math/test/test_beta_dist.cpp
Matt Borland adf8abd346
Apply GPU markers to ibeta_inv_ab
Remove NVRTC workaround

Apply GPU markers to ibeta_inverse

Apply GPU markers to t_dist_inv

Fix warning suppression

Add dispatch function and remove workaround

Move disabling block

Make binomial GPU enabled

Add SYCL testing of ibeta

Add SYCL testing of ibeta_inv

Add SYCL testing of ibeta_inv_ab

Add SYCL testing of full beta suite

Add makers to fwd decls

Add special forward decls for NVRTC

Add betac nvrtc testing

Add betac CUDA testing

Add ibeta CUDA testing

Add ibeta NVRTC testing

Add ibetac NVRTC testing

Add ibeta_derviative testing to nvrtc

Add ibeta_derivative CUDA testing

Add cbrt policy overload for NVRTC

Fix NVRTC definition of BOOST_MATH_IF_CONSTEXPR

Add ibeta_inv and ibetac_inv NVRTC testing

Fix make pair helper on device

Add CUDA testing of ibeta_inv* and ibetac_inv*

Move location so that it also works on NVRTC

Add NVRTC testing of ibeta_inv* and ibetac_inv*

Fixup test sets since they ignore the policy

Make the beta dist GPU compatible

Add beta dist SYCL testing

Add beta dist CUDA testing

Add beta dist NVRTC testing
2024-08-30 13:46:01 -04:00

701 lines
30 KiB
C++

// test_beta_dist.cpp
// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007, 2009, 2010, 2012.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// Basic sanity tests for the beta Distribution.
// http://members.aol.com/iandjmsmith/BETAEX.HTM beta distribution calculator
// Appears to be a 64-bit calculator showing 17 decimal digit (last is noisy).
// Similar to mathCAD?
// http://www.nuhertz.com/statmat/distributions.html#Beta
// Pretty graphs and explanations for most distributions.
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp
// provided 40 decimal digits accuracy incomplete beta aka beta regularized == cdf
// http://www.ausvet.com.au/pprev/content.php?page=PPscript
// mode 0.75 5/95% 0.9 alpha 7.39 beta 3.13
// http://www.epi.ucdavis.edu/diagnostictests/betabuster.html
// Beta Buster also calculates alpha and beta from mode & percentile estimates.
// This is NOT (yet) implemented.
#ifdef _MSC_VER
# pragma warning(disable: 4127) // conditional expression is constant.
# pragma warning (disable : 4996) // POSIX name for this item is deprecated.
# pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'arg' was previously defined as a type.
#endif
#include <boost/math/tools/config.hpp>
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#include <boost/math/concepts/real_concept.hpp> // for real_concept
using ::boost::math::concepts::real_concept;
#endif
#include "../include_private/boost/math/tools/test.hpp"
#include <boost/math/distributions/beta.hpp> // for beta_distribution
using boost::math::beta_distribution;
using boost::math::beta;
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // for test_main
#include <boost/test/tools/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE_FRACTION
#include "test_out_of_range.hpp"
#include <iostream>
using std::cout;
using std::endl;
#include <limits>
using std::numeric_limits;
#if __has_include(<stdfloat>)
# include <stdfloat>
#endif
template <class RealType>
void test_spot(
RealType a, // alpha a
RealType b, // beta b
RealType x, // Probability
RealType P, // CDF of beta(a, b)
RealType Q, // Complement of CDF
RealType tol) // Test tolerance.
{
boost::math::beta_distribution<RealType> abeta(a, b);
BOOST_CHECK_CLOSE_FRACTION(cdf(abeta, x), P, tol);
if((P < 0.99) && (Q < 0.99))
{ // We can only check this if P is not too close to 1,
// so that we can guarantee that Q is free of error,
// (and similarly for Q)
BOOST_CHECK_CLOSE_FRACTION(
cdf(complement(abeta, x)), Q, tol);
if(x != 0)
{
BOOST_CHECK_CLOSE_FRACTION(
quantile(abeta, P), x, tol);
}
else
{
// Just check quantile is very small:
if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
&& (boost::is_floating_point<RealType>::value))
{
// Limit where this is checked: if exponent range is very large we may
// run out of iterations in our root finding algorithm.
BOOST_CHECK(quantile(abeta, P) < boost::math::tools::epsilon<RealType>() * 10);
}
} // if k
if(x != 0)
{
BOOST_CHECK_CLOSE_FRACTION(quantile(complement(abeta, Q)), x, tol);
}
else
{ // Just check quantile is very small:
if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent) && (boost::is_floating_point<RealType>::value))
{ // Limit where this is checked: if exponent range is very large we may
// run out of iterations in our root finding algorithm.
BOOST_CHECK(quantile(complement(abeta, Q)) < boost::math::tools::epsilon<RealType>() * 10);
}
} // if x
// Estimate alpha & beta from mean and variance:
BOOST_CHECK_CLOSE_FRACTION(
beta_distribution<RealType>::find_alpha(mean(abeta), variance(abeta)),
abeta.alpha(), tol);
BOOST_CHECK_CLOSE_FRACTION(
beta_distribution<RealType>::find_beta(mean(abeta), variance(abeta)),
abeta.beta(), tol);
// Estimate sample alpha and beta from others:
BOOST_CHECK_CLOSE_FRACTION(
beta_distribution<RealType>::find_alpha(abeta.beta(), x, P),
abeta.alpha(), tol);
BOOST_CHECK_CLOSE_FRACTION(
beta_distribution<RealType>::find_beta(abeta.alpha(), x, P),
abeta.beta(), tol);
} // if((P < 0.99) && (Q < 0.99)
} // template <class RealType> void test_spot
template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
// Basic sanity checks with 'known good' values.
// MathCAD test data is to double precision only,
// so set tolerance to 100 eps expressed as a fraction, or
// 100 eps of type double expressed as a fraction,
// whichever is the larger.
RealType tolerance = (std::max)
(boost::math::tools::epsilon<RealType>(),
static_cast<RealType>(std::numeric_limits<double>::epsilon())); // 0 if real_concept.
cout << "Boost::math::tools::epsilon = " << boost::math::tools::epsilon<RealType>() <<endl;
cout << "std::numeric_limits::epsilon = " << std::numeric_limits<RealType>::epsilon() <<endl;
cout << "epsilon = " << tolerance;
tolerance *= 100000; // Note: NO * 100 because is fraction, NOT %.
#ifdef __STDCPP_FLOAT16_T__
if constexpr (std::is_same_v<RealType, std::float16_t>)
{
tolerance *= 100;
}
#endif
cout << ", Tolerance = " << tolerance * 100 << "%." << endl;
// RealType teneps = boost::math::tools::epsilon<RealType>() * 10;
// Sources of spot test values:
// MathCAD defines dbeta(x, s1, s2) pdf, s1 == alpha, s2 = beta, x = x in Wolfram
// pbeta(x, s1, s2) cdf and qbeta(x, s1, s2) inverse of cdf
// returns pr(X ,= x) when random variable X
// has the beta distribution with parameters s1)alpha) and s2(beta).
// s1 > 0 and s2 >0 and 0 < x < 1 (but allows x == 0! and x == 1!)
// dbeta(0,1,1) = 0
// dbeta(0.5,1,1) = 1
using boost::math::beta_distribution;
using ::boost::math::cdf;
using ::boost::math::pdf;
// Tests that should throw:
BOOST_MATH_CHECK_THROW(mode(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1))), std::domain_error);
// mode is undefined, and throws domain_error!
// BOOST_MATH_CHECK_THROW(median(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1))), std::domain_error);
// median is undefined, and throws domain_error!
// But now median IS provided via derived accessor as quantile(half).
BOOST_MATH_CHECK_THROW( // For various bad arguments.
pdf(
beta_distribution<RealType>(static_cast<RealType>(-1), static_cast<RealType>(1)), // bad alpha < 0.
static_cast<RealType>(1)), std::domain_error);
BOOST_MATH_CHECK_THROW(
pdf(
beta_distribution<RealType>(static_cast<RealType>(0), static_cast<RealType>(1)), // bad alpha == 0.
static_cast<RealType>(1)), std::domain_error);
BOOST_MATH_CHECK_THROW(
pdf(
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(0)), // bad beta == 0.
static_cast<RealType>(1)), std::domain_error);
BOOST_MATH_CHECK_THROW(
pdf(
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(-1)), // bad beta < 0.
static_cast<RealType>(1)), std::domain_error);
BOOST_MATH_CHECK_THROW(
pdf(
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), // bad x < 0.
static_cast<RealType>(-1)), std::domain_error);
BOOST_MATH_CHECK_THROW(
pdf(
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), // bad x > 1.
static_cast<RealType>(999)), std::domain_error);
// Some exact pdf values.
BOOST_CHECK_EQUAL( // a = b = 1 is uniform distribution.
pdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
static_cast<RealType>(1)), // x
static_cast<RealType>(1));
BOOST_CHECK_EQUAL(
pdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
static_cast<RealType>(0)), // x
static_cast<RealType>(1));
BOOST_CHECK_CLOSE_FRACTION(
pdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
static_cast<RealType>(0.5)), // x
static_cast<RealType>(1),
tolerance);
BOOST_CHECK_EQUAL(
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)).alpha(),
static_cast<RealType>(1) ); //
BOOST_CHECK_EQUAL(
mean(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1))),
static_cast<RealType>(0.5) ); // Exact one half.
BOOST_CHECK_CLOSE_FRACTION(
pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
static_cast<RealType>(0.5)), // x
static_cast<RealType>(1.5), // Exactly 3/2
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
static_cast<RealType>(0.5)), // x
static_cast<RealType>(1.5), // Exactly 3/2
tolerance);
// CDF
BOOST_CHECK_CLOSE_FRACTION(
cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
static_cast<RealType>(0.1)), // x
static_cast<RealType>(0.02800000000000000000000000000000000000000L), // Seems exact.
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.1&a=2&b=2&digits=40
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
static_cast<RealType>(0.0001)), // x
static_cast<RealType>(2.999800000000000000000000000000000000000e-8L),
// http://members.aol.com/iandjmsmith/BETAEX.HTM 2.9998000000004
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.0001&a=2&b=2&digits=40
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
static_cast<RealType>(0.0001)), // x
static_cast<RealType>(0.0005999400000000004L), // http://members.aol.com/iandjmsmith/BETAEX.HTM
// Slightly higher tolerance for real concept:
(std::numeric_limits<RealType>::is_specialized ? 1 : 10) * tolerance);
BOOST_CHECK_CLOSE_FRACTION(
cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
static_cast<RealType>(0.9999)), // x
static_cast<RealType>(0.999999970002L), // http://members.aol.com/iandjmsmith/BETAEX.HTM
// Wolfram 0.9999999700020000000000000000000000000000
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(2)),
static_cast<RealType>(0.9)), // x
static_cast<RealType>(0.9961174629530394895796514664963063381217L),
// Wolfram
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
static_cast<RealType>(0.1)), // x
static_cast<RealType>(0.2048327646991334516491978475505189480977L),
// Wolfram
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
static_cast<RealType>(0.9)), // x
static_cast<RealType>(0.7951672353008665483508021524494810519023L),
// Wolfram
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
quantile(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
static_cast<RealType>(0.7951672353008665483508021524494810519023L)), // x
static_cast<RealType>(0.9),
// Wolfram
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
static_cast<RealType>(0.6)), // x
static_cast<RealType>(0.5640942168489749316118742861695149357858L),
// Wolfram
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
quantile(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
static_cast<RealType>(0.5640942168489749316118742861695149357858L)), // x
static_cast<RealType>(0.6),
// Wolfram
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)),
static_cast<RealType>(0.6)), // x
static_cast<RealType>(0.1778078083562213736802876784474931812329L),
// Wolfram
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
quantile(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)),
static_cast<RealType>(0.1778078083562213736802876784474931812329L)), // x
static_cast<RealType>(0.6),
// Wolfram
tolerance); // gives
BOOST_CHECK_CLOSE_FRACTION(
cdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
static_cast<RealType>(0.1)), // x
static_cast<RealType>(0.1), // 0.1000000000000000000000000000000000000000
// Wolfram
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
quantile(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
static_cast<RealType>(0.1)), // x
static_cast<RealType>(0.1), // 0.1000000000000000000000000000000000000000
// Wolfram
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
cdf(complement(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
static_cast<RealType>(0.1))), // complement of x
static_cast<RealType>(0.7951672353008665483508021524494810519023L),
// Wolfram
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
quantile(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
static_cast<RealType>(0.0280000000000000000000000000000000000L)), // x
static_cast<RealType>(0.1),
// Wolfram
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
cdf(complement(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
static_cast<RealType>(0.1))), // x
static_cast<RealType>(0.9720000000000000000000000000000000000000L), // Exact.
// Wolfram
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
static_cast<RealType>(0.9999)), // x
static_cast<RealType>(0.0005999399999999344L), // http://members.aol.com/iandjmsmith/BETAEX.HTM
tolerance*10); // Note loss of precision calculating 1-p test value.
//void test_spot(
// RealType a, // alpha a
// RealType b, // beta b
// RealType x, // Probability
// RealType P, // CDF of beta(a, b)
// RealType Q, // Complement of CDF
// RealType tol) // Test tolerance.
// These test quantiles and complements, and parameter estimates as well.
// Spot values using, for example:
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.1&a=0.5&b=3&digits=40
test_spot(
static_cast<RealType>(1), // alpha a
static_cast<RealType>(1), // beta b
static_cast<RealType>(0.1), // Probability p
static_cast<RealType>(0.1), // Probability of result (CDF of beta), P
static_cast<RealType>(0.9), // Complement of CDF Q = 1 - P
tolerance); // Test tolerance.
test_spot(
static_cast<RealType>(2), // alpha a
static_cast<RealType>(2), // beta b
static_cast<RealType>(0.1), // Probability p
static_cast<RealType>(0.0280000000000000000000000000000000000L), // Probability of result (CDF of beta), P
static_cast<RealType>(1 - 0.0280000000000000000000000000000000000L), // Complement of CDF Q = 1 - P
tolerance); // Test tolerance.
test_spot(
static_cast<RealType>(2), // alpha a
static_cast<RealType>(2), // beta b
static_cast<RealType>(0.5), // Probability p
static_cast<RealType>(0.5), // Probability of result (CDF of beta), P
static_cast<RealType>(0.5), // Complement of CDF Q = 1 - P
tolerance); // Test tolerance.
test_spot(
static_cast<RealType>(2), // alpha a
static_cast<RealType>(2), // beta b
static_cast<RealType>(0.9), // Probability p
static_cast<RealType>(0.972000000000000), // Probability of result (CDF of beta), P
static_cast<RealType>(1-0.972000000000000), // Complement of CDF Q = 1 - P
tolerance); // Test tolerance.
test_spot(
static_cast<RealType>(2), // alpha a
static_cast<RealType>(2), // beta b
static_cast<RealType>(0.01), // Probability p
static_cast<RealType>(0.0002980000000000000000000000000000000000000L), // Probability of result (CDF of beta), P
static_cast<RealType>(1-0.0002980000000000000000000000000000000000000L), // Complement of CDF Q = 1 - P
tolerance); // Test tolerance.
test_spot(
static_cast<RealType>(2), // alpha a
static_cast<RealType>(2), // beta b
static_cast<RealType>(0.001), // Probability p
static_cast<RealType>(2.998000000000000000000000000000000000000E-6L), // Probability of result (CDF of beta), P
static_cast<RealType>(1-2.998000000000000000000000000000000000000E-6L), // Complement of CDF Q = 1 - P
tolerance); // Test tolerance.
test_spot(
static_cast<RealType>(2), // alpha a
static_cast<RealType>(2), // beta b
static_cast<RealType>(0.0001), // Probability p
static_cast<RealType>(2.999800000000000000000000000000000000000E-8L), // Probability of result (CDF of beta), P
static_cast<RealType>(1-2.999800000000000000000000000000000000000E-8L), // Complement of CDF Q = 1 - P
tolerance); // Test tolerance.
test_spot(
static_cast<RealType>(2), // alpha a
static_cast<RealType>(2), // beta b
static_cast<RealType>(0.99), // Probability p
static_cast<RealType>(0.9997020000000000000000000000000000000000L), // Probability of result (CDF of beta), P
static_cast<RealType>(1-0.9997020000000000000000000000000000000000L), // Complement of CDF Q = 1 - P
tolerance); // Test tolerance.
test_spot(
static_cast<RealType>(0.5), // alpha a
static_cast<RealType>(2), // beta b
static_cast<RealType>(0.5), // Probability p
static_cast<RealType>(0.8838834764831844055010554526310612991060L), // Probability of result (CDF of beta), P
static_cast<RealType>(1-0.8838834764831844055010554526310612991060L), // Complement of CDF Q = 1 - P
tolerance); // Test tolerance.
test_spot(
static_cast<RealType>(0.5), // alpha a
static_cast<RealType>(3.), // beta b
static_cast<RealType>(0.7), // Probability p
static_cast<RealType>(0.9903963064097119299191611355232156905687L), // Probability of result (CDF of beta), P
static_cast<RealType>(1-0.9903963064097119299191611355232156905687L), // Complement of CDF Q = 1 - P
tolerance); // Test tolerance.
test_spot(
static_cast<RealType>(0.5), // alpha a
static_cast<RealType>(3.), // beta b
static_cast<RealType>(0.1), // Probability p
static_cast<RealType>(0.5545844446520295253493059553548880128511L), // Probability of result (CDF of beta), P
static_cast<RealType>(1-0.5545844446520295253493059553548880128511L), // Complement of CDF Q = 1 - P
tolerance); // Test tolerance.
//
// Error checks:
// Construction with 'bad' parameters.
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, -1), std::domain_error);
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(-1, 1), std::domain_error);
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, 0), std::domain_error);
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(0, 1), std::domain_error);
beta_distribution<> dist;
BOOST_MATH_CHECK_THROW(pdf(dist, -1), std::domain_error);
BOOST_MATH_CHECK_THROW(cdf(dist, -1), std::domain_error);
BOOST_MATH_CHECK_THROW(cdf(complement(dist, -1)), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(dist, -1), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(complement(dist, -1)), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(dist, -1), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(complement(dist, -1)), std::domain_error);
// No longer allow any parameter to be NaN or inf, so all these tests should throw.
if (std::numeric_limits<RealType>::has_quiet_NaN)
{
// Attempt to construct from non-finite should throw.
RealType nan = std::numeric_limits<RealType>::quiet_NaN();
#ifndef BOOST_NO_EXCEPTIONS
BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(nan), std::domain_error);
BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(1, nan), std::domain_error);
#else
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(nan), std::domain_error);
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, nan), std::domain_error);
#endif
// Non-finite parameters should throw.
beta_distribution<RealType> w(RealType(1));
BOOST_MATH_CHECK_THROW(pdf(w, +nan), std::domain_error); // x = NaN
BOOST_MATH_CHECK_THROW(cdf(w, +nan), std::domain_error); // x = NaN
BOOST_MATH_CHECK_THROW(cdf(complement(w, +nan)), std::domain_error); // x = + nan
BOOST_MATH_CHECK_THROW(quantile(w, +nan), std::domain_error); // p = + nan
BOOST_MATH_CHECK_THROW(quantile(complement(w, +nan)), std::domain_error); // p = + nan
} // has_quiet_NaN
if (std::numeric_limits<RealType>::has_infinity)
{
// Attempt to construct from non-finite should throw.
RealType inf = std::numeric_limits<RealType>::infinity();
#ifndef BOOST_NO_EXCEPTIONS
BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(inf), std::domain_error);
BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(1, inf), std::domain_error);
#else
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(inf), std::domain_error);
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, inf), std::domain_error);
#endif
// Non-finite parameters should throw.
beta_distribution<RealType> w(RealType(1));
#ifndef BOOST_NO_EXCEPTIONS
BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(inf), std::domain_error);
BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(1, inf), std::domain_error);
#else
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(inf), std::domain_error);
BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, inf), std::domain_error);
#endif
BOOST_MATH_CHECK_THROW(pdf(w, +inf), std::domain_error); // x = inf
BOOST_MATH_CHECK_THROW(cdf(w, +inf), std::domain_error); // x = inf
BOOST_MATH_CHECK_THROW(cdf(complement(w, +inf)), std::domain_error); // x = + inf
BOOST_MATH_CHECK_THROW(quantile(w, +inf), std::domain_error); // p = + inf
BOOST_MATH_CHECK_THROW(quantile(complement(w, +inf)), std::domain_error); // p = + inf
} // has_infinity
// Error handling checks:
#ifdef __STDCPP_FLOAT16_T__
if constexpr (!std::is_same_v<std::float16_t, RealType>)
{
check_out_of_range<boost::math::beta_distribution<RealType> >(1, 1); // (All) valid constructor parameter values.
}
#else
check_out_of_range<boost::math::beta_distribution<RealType> >(1, 1); // (All) valid constructor parameter values.
#endif
// and range and non-finite.
// Not needed??????
BOOST_MATH_CHECK_THROW(pdf(boost::math::beta_distribution<RealType>(0, 1), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(pdf(boost::math::beta_distribution<RealType>(-1, 1), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(boost::math::beta_distribution<RealType>(1, 1), -1), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(boost::math::beta_distribution<RealType>(1, 1), 2), std::domain_error);
} // template <class RealType>void test_spots(RealType)
BOOST_AUTO_TEST_CASE( test_main )
{
BOOST_MATH_CONTROL_FP;
// Check that can generate beta distribution using one convenience methods:
beta_distribution<> mybeta11(1., 1.); // Using default RealType double.
// but that
// boost::math::beta mybeta1(1., 1.); // Using typedef fails.
// error C2039: 'beta' : is not a member of 'boost::math'
// Basic sanity-check spot values.
// Some simple checks using double only.
BOOST_CHECK_EQUAL(mybeta11.alpha(), 1); //
BOOST_CHECK_EQUAL(mybeta11.beta(), 1);
BOOST_CHECK_EQUAL(mean(mybeta11), 0.5); // 1 / (1 + 1) = 1/2 exactly
BOOST_MATH_CHECK_THROW(mode(mybeta11), std::domain_error);
beta_distribution<> mybeta22(2., 2.); // pdf is dome shape.
BOOST_CHECK_EQUAL(mode(mybeta22), 0.5); // 2-1 / (2+2-2) = 1/2 exactly.
beta_distribution<> mybetaH2(0.5, 2.); //
beta_distribution<> mybetaH3(0.5, 3.); //
// Check a few values using double.
BOOST_CHECK_EQUAL(pdf(mybeta11, 1), 1); // is uniform unity over (0, 1)
BOOST_CHECK_EQUAL(pdf(mybeta11, 0), 1);
// Although these next three have an exact result, internally they're
// *not* treated as special cases, and may be out by a couple of eps:
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.5), 1.0, 5*std::numeric_limits<double>::epsilon());
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.0001), 1.0, 5*std::numeric_limits<double>::epsilon());
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.9999), 1.0, 5*std::numeric_limits<double>::epsilon());
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.1), 0.1, 2 * std::numeric_limits<double>::epsilon());
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.5), 0.5, 2 * std::numeric_limits<double>::epsilon());
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.9), 0.9, 2 * std::numeric_limits<double>::epsilon());
BOOST_CHECK_EQUAL(cdf(mybeta11, 1), 1.); // Exact unity expected.
double tol = std::numeric_limits<double>::epsilon() * 10;
BOOST_CHECK_EQUAL(pdf(mybeta22, 1), 0); // is dome shape.
BOOST_CHECK_EQUAL(pdf(mybeta22, 0), 0);
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.5), 1.5, tol); // top of dome, expect exactly 3/2.
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.0001), 5.9994000000000E-4, tol);
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.9999), 5.9994000000000E-4, tol*50);
BOOST_CHECK_EQUAL(cdf(mybeta22, 0.), 0); // cdf is a curved line from 0 to 1.
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.1), 0.028000000000000, tol);
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.5), 0.5, tol);
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.9), 0.972000000000000, tol);
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.0001), 2.999800000000000000000000000000000000000E-8, tol);
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.001), 2.998000000000000000000000000000000000000E-6, tol);
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.01), 0.0002980000000000000000000000000000000000000, tol);
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.1), 0.02800000000000000000000000000000000000000, tol); // exact
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.99), 0.9997020000000000000000000000000000000000, tol);
BOOST_CHECK_EQUAL(cdf(mybeta22, 1), 1.); // Exact unity expected.
// Complement
BOOST_CHECK_CLOSE_FRACTION(cdf(complement(mybeta22, 0.9)), 0.028000000000000, tol);
// quantile.
BOOST_CHECK_CLOSE_FRACTION(quantile(mybeta22, 0.028), 0.1, tol);
BOOST_CHECK_CLOSE_FRACTION(quantile(complement(mybeta22, 1 - 0.028)), 0.1, tol);
BOOST_CHECK_EQUAL(kurtosis(mybeta11), 3+ kurtosis_excess(mybeta11)); // Check kurtosis_excess = kurtosis - 3;
BOOST_CHECK_CLOSE_FRACTION(variance(mybeta22), 0.05, tol);
BOOST_CHECK_CLOSE_FRACTION(mean(mybeta22), 0.5, tol);
BOOST_CHECK_CLOSE_FRACTION(mode(mybeta22), 0.5, tol);
BOOST_CHECK_CLOSE_FRACTION(median(mybeta22), 0.5, sqrt(tol)); // Theoretical maximum accuracy using Brent is sqrt(epsilon).
BOOST_CHECK_CLOSE_FRACTION(skewness(mybeta22), 0.0, tol);
BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(mybeta22), -144.0 / 168, tol);
BOOST_CHECK_CLOSE_FRACTION(skewness(beta_distribution<>(3, 5)), 0.30983866769659335081434123198259, tol);
BOOST_CHECK_CLOSE_FRACTION(beta_distribution<double>::find_alpha(mean(mybeta22), variance(mybeta22)), mybeta22.alpha(), tol); // mean, variance, probability.
BOOST_CHECK_CLOSE_FRACTION(beta_distribution<double>::find_beta(mean(mybeta22), variance(mybeta22)), mybeta22.beta(), tol);// mean, variance, probability.
BOOST_CHECK_CLOSE_FRACTION(mybeta22.find_alpha(mybeta22.beta(), 0.8, cdf(mybeta22, 0.8)), mybeta22.alpha(), tol);
BOOST_CHECK_CLOSE_FRACTION(mybeta22.find_beta(mybeta22.alpha(), 0.8, cdf(mybeta22, 0.8)), mybeta22.beta(), tol);
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
beta_distribution<real_concept> rcbeta22(2, 2); // Using RealType real_concept.
cout << "numeric_limits<real_concept>::is_specialized " << numeric_limits<real_concept>::is_specialized << endl;
cout << "numeric_limits<real_concept>::digits " << numeric_limits<real_concept>::digits << endl;
cout << "numeric_limits<real_concept>::digits10 " << numeric_limits<real_concept>::digits10 << endl;
cout << "numeric_limits<real_concept>::epsilon " << numeric_limits<real_concept>::epsilon() << endl;
#endif
// (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float.
test_spots(0.0); // Test double.
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L); // Test long double.
#if !BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x582)) && !defined(BOOST_MATH_NO_REAL_CONCEPT_TESTS)
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#endif
#ifdef __STDCPP_FLOAT64_T__
test_spots(0.0F64);
#endif
#ifdef __STDCPP_FLOAT32_T__
test_spots(0.0F32);
#endif
#ifdef __STDCPP_FLOAT16_T__
test_spots(0.0F16);
#endif
} // BOOST_AUTO_TEST_CASE( test_main )
/*
Output is:
-Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_beta_dist.exe"
Running 1 test case...
numeric_limits<real_concept>::is_specialized 0
numeric_limits<real_concept>::digits 0
numeric_limits<real_concept>::digits10 0
numeric_limits<real_concept>::epsilon 0
Boost::math::tools::epsilon = 1.19209e-007
std::numeric_limits::epsilon = 1.19209e-007
epsilon = 1.19209e-007, Tolerance = 0.0119209%.
Boost::math::tools::epsilon = 2.22045e-016
std::numeric_limits::epsilon = 2.22045e-016
epsilon = 2.22045e-016, Tolerance = 2.22045e-011%.
Boost::math::tools::epsilon = 2.22045e-016
std::numeric_limits::epsilon = 2.22045e-016
epsilon = 2.22045e-016, Tolerance = 2.22045e-011%.
Boost::math::tools::epsilon = 2.22045e-016
std::numeric_limits::epsilon = 0
epsilon = 2.22045e-016, Tolerance = 2.22045e-011%.
*** No errors detected
*/