mirror of
https://github.com/boostorg/math.git
synced 2025-05-11 21:33:52 +00:00
* Numerical evaluation of Fourier transform of Daubechies scaling functions. * Update example/calculate_fourier_transform_daubechies_constants.cpp Co-authored-by: Matt Borland <matt@mattborland.com> * Update example/fourier_transform_daubechies_ulp_plot.cpp Co-authored-by: Matt Borland <matt@mattborland.com> * Update include/boost/math/special_functions/fourier_transform_daubechies_scaling.hpp Co-authored-by: Matt Borland <matt@mattborland.com> * Update include/boost/math/special_functions/fourier_transform_daubechies_scaling.hpp Co-authored-by: Matt Borland <matt@mattborland.com> * Rename include file to reflect it implements both the scaling and wavelet. * Add performance to docs. * Update test/math_unit_test.hpp Co-authored-by: Matt Borland <matt@mattborland.com> * Add boost-no-inspect to files with non-ASCII characters. --------- Co-authored-by: Matt Borland <matt@mattborland.com>
61 lines
1.9 KiB
C++
61 lines
1.9 KiB
C++
// boost-no-inspect
|
||
// (C) Copyright Nick Thompson 2023.
|
||
// Use, modification and distribution are subject to the
|
||
// Boost Software License, Version 1.0. (See accompanying file
|
||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
||
#include <boost/math/special_functions/fourier_transform_daubechies.hpp>
|
||
#include <boost/math/tools/ulps_plot.hpp>
|
||
|
||
using boost::math::fourier_transform_daubechies_scaling;
|
||
using boost::math::tools::ulps_plot;
|
||
|
||
template<int p>
|
||
void real_part() {
|
||
auto phi_real_hi_acc = [](double omega) {
|
||
auto z = fourier_transform_daubechies_scaling<double, p>(omega);
|
||
return z.real();
|
||
};
|
||
|
||
auto phi_real_lo_acc = [](float omega) {
|
||
auto z = fourier_transform_daubechies_scaling<float, p>(omega);
|
||
return z.real();
|
||
};
|
||
auto plot = ulps_plot<decltype(phi_real_hi_acc), double, float>(phi_real_hi_acc, float(0.0), float(100.0), 20000);
|
||
plot.ulp_envelope(false);
|
||
plot.add_fn(phi_real_lo_acc);
|
||
plot.clip(100);
|
||
plot.title("Accuracy of 𝔑(𝓕[𝜙](ω)) with " + std::to_string(p) + " vanishing moments.");
|
||
plot.write("real_ft_daub_scaling_" + std::to_string(p) + ".svg");
|
||
|
||
}
|
||
|
||
template<int p>
|
||
void imaginary_part() {
|
||
auto phi_imag_hi_acc = [](double omega) {
|
||
auto z = fourier_transform_daubechies_scaling<double, p>(omega);
|
||
return z.imag();
|
||
};
|
||
|
||
auto phi_imag_lo_acc = [](float omega) {
|
||
auto z = fourier_transform_daubechies_scaling<float, p>(omega);
|
||
return z.imag();
|
||
};
|
||
auto plot = ulps_plot<decltype(phi_imag_hi_acc), double, float>(phi_imag_hi_acc, float(0.0), float(100.0), 20000);
|
||
plot.ulp_envelope(false);
|
||
plot.add_fn(phi_imag_lo_acc);
|
||
plot.clip(100);
|
||
plot.title("Accuracy of 𝕴(𝓕[𝜙](ω)) with " + std::to_string(p) + " vanishing moments.");
|
||
plot.write("imag_ft_daub_scaling_" + std::to_string(p) + ".svg");
|
||
|
||
}
|
||
|
||
|
||
int main() {
|
||
real_part<3>();
|
||
imaginary_part<3>();
|
||
real_part<6>();
|
||
imaginary_part<6>();
|
||
return 0;
|
||
}
|