math/example/calculate_fourier_transform_daubechies_constants.cpp
Nick 7887d43f83
Numerical evaluation of Fourier transform of Daubechies scaling funct… (#921)
* Numerical evaluation of Fourier transform of Daubechies scaling functions.

* Update example/calculate_fourier_transform_daubechies_constants.cpp

Co-authored-by: Matt Borland <matt@mattborland.com>

* Update example/fourier_transform_daubechies_ulp_plot.cpp

Co-authored-by: Matt Borland <matt@mattborland.com>

* Update include/boost/math/special_functions/fourier_transform_daubechies_scaling.hpp

Co-authored-by: Matt Borland <matt@mattborland.com>

* Update include/boost/math/special_functions/fourier_transform_daubechies_scaling.hpp

Co-authored-by: Matt Borland <matt@mattborland.com>

* Rename include file to reflect it implements both the scaling and wavelet.

* Add performance to docs.

* Update test/math_unit_test.hpp

Co-authored-by: Matt Borland <matt@mattborland.com>

* Add boost-no-inspect to files with non-ASCII characters.

---------

Co-authored-by: Matt Borland <matt@mattborland.com>
2023-06-13 08:05:00 -07:00

44 lines
1.6 KiB
C++

// (C) Copyright Nick Thompson 2023.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <utility>
#include <boost/math/filters/daubechies.hpp>
#include <boost/math/tools/polynomial.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/math/constants/constants.hpp>
using std::pow;
using boost::multiprecision::cpp_bin_float_100;
using boost::math::filters::daubechies_scaling_filter;
using boost::math::tools::polynomial;
using boost::math::constants::half;
using boost::math::constants::root_two;
template<typename Real, size_t N>
std::vector<Real> get_constants() {
auto h = daubechies_scaling_filter<cpp_bin_float_100, N>();
auto p = polynomial<cpp_bin_float_100>(h.begin(), h.end());
auto q = polynomial({half<cpp_bin_float_100>(), half<cpp_bin_float_100>()});
q = pow(q, N);
auto l = p/q;
return l.data();
}
template<typename Real>
void print_constants(std::vector<Real> const & l) {
std::cout << std::setprecision(std::numeric_limits<Real>::digits10 -10);
std::cout << "return std::array<Real, " << l.size() << ">{";
for (size_t i = 0; i < l.size() - 1; ++i) {
std::cout << "BOOST_MATH_BIG_CONSTANT(Real, std::numeric_limits<Real>::digits, " << l[i]/root_two<Real>() << "), ";
}
std::cout << "BOOST_MATH_BIG_CONSTANT(Real, std::numeric_limits<Real>::digits, " << l.back()/root_two<Real>() << ")};\n";
}
int main() {
auto constants = get_constants<cpp_bin_float_100, 1>();
print_constants(constants);
}