math/test/test_beta_double.cu
2024-07-23 14:16:13 -04:00

133 lines
4.0 KiB
Plaintext

// Copyright John Maddock 2016.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#define BOOST_MATH_PROMOTE_DOUBLE_POLICY false
#include <iostream>
#include <iomanip>
#include <vector>
#include <boost/math/special_functions/beta.hpp>
#include <boost/math/special_functions/relative_difference.hpp>
#include <boost/array.hpp>
#include "cuda_managed_ptr.hpp"
#include "stopwatch.hpp"
// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>
typedef double float_type;
/**
* CUDA Kernel Device code
*
*/
__global__ void cuda_test(const float_type *in1, const float_type * in2, float_type *out, int numElements)
{
using std::cos;
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < numElements)
{
out[i] = boost::math::beta(in1[i], in2[i]);
}
}
template <class T> struct table_type { typedef T type; };
typedef float_type T;
#define SC_(x) static_cast<T>(x)
#include "beta_med_data.ipp"
#include "beta_small_data.ipp"
/**
* Host main routine
*/
int main(void)
{
try{
// Consolidate the test data:
std::vector<float_type> v1, v2;
for(unsigned i = 0; i < beta_med_data.size(); ++i)
{
v1.push_back(beta_med_data[i][0]);
v2.push_back(beta_med_data[i][1]);
}
for(unsigned i = 0; i < beta_small_data.size(); ++i)
{
v1.push_back(beta_small_data[i][0]);
v2.push_back(beta_small_data[i][1]);
}
// Error code to check return values for CUDA calls
cudaError_t err = cudaSuccess;
// Print the vector length to be used, and compute its size
int numElements = 50000;
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
// Allocate the managed input vector A
cuda_managed_ptr<float_type> input_vector1(numElements);
cuda_managed_ptr<float_type> input_vector2(numElements);
// Allocate the managed output vector C
cuda_managed_ptr<float_type> output_vector(numElements);
// Initialize the input vectors
for (int i = 0; i < numElements; ++i)
{
int table_id = i % v1.size();
input_vector1[i] = v1[table_id];
input_vector2[i] = v2[table_id];
}
// Launch the Vector Add CUDA Kernel
int threadsPerBlock = 1024;
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
watch w;
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), input_vector2.get(), output_vector.get(), numElements);
cudaDeviceSynchronize();
std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;
err = cudaGetLastError();
if (err != cudaSuccess)
{
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
return EXIT_FAILURE;
}
// Verify that the result vector is correct
std::vector<float_type> results;
results.reserve(numElements);
w.reset();
for(int i = 0; i < numElements; ++i)
results.push_back(boost::math::beta(input_vector1[i], input_vector2[i]));
double t = w.elapsed();
// check the results
for(int i = 0; i < numElements; ++i)
{
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 300)
{
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
std::cout << "Done\n";
}
catch(const std::exception& e)
{
std::cerr << "Stopped with exception: " << e.what() << std::endl;
}
return 0;
}