math/test/test_cyl_hankel_1_nvrtc_float.cpp
Matt Borland bbb8eee1d6
Add GPU support to expint
Add SYCL testing of expint

Add markers to forward decls

Add CUDA testing of expint

Fix static variable usage under NVRTC

Add NVRTC testing

Add configurable definition of complex

Add function aliases

Add GPU support to gegenbauer polynomials

Add SYCL testing of gegenbauer

Add NVCC testing of gegenbauer

Add NVRTC testing of gegenbauer

Add GPU support for hankel

Add SYCL testing of hankel

Add NVCC testing of cyl_hankel_1

Add comprehensive NVCC testing

Add NVRTC testing of cyl and sph hankel

Update docs

Fix writing cuda::std::complex<T> to stdout

Add GPU support to hermite

Add SYCL testing of hermite

Add CUDA testing of hermite

Add NVRTC testing of hermite

Add markers to hermite docs
2024-09-17 15:24:02 -04:00

200 lines
6.9 KiB
C++

// Copyright John Maddock 2016.
// Copyright Matt Borland 2024.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#define BOOST_MATH_PROMOTE_DOUBLE_POLICY false
// Must be included first
#include <nvrtc.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <iostream>
#include <iomanip>
#include <vector>
#include <random>
#include <exception>
#include <boost/math/tools/complex.hpp>
#include <boost/math/special_functions/hankel.hpp>
#include <boost/math/special_functions/relative_difference.hpp>
typedef float float_type;
const char* cuda_kernel = R"(
typedef float float_type;
#include <cuda/std/type_traits>
#include <boost/math/special_functions/hankel.hpp>
extern "C" __global__
void test_cyl_hankel_1_kernel(const float_type *in1, const float_type* in2, boost::math::complex<float_type> *out, int numElements)
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < numElements)
{
out[i] = boost::math::cyl_hankel_1(in1[i], in2[i]);
}
}
)";
void checkCUDAError(cudaError_t result, const char* msg)
{
if (result != cudaSuccess)
{
std::cerr << msg << ": " << cudaGetErrorString(result) << std::endl;
exit(EXIT_FAILURE);
}
}
void checkCUError(CUresult result, const char* msg)
{
if (result != CUDA_SUCCESS)
{
const char* errorStr;
cuGetErrorString(result, &errorStr);
std::cerr << msg << ": " << errorStr << std::endl;
exit(EXIT_FAILURE);
}
}
void checkNVRTCError(nvrtcResult result, const char* msg)
{
if (result != NVRTC_SUCCESS)
{
std::cerr << msg << ": " << nvrtcGetErrorString(result) << std::endl;
exit(EXIT_FAILURE);
}
}
int main()
{
try
{
// Initialize CUDA driver API
checkCUError(cuInit(0), "Failed to initialize CUDA");
// Create CUDA context
CUcontext context;
CUdevice device;
checkCUError(cuDeviceGet(&device, 0), "Failed to get CUDA device");
checkCUError(cuCtxCreate(&context, 0, device), "Failed to create CUDA context");
nvrtcProgram prog;
nvrtcResult res;
res = nvrtcCreateProgram(&prog, cuda_kernel, "test_cyl_hankel_1_kernel.cu", 0, nullptr, nullptr);
checkNVRTCError(res, "Failed to create NVRTC program");
nvrtcAddNameExpression(prog, "test_cyl_hankel_1_kernel");
#ifdef BOOST_MATH_NVRTC_CI_RUN
const char* opts[] = {"--std=c++14", "--gpu-architecture=compute_75", "--include-path=/home/runner/work/cuda-math/boost-root/libs/cuda-math/include/", "-I/usr/local/cuda/include"};
#else
const char* opts[] = {"--std=c++14", "--include-path=/home/mborland/Documents/boost/libs/cuda-math/include/", "-I/usr/local/cuda/include"};
#endif
// Compile the program
res = nvrtcCompileProgram(prog, sizeof(opts) / sizeof(const char*), opts);
if (res != NVRTC_SUCCESS)
{
size_t log_size;
nvrtcGetProgramLogSize(prog, &log_size);
char* log = new char[log_size];
nvrtcGetProgramLog(prog, log);
std::cerr << "Compilation failed:\n" << log << std::endl;
delete[] log;
exit(EXIT_FAILURE);
}
// Get PTX from the program
size_t ptx_size;
nvrtcGetPTXSize(prog, &ptx_size);
char* ptx = new char[ptx_size];
nvrtcGetPTX(prog, ptx);
// Load PTX into CUDA module
CUmodule module;
CUfunction kernel;
checkCUError(cuModuleLoadDataEx(&module, ptx, 0, 0, 0), "Failed to load module");
checkCUError(cuModuleGetFunction(&kernel, module, "test_cyl_hankel_1_kernel"), "Failed to get kernel function");
int numElements = 5000;
float_type *h_in1, *h_in2;
float_type *d_in1, *d_in2;
boost::math::complex<float_type> *h_out, *d_out;
// Allocate memory on the host
h_in1 = new float_type[numElements];
h_in2 = new float_type[numElements];
h_out = new boost::math::complex<float_type>[numElements];
// Initialize input arrays
std::mt19937_64 rng(42);
std::uniform_real_distribution<float_type> dist(0.0f, 1.0f);
for (int i = 0; i < numElements; ++i)
{
h_in1[i] = static_cast<float_type>(dist(rng));
h_in2[i] = static_cast<float_type>(dist(rng));
}
checkCUDAError(cudaMalloc(&d_in1, numElements * sizeof(float_type)), "Failed to allocate device memory for d_in1");
checkCUDAError(cudaMalloc(&d_in2, numElements * sizeof(float_type)), "Failed to allocate device memory for d_in2");
checkCUDAError(cudaMalloc(&d_out, numElements * sizeof(boost::math::complex<float_type>)), "Failed to allocate device memory for d_out");
checkCUDAError(cudaMemcpy(d_in1, h_in1, numElements * sizeof(float_type), cudaMemcpyHostToDevice), "Failed to copy data to device for d_in1");
checkCUDAError(cudaMemcpy(d_in2, h_in2, numElements * sizeof(float_type), cudaMemcpyHostToDevice), "Failed to copy data to device for d_in2");
int blockSize = 256;
int numBlocks = (numElements + blockSize - 1) / blockSize;
void* args[] = { &d_in1, &d_in2, &d_out, &numElements };
checkCUError(cuLaunchKernel(kernel, numBlocks, 1, 1, blockSize, 1, 1, 0, 0, args, 0), "Kernel launch failed");
checkCUDAError(cudaMemcpy(h_out, d_out, numElements * sizeof(boost::math::complex<float_type>), cudaMemcpyDeviceToHost), "Failed to copy data back to host for h_out");
// Verify Result
int fail_counter = 0;
for (int i = 0; i < numElements; ++i)
{
const auto res = boost::math::cyl_hankel_1(h_in1[i], h_in2[i]);
if (boost::math::epsilon_difference(res.real(), h_out[i].real()) > 300)
{
std::cout << "error at line: " << i
<< "\nParallel: " << h_out[i].real() << ", " << h_out[i].imag()
<< "\n Serial: " << res.real() << ", " << res.imag()
<< "\n Dist: " << boost::math::epsilon_difference(res.real(), h_out[i].real()) << std::endl;
++fail_counter;
if (fail_counter > 100)
{
break;
}
}
}
cudaFree(d_in1);
cudaFree(d_in2);
cudaFree(d_out);
delete[] h_in1;
delete[] h_in2;
delete[] h_out;
nvrtcDestroyProgram(&prog);
delete[] ptx;
cuCtxDestroy(context);
if (fail_counter > 0)
{
return 1;
}
std::cout << "Kernel executed successfully." << std::endl;
return 0;
}
catch(const std::exception& e)
{
std::cerr << "Stopped with exception: " << e.what() << std::endl;
return EXIT_FAILURE;
}
}