393771191770156292477622628211975091474e-23) }},{{ SC_(2.6469779601696885595885078146238811314105987548828e-23), SC_(0.5), SC_(2.6469779601696885595885078146238811314105987548055e-23) }},{{ SC_(1.3234889800848442797942539073119405657052993774414e-23), SC_(0.5), SC_(1.3234889800848442797942539073119405657052993774317e-23) }},{{ SC_(6.6174449004242213989712695365597028285264968872070e-24), SC_(0.5), SC_(6.6174449004242213989712695365597028285264968871950e-24) }},{{ SC_(3.3087224502121106994856347682798514142632484436035e-24), SC_(0.5), SC_(3.3087224502121106994856347682798514142632484436020e-24) }},{{ SC_(1.6543612251060553497428173841399257071316242218018e-24), SC_(0.5), SC_(1.6543612251060553497428173841399257071316242218016e-24) }},{{ SC_(8.2718061255302767487140869206996285356581211090088e-25), SC_(0.5), SC_(8.2718061255302767487140869206996285356581211090086e-25) }},{{ SC_(4.1359030627651383743570434603498142678290605545044e-25), SC_(0.5), SC_(4.1359030627651383743570434603498142678290605545044e-25) }}
|
|
} };
|
|
do_test_ellint_e2<T>(small_angles, type_name, "Elliptic Integral E: Small Angles");
|
|
//
|
|
// Test error handling:
|
|
//
|
|
#ifndef BOOST_MATH_NO_EXCEPTIONS
|
|
BOOST_CHECK_EQUAL(boost::math::ellint_2(T(1)), T(1));
|
|
BOOST_CHECK_EQUAL(boost::math::ellint_2(T(-1)), T(1));
|
|
BOOST_CHECK_THROW(boost::math::ellint_2(T(1.5)), std::domain_error);
|
|
BOOST_CHECK_THROW(boost::math::ellint_2(T(-1.5)), std::domain_error);
|
|
BOOST_CHECK_THROW(boost::math::ellint_2(T(1.5), T(1.5)), std::domain_error);
|
|
#endif
|
|
}
|
|
|