mirror of
https://github.com/boostorg/math.git
synced 2025-05-11 21:33:52 +00:00
Remove NVRTC workaround Apply GPU markers to ibeta_inverse Apply GPU markers to t_dist_inv Fix warning suppression Add dispatch function and remove workaround Move disabling block Make binomial GPU enabled Add SYCL testing of ibeta Add SYCL testing of ibeta_inv Add SYCL testing of ibeta_inv_ab Add SYCL testing of full beta suite Add makers to fwd decls Add special forward decls for NVRTC Add betac nvrtc testing Add betac CUDA testing Add ibeta CUDA testing Add ibeta NVRTC testing Add ibetac NVRTC testing Add ibeta_derviative testing to nvrtc Add ibeta_derivative CUDA testing Add cbrt policy overload for NVRTC Fix NVRTC definition of BOOST_MATH_IF_CONSTEXPR Add ibeta_inv and ibetac_inv NVRTC testing Fix make pair helper on device Add CUDA testing of ibeta_inv* and ibetac_inv* Move location so that it also works on NVRTC Add NVRTC testing of ibeta_inv* and ibetac_inv* Fixup test sets since they ignore the policy Make the beta dist GPU compatible Add beta dist SYCL testing Add beta dist CUDA testing Add beta dist NVRTC testing
701 lines
30 KiB
C++
701 lines
30 KiB
C++
// test_beta_dist.cpp
|
|
|
|
// Copyright John Maddock 2006.
|
|
// Copyright Paul A. Bristow 2007, 2009, 2010, 2012.
|
|
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// Basic sanity tests for the beta Distribution.
|
|
|
|
// http://members.aol.com/iandjmsmith/BETAEX.HTM beta distribution calculator
|
|
// Appears to be a 64-bit calculator showing 17 decimal digit (last is noisy).
|
|
// Similar to mathCAD?
|
|
|
|
// http://www.nuhertz.com/statmat/distributions.html#Beta
|
|
// Pretty graphs and explanations for most distributions.
|
|
|
|
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp
|
|
// provided 40 decimal digits accuracy incomplete beta aka beta regularized == cdf
|
|
|
|
// http://www.ausvet.com.au/pprev/content.php?page=PPscript
|
|
// mode 0.75 5/95% 0.9 alpha 7.39 beta 3.13
|
|
// http://www.epi.ucdavis.edu/diagnostictests/betabuster.html
|
|
// Beta Buster also calculates alpha and beta from mode & percentile estimates.
|
|
// This is NOT (yet) implemented.
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(disable: 4127) // conditional expression is constant.
|
|
# pragma warning (disable : 4996) // POSIX name for this item is deprecated.
|
|
# pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'arg' was previously defined as a type.
|
|
#endif
|
|
|
|
#include <boost/math/tools/config.hpp>
|
|
|
|
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
|
|
#include <boost/math/concepts/real_concept.hpp> // for real_concept
|
|
using ::boost::math::concepts::real_concept;
|
|
#endif
|
|
|
|
#include "../include_private/boost/math/tools/test.hpp"
|
|
|
|
#include <boost/math/distributions/beta.hpp> // for beta_distribution
|
|
using boost::math::beta_distribution;
|
|
using boost::math::beta;
|
|
|
|
#define BOOST_TEST_MAIN
|
|
#include <boost/test/unit_test.hpp> // for test_main
|
|
#include <boost/test/tools/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE_FRACTION
|
|
|
|
#include "test_out_of_range.hpp"
|
|
|
|
#include <iostream>
|
|
using std::cout;
|
|
using std::endl;
|
|
#include <limits>
|
|
using std::numeric_limits;
|
|
|
|
#if __has_include(<stdfloat>)
|
|
# include <stdfloat>
|
|
#endif
|
|
|
|
template <class RealType>
|
|
void test_spot(
|
|
RealType a, // alpha a
|
|
RealType b, // beta b
|
|
RealType x, // Probability
|
|
RealType P, // CDF of beta(a, b)
|
|
RealType Q, // Complement of CDF
|
|
RealType tol) // Test tolerance.
|
|
{
|
|
boost::math::beta_distribution<RealType> abeta(a, b);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(abeta, x), P, tol);
|
|
if((P < 0.99) && (Q < 0.99))
|
|
{ // We can only check this if P is not too close to 1,
|
|
// so that we can guarantee that Q is free of error,
|
|
// (and similarly for Q)
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(complement(abeta, x)), Q, tol);
|
|
if(x != 0)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
quantile(abeta, P), x, tol);
|
|
}
|
|
else
|
|
{
|
|
// Just check quantile is very small:
|
|
if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
|
|
&& (boost::is_floating_point<RealType>::value))
|
|
{
|
|
// Limit where this is checked: if exponent range is very large we may
|
|
// run out of iterations in our root finding algorithm.
|
|
BOOST_CHECK(quantile(abeta, P) < boost::math::tools::epsilon<RealType>() * 10);
|
|
}
|
|
} // if k
|
|
if(x != 0)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(quantile(complement(abeta, Q)), x, tol);
|
|
}
|
|
else
|
|
{ // Just check quantile is very small:
|
|
if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent) && (boost::is_floating_point<RealType>::value))
|
|
{ // Limit where this is checked: if exponent range is very large we may
|
|
// run out of iterations in our root finding algorithm.
|
|
BOOST_CHECK(quantile(complement(abeta, Q)) < boost::math::tools::epsilon<RealType>() * 10);
|
|
}
|
|
} // if x
|
|
// Estimate alpha & beta from mean and variance:
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
beta_distribution<RealType>::find_alpha(mean(abeta), variance(abeta)),
|
|
abeta.alpha(), tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
beta_distribution<RealType>::find_beta(mean(abeta), variance(abeta)),
|
|
abeta.beta(), tol);
|
|
|
|
// Estimate sample alpha and beta from others:
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
beta_distribution<RealType>::find_alpha(abeta.beta(), x, P),
|
|
abeta.alpha(), tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
beta_distribution<RealType>::find_beta(abeta.alpha(), x, P),
|
|
abeta.beta(), tol);
|
|
} // if((P < 0.99) && (Q < 0.99)
|
|
|
|
} // template <class RealType> void test_spot
|
|
|
|
template <class RealType> // Any floating-point type RealType.
|
|
void test_spots(RealType)
|
|
{
|
|
// Basic sanity checks with 'known good' values.
|
|
// MathCAD test data is to double precision only,
|
|
// so set tolerance to 100 eps expressed as a fraction, or
|
|
// 100 eps of type double expressed as a fraction,
|
|
// whichever is the larger.
|
|
|
|
RealType tolerance = (std::max)
|
|
(boost::math::tools::epsilon<RealType>(),
|
|
static_cast<RealType>(std::numeric_limits<double>::epsilon())); // 0 if real_concept.
|
|
|
|
cout << "Boost::math::tools::epsilon = " << boost::math::tools::epsilon<RealType>() <<endl;
|
|
cout << "std::numeric_limits::epsilon = " << std::numeric_limits<RealType>::epsilon() <<endl;
|
|
cout << "epsilon = " << tolerance;
|
|
|
|
tolerance *= 100000; // Note: NO * 100 because is fraction, NOT %.
|
|
|
|
#ifdef __STDCPP_FLOAT16_T__
|
|
if constexpr (std::is_same_v<RealType, std::float16_t>)
|
|
{
|
|
tolerance *= 100;
|
|
}
|
|
#endif
|
|
|
|
cout << ", Tolerance = " << tolerance * 100 << "%." << endl;
|
|
|
|
// RealType teneps = boost::math::tools::epsilon<RealType>() * 10;
|
|
|
|
// Sources of spot test values:
|
|
|
|
// MathCAD defines dbeta(x, s1, s2) pdf, s1 == alpha, s2 = beta, x = x in Wolfram
|
|
// pbeta(x, s1, s2) cdf and qbeta(x, s1, s2) inverse of cdf
|
|
// returns pr(X ,= x) when random variable X
|
|
// has the beta distribution with parameters s1)alpha) and s2(beta).
|
|
// s1 > 0 and s2 >0 and 0 < x < 1 (but allows x == 0! and x == 1!)
|
|
// dbeta(0,1,1) = 0
|
|
// dbeta(0.5,1,1) = 1
|
|
|
|
using boost::math::beta_distribution;
|
|
using ::boost::math::cdf;
|
|
using ::boost::math::pdf;
|
|
|
|
// Tests that should throw:
|
|
BOOST_MATH_CHECK_THROW(mode(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1))), std::domain_error);
|
|
// mode is undefined, and throws domain_error!
|
|
|
|
// BOOST_MATH_CHECK_THROW(median(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1))), std::domain_error);
|
|
// median is undefined, and throws domain_error!
|
|
// But now median IS provided via derived accessor as quantile(half).
|
|
|
|
|
|
BOOST_MATH_CHECK_THROW( // For various bad arguments.
|
|
pdf(
|
|
beta_distribution<RealType>(static_cast<RealType>(-1), static_cast<RealType>(1)), // bad alpha < 0.
|
|
static_cast<RealType>(1)), std::domain_error);
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
pdf(
|
|
beta_distribution<RealType>(static_cast<RealType>(0), static_cast<RealType>(1)), // bad alpha == 0.
|
|
static_cast<RealType>(1)), std::domain_error);
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
pdf(
|
|
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(0)), // bad beta == 0.
|
|
static_cast<RealType>(1)), std::domain_error);
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
pdf(
|
|
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(-1)), // bad beta < 0.
|
|
static_cast<RealType>(1)), std::domain_error);
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
pdf(
|
|
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), // bad x < 0.
|
|
static_cast<RealType>(-1)), std::domain_error);
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
pdf(
|
|
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), // bad x > 1.
|
|
static_cast<RealType>(999)), std::domain_error);
|
|
|
|
// Some exact pdf values.
|
|
|
|
BOOST_CHECK_EQUAL( // a = b = 1 is uniform distribution.
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
|
|
static_cast<RealType>(1)), // x
|
|
static_cast<RealType>(1));
|
|
BOOST_CHECK_EQUAL(
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
|
|
static_cast<RealType>(0)), // x
|
|
static_cast<RealType>(1));
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
|
|
static_cast<RealType>(0.5)), // x
|
|
static_cast<RealType>(1),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)).alpha(),
|
|
static_cast<RealType>(1) ); //
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
mean(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1))),
|
|
static_cast<RealType>(0.5) ); // Exact one half.
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.5)), // x
|
|
static_cast<RealType>(1.5), // Exactly 3/2
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.5)), // x
|
|
static_cast<RealType>(1.5), // Exactly 3/2
|
|
tolerance);
|
|
|
|
// CDF
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.1)), // x
|
|
static_cast<RealType>(0.02800000000000000000000000000000000000000L), // Seems exact.
|
|
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.1&a=2&b=2&digits=40
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.0001)), // x
|
|
static_cast<RealType>(2.999800000000000000000000000000000000000e-8L),
|
|
// http://members.aol.com/iandjmsmith/BETAEX.HTM 2.9998000000004
|
|
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.0001&a=2&b=2&digits=40
|
|
tolerance);
|
|
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.0001)), // x
|
|
static_cast<RealType>(0.0005999400000000004L), // http://members.aol.com/iandjmsmith/BETAEX.HTM
|
|
// Slightly higher tolerance for real concept:
|
|
(std::numeric_limits<RealType>::is_specialized ? 1 : 10) * tolerance);
|
|
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.9999)), // x
|
|
static_cast<RealType>(0.999999970002L), // http://members.aol.com/iandjmsmith/BETAEX.HTM
|
|
// Wolfram 0.9999999700020000000000000000000000000000
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.9)), // x
|
|
static_cast<RealType>(0.9961174629530394895796514664963063381217L),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.1)), // x
|
|
static_cast<RealType>(0.2048327646991334516491978475505189480977L),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.9)), // x
|
|
static_cast<RealType>(0.7951672353008665483508021524494810519023L),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
quantile(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.7951672353008665483508021524494810519023L)), // x
|
|
static_cast<RealType>(0.9),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.6)), // x
|
|
static_cast<RealType>(0.5640942168489749316118742861695149357858L),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
quantile(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.5640942168489749316118742861695149357858L)), // x
|
|
static_cast<RealType>(0.6),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.6)), // x
|
|
static_cast<RealType>(0.1778078083562213736802876784474931812329L),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
quantile(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.1778078083562213736802876784474931812329L)), // x
|
|
static_cast<RealType>(0.6),
|
|
// Wolfram
|
|
tolerance); // gives
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
|
|
static_cast<RealType>(0.1)), // x
|
|
static_cast<RealType>(0.1), // 0.1000000000000000000000000000000000000000
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
quantile(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
|
|
static_cast<RealType>(0.1)), // x
|
|
static_cast<RealType>(0.1), // 0.1000000000000000000000000000000000000000
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(complement(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.1))), // complement of x
|
|
static_cast<RealType>(0.7951672353008665483508021524494810519023L),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
quantile(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.0280000000000000000000000000000000000L)), // x
|
|
static_cast<RealType>(0.1),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(complement(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.1))), // x
|
|
static_cast<RealType>(0.9720000000000000000000000000000000000000L), // Exact.
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.9999)), // x
|
|
static_cast<RealType>(0.0005999399999999344L), // http://members.aol.com/iandjmsmith/BETAEX.HTM
|
|
tolerance*10); // Note loss of precision calculating 1-p test value.
|
|
|
|
//void test_spot(
|
|
// RealType a, // alpha a
|
|
// RealType b, // beta b
|
|
// RealType x, // Probability
|
|
// RealType P, // CDF of beta(a, b)
|
|
// RealType Q, // Complement of CDF
|
|
// RealType tol) // Test tolerance.
|
|
|
|
// These test quantiles and complements, and parameter estimates as well.
|
|
// Spot values using, for example:
|
|
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.1&a=0.5&b=3&digits=40
|
|
|
|
test_spot(
|
|
static_cast<RealType>(1), // alpha a
|
|
static_cast<RealType>(1), // beta b
|
|
static_cast<RealType>(0.1), // Probability p
|
|
static_cast<RealType>(0.1), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(0.9), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.1), // Probability p
|
|
static_cast<RealType>(0.0280000000000000000000000000000000000L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1 - 0.0280000000000000000000000000000000000L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.5), // Probability p
|
|
static_cast<RealType>(0.5), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(0.5), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.9), // Probability p
|
|
static_cast<RealType>(0.972000000000000), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-0.972000000000000), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.01), // Probability p
|
|
static_cast<RealType>(0.0002980000000000000000000000000000000000000L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-0.0002980000000000000000000000000000000000000L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.001), // Probability p
|
|
static_cast<RealType>(2.998000000000000000000000000000000000000E-6L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-2.998000000000000000000000000000000000000E-6L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.0001), // Probability p
|
|
static_cast<RealType>(2.999800000000000000000000000000000000000E-8L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-2.999800000000000000000000000000000000000E-8L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.99), // Probability p
|
|
static_cast<RealType>(0.9997020000000000000000000000000000000000L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-0.9997020000000000000000000000000000000000L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(0.5), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.5), // Probability p
|
|
static_cast<RealType>(0.8838834764831844055010554526310612991060L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-0.8838834764831844055010554526310612991060L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(0.5), // alpha a
|
|
static_cast<RealType>(3.), // beta b
|
|
static_cast<RealType>(0.7), // Probability p
|
|
static_cast<RealType>(0.9903963064097119299191611355232156905687L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-0.9903963064097119299191611355232156905687L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(0.5), // alpha a
|
|
static_cast<RealType>(3.), // beta b
|
|
static_cast<RealType>(0.1), // Probability p
|
|
static_cast<RealType>(0.5545844446520295253493059553548880128511L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-0.5545844446520295253493059553548880128511L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
//
|
|
// Error checks:
|
|
// Construction with 'bad' parameters.
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, -1), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(-1, 1), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, 0), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(0, 1), std::domain_error);
|
|
|
|
beta_distribution<> dist;
|
|
BOOST_MATH_CHECK_THROW(pdf(dist, -1), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(cdf(dist, -1), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(cdf(complement(dist, -1)), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(quantile(dist, -1), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(quantile(complement(dist, -1)), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(quantile(dist, -1), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(quantile(complement(dist, -1)), std::domain_error);
|
|
|
|
// No longer allow any parameter to be NaN or inf, so all these tests should throw.
|
|
if (std::numeric_limits<RealType>::has_quiet_NaN)
|
|
{
|
|
// Attempt to construct from non-finite should throw.
|
|
RealType nan = std::numeric_limits<RealType>::quiet_NaN();
|
|
#ifndef BOOST_NO_EXCEPTIONS
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(nan), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(1, nan), std::domain_error);
|
|
#else
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(nan), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, nan), std::domain_error);
|
|
#endif
|
|
|
|
// Non-finite parameters should throw.
|
|
beta_distribution<RealType> w(RealType(1));
|
|
BOOST_MATH_CHECK_THROW(pdf(w, +nan), std::domain_error); // x = NaN
|
|
BOOST_MATH_CHECK_THROW(cdf(w, +nan), std::domain_error); // x = NaN
|
|
BOOST_MATH_CHECK_THROW(cdf(complement(w, +nan)), std::domain_error); // x = + nan
|
|
BOOST_MATH_CHECK_THROW(quantile(w, +nan), std::domain_error); // p = + nan
|
|
BOOST_MATH_CHECK_THROW(quantile(complement(w, +nan)), std::domain_error); // p = + nan
|
|
} // has_quiet_NaN
|
|
|
|
if (std::numeric_limits<RealType>::has_infinity)
|
|
{
|
|
// Attempt to construct from non-finite should throw.
|
|
RealType inf = std::numeric_limits<RealType>::infinity();
|
|
#ifndef BOOST_NO_EXCEPTIONS
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(inf), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(1, inf), std::domain_error);
|
|
#else
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(inf), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, inf), std::domain_error);
|
|
#endif
|
|
|
|
// Non-finite parameters should throw.
|
|
beta_distribution<RealType> w(RealType(1));
|
|
#ifndef BOOST_NO_EXCEPTIONS
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(inf), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(1, inf), std::domain_error);
|
|
#else
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(inf), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, inf), std::domain_error);
|
|
#endif
|
|
BOOST_MATH_CHECK_THROW(pdf(w, +inf), std::domain_error); // x = inf
|
|
BOOST_MATH_CHECK_THROW(cdf(w, +inf), std::domain_error); // x = inf
|
|
BOOST_MATH_CHECK_THROW(cdf(complement(w, +inf)), std::domain_error); // x = + inf
|
|
BOOST_MATH_CHECK_THROW(quantile(w, +inf), std::domain_error); // p = + inf
|
|
BOOST_MATH_CHECK_THROW(quantile(complement(w, +inf)), std::domain_error); // p = + inf
|
|
} // has_infinity
|
|
|
|
// Error handling checks:
|
|
#ifdef __STDCPP_FLOAT16_T__
|
|
if constexpr (!std::is_same_v<std::float16_t, RealType>)
|
|
{
|
|
check_out_of_range<boost::math::beta_distribution<RealType> >(1, 1); // (All) valid constructor parameter values.
|
|
}
|
|
#else
|
|
check_out_of_range<boost::math::beta_distribution<RealType> >(1, 1); // (All) valid constructor parameter values.
|
|
#endif
|
|
// and range and non-finite.
|
|
|
|
// Not needed??????
|
|
BOOST_MATH_CHECK_THROW(pdf(boost::math::beta_distribution<RealType>(0, 1), 0), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(pdf(boost::math::beta_distribution<RealType>(-1, 1), 0), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(quantile(boost::math::beta_distribution<RealType>(1, 1), -1), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(quantile(boost::math::beta_distribution<RealType>(1, 1), 2), std::domain_error);
|
|
|
|
|
|
} // template <class RealType>void test_spots(RealType)
|
|
|
|
BOOST_AUTO_TEST_CASE( test_main )
|
|
{
|
|
BOOST_MATH_CONTROL_FP;
|
|
// Check that can generate beta distribution using one convenience methods:
|
|
beta_distribution<> mybeta11(1., 1.); // Using default RealType double.
|
|
// but that
|
|
// boost::math::beta mybeta1(1., 1.); // Using typedef fails.
|
|
// error C2039: 'beta' : is not a member of 'boost::math'
|
|
|
|
// Basic sanity-check spot values.
|
|
|
|
// Some simple checks using double only.
|
|
BOOST_CHECK_EQUAL(mybeta11.alpha(), 1); //
|
|
BOOST_CHECK_EQUAL(mybeta11.beta(), 1);
|
|
BOOST_CHECK_EQUAL(mean(mybeta11), 0.5); // 1 / (1 + 1) = 1/2 exactly
|
|
BOOST_MATH_CHECK_THROW(mode(mybeta11), std::domain_error);
|
|
beta_distribution<> mybeta22(2., 2.); // pdf is dome shape.
|
|
BOOST_CHECK_EQUAL(mode(mybeta22), 0.5); // 2-1 / (2+2-2) = 1/2 exactly.
|
|
beta_distribution<> mybetaH2(0.5, 2.); //
|
|
beta_distribution<> mybetaH3(0.5, 3.); //
|
|
|
|
// Check a few values using double.
|
|
BOOST_CHECK_EQUAL(pdf(mybeta11, 1), 1); // is uniform unity over (0, 1)
|
|
BOOST_CHECK_EQUAL(pdf(mybeta11, 0), 1);
|
|
// Although these next three have an exact result, internally they're
|
|
// *not* treated as special cases, and may be out by a couple of eps:
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.5), 1.0, 5*std::numeric_limits<double>::epsilon());
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.0001), 1.0, 5*std::numeric_limits<double>::epsilon());
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.9999), 1.0, 5*std::numeric_limits<double>::epsilon());
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.1), 0.1, 2 * std::numeric_limits<double>::epsilon());
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.5), 0.5, 2 * std::numeric_limits<double>::epsilon());
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.9), 0.9, 2 * std::numeric_limits<double>::epsilon());
|
|
BOOST_CHECK_EQUAL(cdf(mybeta11, 1), 1.); // Exact unity expected.
|
|
|
|
double tol = std::numeric_limits<double>::epsilon() * 10;
|
|
BOOST_CHECK_EQUAL(pdf(mybeta22, 1), 0); // is dome shape.
|
|
BOOST_CHECK_EQUAL(pdf(mybeta22, 0), 0);
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.5), 1.5, tol); // top of dome, expect exactly 3/2.
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.0001), 5.9994000000000E-4, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.9999), 5.9994000000000E-4, tol*50);
|
|
|
|
BOOST_CHECK_EQUAL(cdf(mybeta22, 0.), 0); // cdf is a curved line from 0 to 1.
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.1), 0.028000000000000, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.5), 0.5, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.9), 0.972000000000000, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.0001), 2.999800000000000000000000000000000000000E-8, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.001), 2.998000000000000000000000000000000000000E-6, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.01), 0.0002980000000000000000000000000000000000000, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.1), 0.02800000000000000000000000000000000000000, tol); // exact
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.99), 0.9997020000000000000000000000000000000000, tol);
|
|
|
|
BOOST_CHECK_EQUAL(cdf(mybeta22, 1), 1.); // Exact unity expected.
|
|
|
|
// Complement
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(complement(mybeta22, 0.9)), 0.028000000000000, tol);
|
|
|
|
// quantile.
|
|
BOOST_CHECK_CLOSE_FRACTION(quantile(mybeta22, 0.028), 0.1, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(quantile(complement(mybeta22, 1 - 0.028)), 0.1, tol);
|
|
BOOST_CHECK_EQUAL(kurtosis(mybeta11), 3+ kurtosis_excess(mybeta11)); // Check kurtosis_excess = kurtosis - 3;
|
|
BOOST_CHECK_CLOSE_FRACTION(variance(mybeta22), 0.05, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(mean(mybeta22), 0.5, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(mode(mybeta22), 0.5, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(median(mybeta22), 0.5, sqrt(tol)); // Theoretical maximum accuracy using Brent is sqrt(epsilon).
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(skewness(mybeta22), 0.0, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(mybeta22), -144.0 / 168, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(skewness(beta_distribution<>(3, 5)), 0.30983866769659335081434123198259, tol);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(beta_distribution<double>::find_alpha(mean(mybeta22), variance(mybeta22)), mybeta22.alpha(), tol); // mean, variance, probability.
|
|
BOOST_CHECK_CLOSE_FRACTION(beta_distribution<double>::find_beta(mean(mybeta22), variance(mybeta22)), mybeta22.beta(), tol);// mean, variance, probability.
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(mybeta22.find_alpha(mybeta22.beta(), 0.8, cdf(mybeta22, 0.8)), mybeta22.alpha(), tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(mybeta22.find_beta(mybeta22.alpha(), 0.8, cdf(mybeta22, 0.8)), mybeta22.beta(), tol);
|
|
|
|
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
|
|
beta_distribution<real_concept> rcbeta22(2, 2); // Using RealType real_concept.
|
|
cout << "numeric_limits<real_concept>::is_specialized " << numeric_limits<real_concept>::is_specialized << endl;
|
|
cout << "numeric_limits<real_concept>::digits " << numeric_limits<real_concept>::digits << endl;
|
|
cout << "numeric_limits<real_concept>::digits10 " << numeric_limits<real_concept>::digits10 << endl;
|
|
cout << "numeric_limits<real_concept>::epsilon " << numeric_limits<real_concept>::epsilon() << endl;
|
|
#endif
|
|
|
|
// (Parameter value, arbitrarily zero, only communicates the floating point type).
|
|
test_spots(0.0F); // Test float.
|
|
test_spots(0.0); // Test double.
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
test_spots(0.0L); // Test long double.
|
|
#if !BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x582)) && !defined(BOOST_MATH_NO_REAL_CONCEPT_TESTS)
|
|
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef __STDCPP_FLOAT64_T__
|
|
test_spots(0.0F64);
|
|
#endif
|
|
#ifdef __STDCPP_FLOAT32_T__
|
|
test_spots(0.0F32);
|
|
#endif
|
|
#ifdef __STDCPP_FLOAT16_T__
|
|
test_spots(0.0F16);
|
|
#endif
|
|
|
|
} // BOOST_AUTO_TEST_CASE( test_main )
|
|
|
|
/*
|
|
|
|
Output is:
|
|
|
|
-Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_beta_dist.exe"
|
|
Running 1 test case...
|
|
numeric_limits<real_concept>::is_specialized 0
|
|
numeric_limits<real_concept>::digits 0
|
|
numeric_limits<real_concept>::digits10 0
|
|
numeric_limits<real_concept>::epsilon 0
|
|
Boost::math::tools::epsilon = 1.19209e-007
|
|
std::numeric_limits::epsilon = 1.19209e-007
|
|
epsilon = 1.19209e-007, Tolerance = 0.0119209%.
|
|
Boost::math::tools::epsilon = 2.22045e-016
|
|
std::numeric_limits::epsilon = 2.22045e-016
|
|
epsilon = 2.22045e-016, Tolerance = 2.22045e-011%.
|
|
Boost::math::tools::epsilon = 2.22045e-016
|
|
std::numeric_limits::epsilon = 2.22045e-016
|
|
epsilon = 2.22045e-016, Tolerance = 2.22045e-011%.
|
|
Boost::math::tools::epsilon = 2.22045e-016
|
|
std::numeric_limits::epsilon = 0
|
|
epsilon = 2.22045e-016, Tolerance = 2.22045e-011%.
|
|
*** No errors detected
|
|
|
|
|
|
*/
|
|
|
|
|
|
|