mirror of
https://github.com/boostorg/math.git
synced 2025-05-11 21:33:52 +00:00
171 lines
5.3 KiB
C++
171 lines
5.3 KiB
C++
/*
|
|
* Copyright Nick Thompson, 2021
|
|
* Use, modification and distribution are subject to the
|
|
* Boost Software License, Version 1.0. (See accompanying file
|
|
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
|
|
#include "math_unit_test.hpp"
|
|
#include <random>
|
|
#include <boost/math/tools/quartic_roots.hpp>
|
|
#ifdef BOOST_HAS_FLOAT128
|
|
#include <boost/multiprecision/float128.hpp>
|
|
using boost::multiprecision::float128;
|
|
#endif
|
|
|
|
using boost::math::tools::quartic_roots;
|
|
using std::cbrt;
|
|
using std::sqrt;
|
|
|
|
template<class Real>
|
|
void test_zero_coefficients()
|
|
{
|
|
Real a = 0;
|
|
Real b = 0;
|
|
Real c = 0;
|
|
Real d = 0;
|
|
Real e = 0;
|
|
auto roots = quartic_roots(a,b,c,d,e);
|
|
CHECK_EQUAL(roots[0], Real(0));
|
|
CHECK_EQUAL(roots[1], Real(0));
|
|
CHECK_EQUAL(roots[2], Real(0));
|
|
CHECK_EQUAL(roots[3], Real(0));
|
|
|
|
b = 1;
|
|
e = 1;
|
|
// x^3 + 1 = 0:
|
|
roots = quartic_roots(a,b,c,d,e);
|
|
CHECK_EQUAL(roots[0], Real(-1));
|
|
CHECK_NAN(roots[1]);
|
|
CHECK_NAN(roots[2]);
|
|
CHECK_NAN(roots[3]);
|
|
e = -1;
|
|
// x^3 - 1 = 0:
|
|
roots = quartic_roots(a,b,c,d,e);
|
|
CHECK_EQUAL(roots[0], Real(1));
|
|
CHECK_NAN(roots[1]);
|
|
CHECK_NAN(roots[2]);
|
|
CHECK_NAN(roots[3]);
|
|
|
|
e = -2;
|
|
// x^3 - 2 = 0
|
|
roots = quartic_roots(a,b,c,d,e);
|
|
CHECK_ULP_CLOSE(roots[0], cbrt(Real(2)), 2);
|
|
CHECK_NAN(roots[1]);
|
|
CHECK_NAN(roots[2]);
|
|
CHECK_NAN(roots[3]);
|
|
|
|
// x^4 -1 = 0
|
|
// x = \pm 1:
|
|
roots = quartic_roots<Real>(1, 0, 0, 0, -1);
|
|
CHECK_ULP_CLOSE(Real(-1), roots[0], 3);
|
|
CHECK_ULP_CLOSE(Real(1), roots[1], 3);
|
|
CHECK_NAN(roots[2]);
|
|
CHECK_NAN(roots[3]);
|
|
|
|
// x^4 - 2 = 0 \implies x = \pm sqrt(sqrt(2))
|
|
roots = quartic_roots<Real>(1,0,0,0,-2);
|
|
CHECK_ULP_CLOSE(-sqrt(sqrt(Real(2))), roots[0], 3);
|
|
CHECK_ULP_CLOSE(sqrt(sqrt(Real(2))), roots[1], 3);
|
|
CHECK_NAN(roots[2]);
|
|
CHECK_NAN(roots[3]);
|
|
|
|
|
|
// x(x-1)(x-2)(x-3) = x^4 - 6x^3 + 11x^2 - 6x
|
|
roots = quartic_roots(Real(1), Real(-6), Real(11), Real(-6), Real(0));
|
|
CHECK_ULP_CLOSE(roots[0], Real(0), 2);
|
|
CHECK_ULP_CLOSE(roots[1], Real(1), 2);
|
|
CHECK_ULP_CLOSE(roots[2], Real(2), 2);
|
|
CHECK_ULP_CLOSE(roots[3], Real(3), 2);
|
|
|
|
// (x-1)(x-2)(x-3)(x-4) = x^4 - 10x^3 + 35x^2 - (2*3*4 + 1*3*4 + 1*2*4 + 1*2*3)x + 1*2*3*4
|
|
roots = quartic_roots<Real>(1, -10, 35, -24 - 12 - 8 - 6, 1*2*3*4);
|
|
CHECK_ULP_CLOSE(Real(1), roots[0], 2);
|
|
CHECK_ULP_CLOSE(Real(2), roots[1], 2);
|
|
CHECK_ULP_CLOSE(Real(3), roots[2], 2);
|
|
CHECK_ULP_CLOSE(Real(4), roots[3], 2);
|
|
|
|
// Double root:
|
|
// (x+1)^2(x-2)(x-3) = x^4 - 3x^3 -3x^2 + 7x + 6
|
|
// Note: This test is unstable wrt to perturbations!
|
|
roots = quartic_roots(Real(1), Real(-3), Real(-3), Real(7), Real(6));
|
|
CHECK_ULP_CLOSE(Real(-1), roots[0], 2);
|
|
CHECK_ULP_CLOSE(Real(-1), roots[1], 2);
|
|
CHECK_ULP_CLOSE(Real(2), roots[2], 2);
|
|
CHECK_ULP_CLOSE(Real(3), roots[3], 2);
|
|
|
|
|
|
std::uniform_real_distribution<Real> dis(-2,2);
|
|
std::mt19937 gen(12343);
|
|
// Expected roots
|
|
std::array<Real, 4> r;
|
|
int trials = 10;
|
|
for (int i = 0; i < trials; ++i) {
|
|
// Mathematica:
|
|
// Expand[(x - r0)*(x - r1)*(x - r2)*(x-r3)]
|
|
// r0 r1 r2 r3 - (r0 r1 r2 + r0 r1 r3 + r0 r2 r3 + r1r2r3)x
|
|
// + (r0 r1 + r0 r2 + r0 r3 + r1 r2 + r1r3 + r2 r3)x^2 - (r0 + r1 + r2 + r3) x^3 + x^4
|
|
for (auto & root : r) {
|
|
root = static_cast<Real>(dis(gen));
|
|
}
|
|
std::sort(r.begin(), r.end());
|
|
a = 1;
|
|
b = -(r[0] + r[1] + r[2] + r[3]);
|
|
c = r[0]*r[1] + r[0]*r[2] + r[0]*r[3] + r[1]*r[2] + r[1]*r[3] + r[2]*r[3];
|
|
d = -(r[0]*r[1]*r[2] + r[0]*r[1]*r[3] + r[0]*r[2]*r[3] + r[1]*r[2]*r[3]);
|
|
e = r[0]*r[1]*r[2]*r[3];
|
|
|
|
roots = quartic_roots(a, b, c, d, e);
|
|
// I could check the condition number here, but this is fine right?
|
|
CHECK_ULP_CLOSE(r[0], roots[0], 340);
|
|
CHECK_ULP_CLOSE(r[1], roots[1], 440);
|
|
CHECK_ULP_CLOSE(r[2], roots[2], 220);
|
|
CHECK_ULP_CLOSE(r[3], roots[3], 160);
|
|
}
|
|
}
|
|
|
|
void issue_825() {
|
|
using std::sqrt;
|
|
using std::cbrt;
|
|
double a = 1;
|
|
double b = 1;
|
|
double c = 1;
|
|
double d = 1;
|
|
double e = -4;
|
|
std::array<double, 4> roots = boost::math::tools::quartic_roots<double>(a, b, c, d, e);
|
|
// The real roots are 1 and -1.6506
|
|
// Wolfram alpha: Roots[x^4 + x^3 + x^2 + x == 4]
|
|
double expected = (-2 - cbrt(25/(3*sqrt(6.0) - 7)) + cbrt(5*(3*sqrt(6.0) - 7)))/3;
|
|
CHECK_ULP_CLOSE(expected, roots[0], 5);
|
|
CHECK_ULP_CLOSE(1.0, roots[1], 5);
|
|
CHECK_NAN(roots[2]);
|
|
CHECK_NAN(roots[3]);
|
|
}
|
|
|
|
void issue_1055() {
|
|
double a = 1.0;
|
|
double b = -547.5045576653938;
|
|
double c = 75042.069484941996;
|
|
double d = 273.7522788326969;
|
|
double e = 0.24965766552610175;
|
|
std::array<double, 4> roots = boost::math::tools::quartic_roots<double>(a, b, c, d, e);
|
|
// This is accurate to 1e-9 on every platform *except* cygwin/g++11/c++17:
|
|
CHECK_ABSOLUTE_ERROR(-0.00182420203946279, roots[0], 1e-6);
|
|
CHECK_ABSOLUTE_ERROR(-0.00182370927680797, roots[1], 1e-6);
|
|
CHECK_NAN(roots[2]);
|
|
CHECK_NAN(roots[3]);
|
|
}
|
|
|
|
|
|
int main()
|
|
{
|
|
test_zero_coefficients<float>();
|
|
test_zero_coefficients<double>();
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
test_zero_coefficients<long double>();
|
|
#endif
|
|
issue_825();
|
|
issue_1055();
|
|
return boost::math::test::report_errors();
|
|
}
|