Constexpr next (#789)

Implements constexpr: nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, and nexttowardl as described in P0533R9
This commit is contained in:
Matt Borland 2022-06-29 08:44:54 -07:00 committed by GitHub
parent 4ffe9bb26c
commit ae0fe3d751
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 565 additions and 2 deletions

View File

@ -9,7 +9,7 @@ LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
[heading Description]
`Constexpr` implementations of the functionality found in `<cmath>`.
`Constexpr` implementations of the functionality found in `<cmath>` and `<cstdlib>` [@https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0533r9.pdf proposed for C++23].
In a `constexpr` context the functions will use an implementation defined in boost.
If the context is not `constexpr` the functionality will be directly from the STL implementation of `<cmath>` used by the compiler.
All functions that take an `Integer` type and return a `double` simply cast the `Integer` argument to a `double`.
@ -187,7 +187,13 @@ All of the following functions require C++17 or greater.
Requires compiling with fma flag
template <typename Arithmetic1, typename Arithmetic2, typename Arithmetic3>
inline constepxr Promoted fma(Arithmetic1 x, Arithmetic2 y, Arithmetic3 z) noexcept
inline constexpr Promoted fma(Arithmetic1 x, Arithmetic2 y, Arithmetic3 z) noexcept
template <typename Arithmetic1, typename Arithmetic2>
constexpr Promoted nextafter(Arithmetic1 from, Arithmetic2 to)
template <typename T>
constexpr Promoted nexttoward(T from, long double to)
} // Namespaces

View File

@ -0,0 +1,456 @@
// (C) Copyright John Maddock 2008 - 2022.
// (C) Copyright Matt Borland 2022.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_CCMATH_NEXT_HPP
#define BOOST_MATH_CCMATH_NEXT_HPP
#include <cmath>
#include <cfloat>
#include <cstdint>
#include <limits>
#include <type_traits>
#include <stdexcept>
#include <boost/math/policies/policy.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/tools/assert.hpp>
#include <boost/math/tools/config.hpp>
#include <boost/math/tools/is_constant_evaluated.hpp>
#include <boost/math/tools/precision.hpp>
#include <boost/math/tools/traits.hpp>
#include <boost/math/tools/promotion.hpp>
#include <boost/math/ccmath/ilogb.hpp>
#include <boost/math/ccmath/ldexp.hpp>
#include <boost/math/ccmath/scalbln.hpp>
#include <boost/math/ccmath/round.hpp>
#include <boost/math/ccmath/fabs.hpp>
#include <boost/math/ccmath/fpclassify.hpp>
#include <boost/math/ccmath/isfinite.hpp>
#include <boost/math/ccmath/fmod.hpp>
namespace boost::math::ccmath {
namespace detail {
// Forward Declarations
template <typename T, typename result_type = tools::promote_args_t<T>>
constexpr result_type float_prior(const T& val);
template <typename T, typename result_type = tools::promote_args_t<T>>
constexpr result_type float_next(const T& val);
template <typename T>
struct has_hidden_guard_digits;
template <>
struct has_hidden_guard_digits<float> : public std::false_type {};
template <>
struct has_hidden_guard_digits<double> : public std::false_type {};
template <>
struct has_hidden_guard_digits<long double> : public std::false_type {};
#ifdef BOOST_HAS_FLOAT128
template <>
struct has_hidden_guard_digits<__float128> : public std::false_type {};
#endif
template <typename T, bool b>
struct has_hidden_guard_digits_10 : public std::false_type {};
template <typename T>
struct has_hidden_guard_digits_10<T, true> : public std::integral_constant<bool, (std::numeric_limits<T>::digits10 != std::numeric_limits<T>::max_digits10)> {};
template <typename T>
struct has_hidden_guard_digits
: public has_hidden_guard_digits_10<T,
std::numeric_limits<T>::is_specialized
&& (std::numeric_limits<T>::radix == 10) >
{};
template <typename T>
constexpr T normalize_value(const T& val, const std::false_type&) { return val; }
template <typename T>
constexpr T normalize_value(const T& val, const std::true_type&)
{
static_assert(std::numeric_limits<T>::is_specialized, "Type T must be specialized.");
static_assert(std::numeric_limits<T>::radix != 2, "Type T must be specialized.");
std::intmax_t shift = static_cast<std::intmax_t>(std::numeric_limits<T>::digits) - static_cast<std::intmax_t>(boost::math::ccmath::ilogb(val)) - 1;
T result = boost::math::ccmath::scalbn(val, shift);
result = boost::math::ccmath::round(result);
return boost::math::ccmath::scalbn(result, -shift);
}
template <typename T>
constexpr T get_smallest_value(const std::true_type&)
{
//
// numeric_limits lies about denorms being present - particularly
// when this can be turned on or off at runtime, as is the case
// when using the SSE2 registers in DAZ or FTZ mode.
//
constexpr T m = std::numeric_limits<T>::denorm_min();
return ((tools::min_value<T>() / 2) == 0) ? tools::min_value<T>() : m;
}
template <typename T>
constexpr T get_smallest_value(const std::false_type&)
{
return tools::min_value<T>();
}
template <typename T>
constexpr T get_smallest_value()
{
return get_smallest_value<T>(std::integral_constant<bool, std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == std::denorm_present)>());
}
template <typename T>
constexpr T calc_min_shifted(const std::true_type&)
{
return boost::math::ccmath::ldexp(tools::min_value<T>(), tools::digits<T>() + 1);
}
template <typename T>
constexpr T calc_min_shifted(const std::false_type&)
{
static_assert(std::numeric_limits<T>::is_specialized, "Type T must be specialized.");
static_assert(std::numeric_limits<T>::radix != 2, "Type T must be specialized.");
return boost::math::ccmath::scalbn(tools::min_value<T>(), std::numeric_limits<T>::digits + 1);
}
template <typename T>
constexpr T get_min_shift_value()
{
const T val = calc_min_shifted<T>(std::integral_constant<bool, !std::numeric_limits<T>::is_specialized || std::numeric_limits<T>::radix == 2>());
return val;
}
template <typename T, bool b = boost::math::tools::detail::has_backend_type_v<T>>
struct exponent_type
{
using type = int;
};
template <typename T>
struct exponent_type<T, true>
{
using type = typename T::backend_type::exponent_type;
};
template <typename T, bool b = boost::math::tools::detail::has_backend_type_v<T>>
using exponent_type_t = typename exponent_type<T>::type;
template <typename T>
constexpr T float_next_imp(const T& val, const std::true_type&)
{
using exponent_type = exponent_type_t<T>;
exponent_type expon {};
int fpclass = boost::math::ccmath::fpclassify(val);
if (fpclass == FP_NAN)
{
return val;
}
else if (fpclass == FP_INFINITE)
{
return val;
}
else if (val <= -tools::max_value<T>())
{
return val;
}
if (val == 0)
{
return detail::get_smallest_value<T>();
}
if ((fpclass != FP_SUBNORMAL) && (fpclass != FP_ZERO)
&& (boost::math::ccmath::fabs(val) < detail::get_min_shift_value<T>())
&& (val != -tools::min_value<T>()))
{
//
// Special case: if the value of the least significant bit is a denorm, and the result
// would not be a denorm, then shift the input, increment, and shift back.
// This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
//
return boost::math::ccmath::ldexp(boost::math::ccmath::detail::float_next(static_cast<T>(boost::math::ccmath::ldexp(val, 2 * tools::digits<T>()))), -2 * tools::digits<T>());
}
if (-0.5f == boost::math::ccmath::frexp(val, &expon))
{
--expon; // reduce exponent when val is a power of two, and negative.
}
T diff = boost::math::ccmath::ldexp(static_cast<T>(1), expon - tools::digits<T>());
if(diff == 0)
{
diff = detail::get_smallest_value<T>();
}
return val + diff;
}
//
// Special version for some base other than 2:
//
template <typename T>
constexpr T float_next_imp(const T& val, const std::false_type&)
{
using exponent_type = exponent_type_t<T>;
static_assert(std::numeric_limits<T>::is_specialized, "Type T must be specialized.");
static_assert(std::numeric_limits<T>::radix != 2, "Type T must be specialized.");
exponent_type expon {};
int fpclass = boost::math::ccmath::fpclassify(val);
if (fpclass == FP_NAN)
{
return val;
}
else if (fpclass == FP_INFINITE)
{
return val;
}
else if (val <= -tools::max_value<T>())
{
return val;
}
if (val == 0)
{
return detail::get_smallest_value<T>();
}
if ((fpclass != FP_SUBNORMAL) && (fpclass != FP_ZERO)
&& (boost::math::ccmath::fabs(val) < detail::get_min_shift_value<T>())
&& (val != -tools::min_value<T>()))
{
//
// Special case: if the value of the least significant bit is a denorm, and the result
// would not be a denorm, then shift the input, increment, and shift back.
// This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
//
return boost::math::ccmath::scalbn(boost::math::ccmath::detail::float_next(static_cast<T>(boost::math::ccmath::scalbn(val, 2 * std::numeric_limits<T>::digits))), -2 * std::numeric_limits<T>::digits);
}
expon = 1 + boost::math::ccmath::ilogb(val);
if(-1 == boost::math::ccmath::scalbn(val, -expon) * std::numeric_limits<T>::radix)
{
--expon; // reduce exponent when val is a power of base, and negative.
}
T diff = boost::math::ccmath::scalbn(static_cast<T>(1), expon - std::numeric_limits<T>::digits);
if(diff == 0)
{
diff = detail::get_smallest_value<T>();
}
return val + diff;
}
template <typename T, typename result_type>
constexpr result_type float_next(const T& val)
{
return detail::float_next_imp(detail::normalize_value(static_cast<result_type>(val), typename detail::has_hidden_guard_digits<result_type>::type()), std::integral_constant<bool, !std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>());
}
template <typename T>
constexpr T float_prior_imp(const T& val, const std::true_type&)
{
using exponent_type = exponent_type_t<T>;
exponent_type expon {};
int fpclass = boost::math::ccmath::fpclassify(val);
if (fpclass == FP_NAN)
{
return val;
}
else if (fpclass == FP_INFINITE)
{
return val;
}
else if (val <= -tools::max_value<T>())
{
return val;
}
if (val == 0)
{
return -detail::get_smallest_value<T>();
}
if ((fpclass != FP_SUBNORMAL) && (fpclass != FP_ZERO)
&& (boost::math::ccmath::fabs(val) < detail::get_min_shift_value<T>())
&& (val != tools::min_value<T>()))
{
//
// Special case: if the value of the least significant bit is a denorm, and the result
// would not be a denorm, then shift the input, increment, and shift back.
// This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
//
return boost::math::ccmath::ldexp(boost::math::ccmath::detail::float_prior(static_cast<T>(boost::math::ccmath::ldexp(val, 2 * tools::digits<T>()))), -2 * tools::digits<T>());
}
if(T remain = boost::math::ccmath::frexp(val, &expon); remain == 0.5f)
{
--expon; // when val is a power of two we must reduce the exponent
}
T diff = boost::math::ccmath::ldexp(static_cast<T>(1), expon - tools::digits<T>());
if(diff == 0)
{
diff = detail::get_smallest_value<T>();
}
return val - diff;
}
//
// Special version for bases other than 2:
//
template <typename T>
constexpr T float_prior_imp(const T& val, const std::false_type&)
{
using exponent_type = exponent_type_t<T>;
static_assert(std::numeric_limits<T>::is_specialized, "Type T must be specialized.");
static_assert(std::numeric_limits<T>::radix != 2, "Type T must be specialized.");
exponent_type expon {};
int fpclass = boost::math::ccmath::fpclassify(val);
if (fpclass == FP_NAN)
{
return val;
}
else if (fpclass == FP_INFINITE)
{
return val;
}
else if (val <= -tools::max_value<T>())
{
return val;
}
if (val == 0)
{
return -detail::get_smallest_value<T>();
}
if ((fpclass != FP_SUBNORMAL) && (fpclass != FP_ZERO)
&& (boost::math::ccmath::fabs(val) < detail::get_min_shift_value<T>())
&& (val != tools::min_value<T>()))
{
//
// Special case: if the value of the least significant bit is a denorm, and the result
// would not be a denorm, then shift the input, increment, and shift back.
// This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
//
return boost::math::ccmath::scalbn(boost::math::ccmath::detail::float_prior(static_cast<T>(boost::math::ccmath::scalbn(val, 2 * std::numeric_limits<T>::digits))), -2 * std::numeric_limits<T>::digits);
}
expon = 1 + boost::math::ccmath::ilogb(val);
if (T remain = boost::math::ccmath::scalbn(val, -expon); remain * std::numeric_limits<T>::radix == 1)
{
--expon; // when val is a power of two we must reduce the exponent
}
T diff = boost::math::ccmath::scalbn(static_cast<T>(1), expon - std::numeric_limits<T>::digits);
if (diff == 0)
{
diff = detail::get_smallest_value<T>();
}
return val - diff;
} // float_prior_imp
template <typename T, typename result_type>
constexpr result_type float_prior(const T& val)
{
return detail::float_prior_imp(detail::normalize_value(static_cast<result_type>(val), typename detail::has_hidden_guard_digits<result_type>::type()), std::integral_constant<bool, !std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>());
}
} // namespace detail
template <typename T, typename U, typename result_type = tools::promote_args_t<T, U>>
constexpr result_type nextafter(const T& val, const U& direction)
{
if (BOOST_MATH_IS_CONSTANT_EVALUATED(val))
{
if (boost::math::ccmath::isnan(val))
{
return val;
}
else if (boost::math::ccmath::isnan(direction))
{
return direction;
}
else if (val < direction)
{
return boost::math::ccmath::detail::float_next(val);
}
else if (val == direction)
{
// IEC 60559 recommends that from is returned whenever from == to. These functions return to instead,
// which makes the behavior around zero consistent: std::nextafter(-0.0, +0.0) returns +0.0 and
// std::nextafter(+0.0, -0.0) returns -0.0.
return direction;
}
return boost::math::ccmath::detail::float_prior(val);
}
else
{
using std::nextafter;
return nextafter(static_cast<result_type>(val), static_cast<result_type>(direction));
}
}
constexpr float nextafterf(float val, float direction)
{
return boost::math::ccmath::nextafter(val, direction);
}
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
constexpr long double nextafterl(long double val, long double direction)
{
return boost::math::ccmath::nextafter(val, direction);
}
template <typename T, typename result_type = tools::promote_args_t<T, long double>, typename return_type = std::conditional_t<std::is_integral_v<T>, double, T>>
constexpr return_type nexttoward(T val, long double direction)
{
if (BOOST_MATH_IS_CONSTANT_EVALUATED(val))
{
return static_cast<return_type>(boost::math::ccmath::nextafter(static_cast<result_type>(val), direction));
}
else
{
using std::nexttoward;
return nexttoward(val, direction);
}
}
constexpr float nexttowardf(float val, long double direction)
{
return boost::math::ccmath::nexttoward(val, direction);
}
constexpr long double nexttowardl(long double val, long double direction)
{
return boost::math::ccmath::nexttoward(val, direction);
}
#endif
} // Namespaces
#endif // BOOST_MATH_SPECIAL_NEXT_HPP

View File

@ -63,6 +63,9 @@ namespace boost
template <> struct promote_arg<long double> { using type = long double; };
template <> struct promote_arg<int> { using type = double; };
template <typename T>
using promote_arg_t = typename promote_arg<T>::type;
template <class T1, class T2>
struct promote_args_2
{ // Promote, if necessary, & pick the wider of the two floating-point types.
@ -108,6 +111,9 @@ namespace boost
template <> struct promote_args_2<double, long double> { using type = long double; };
template <> struct promote_args_2<long double, double> { using type = long double; };
template <typename T, typename U>
using promote_args_2_t = typename promote_args_2<T, U>::type;
template <class T1, class T2=float, class T3=float, class T4=float, class T5=float, class T6=float>
struct promote_args
{
@ -135,6 +141,9 @@ namespace boost
#endif
};
template <class T1, class T2=float, class T3=float, class T4=float, class T5=float, class T6=float>
using promote_args_t = typename promote_args<T1, T2, T3, T4, T5, T6>::type;
//
// This struct is the same as above, but has no static assert on long double usage,
// it should be used only on functions that can be implemented for long double
@ -160,6 +169,9 @@ namespace boost
>::type;
};
template <class T1, class T2=float, class T3=float, class T4=float, class T5=float, class T6=float>
using promote_args_permissive_t = typename promote_args_permissive<T1, T2, T3, T4, T5, T6>::type;
} // namespace tools
} // namespace math
} // namespace boost

View File

@ -53,6 +53,16 @@ BOOST_MATH_HAS_NAMED_TRAIT(has_value_type, value_type)
BOOST_MATH_HAS_NAMED_TRAIT(has_policy_type, policy_type)
BOOST_MATH_HAS_NAMED_TRAIT(has_backend_type, backend_type)
// C++17-esque helpers
template <typename T>
constexpr bool has_value_type_v = has_value_type<T>::value;
template <typename T>
constexpr bool has_policy_type_v = has_policy_type<T>::value;
template <typename T>
constexpr bool has_backend_type_v = has_backend_type<T>::value;
template <typename D>
char cdf(const D& ...);
template <typename D>

View File

@ -159,6 +159,7 @@ test-suite special_fun :
[ run ccmath_isless_test.cpp ../../test/build//boost_unit_test_framework : : : [ requires cxx17_if_constexpr ] ]
[ run ccmath_islessequal_test.cpp ../../test/build//boost_unit_test_framework : : : [ requires cxx17_if_constexpr ] ]
[ run ccmath_isunordered_test.cpp ../../test/build//boost_unit_test_framework : : : [ requires cxx17_if_constexpr ] ]
[ run ccmath_next_test.cpp ../../test/build//boost_unit_test_framework : : : [ requires cxx17_if_constexpr ] ]
[ run ccmath_fma_test.cpp ../../test/build//boost_unit_test_framework : : : [ requires cxx17_if_constexpr ] ]
[ run log1p_expm1_test.cpp test_instances//test_instances pch_light ../../test/build//boost_unit_test_framework ]
[ run powm1_sqrtp1m1_test.cpp test_instances//test_instances pch_light ../../test/build//boost_unit_test_framework ]

62
test/ccmath_next_test.cpp Normal file
View File

@ -0,0 +1,62 @@
// (C) Copyright John Maddock 2008 - 2022.
// (C) Copyright Matt Borland 2022.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <iostream>
#include <iomanip>
#include <limits>
#include <boost/math/tools/precision.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/math/ccmath/next.hpp>
#include <boost/math/ccmath/fpclassify.hpp>
#include "math_unit_test.hpp"
#if !defined(BOOST_MATH_NO_CONSTEXPR_DETECTION) && !defined(BOOST_MATH_USING_BUILTIN_CONSTANT_P)
template <typename T>
void test_next()
{
// NaN handling
static_assert(boost::math::ccmath::isnan(boost::math::ccmath::nextafter(std::numeric_limits<T>::quiet_NaN(), T(0))));
static_assert(boost::math::ccmath::isnan(boost::math::ccmath::nextafter(T(0), std::numeric_limits<T>::quiet_NaN())));
// Handling of 0
static_assert(boost::math::ccmath::nextafter(T(-0.0), T(0.0)) == T(0.0));
static_assert(boost::math::ccmath::nextafter(T(0.0), T(-0.0)) == T(-0.0));
// val = 1
constexpr T test_1 = boost::math::ccmath::nextafter(T(1), T(1.5));
static_assert(test_1 < 1 + 2*std::numeric_limits<T>::epsilon());
static_assert(test_1 > 1 - 2*std::numeric_limits<T>::epsilon());
constexpr T test_1_toward = boost::math::ccmath::nexttoward(T(1), T(1.5));
// For T is long double nextafter is the same as nexttoward
// For T is not long double the answer will be either greater or equal when from > to depending on loss of precision
static_assert(test_1 >= test_1_toward);
// Compare to existing implementation
// test_1 has already passed through static_asserts so we know it was calculated at compile time
// rather than farming out to std at run time.
const T existing_test_1 = boost::math::nextafter(T(1), T(1.5));
CHECK_EQUAL(test_1, existing_test_1);
}
int main(void)
{
test_next<float>();
test_next<double>();
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_next<long double>();
#endif
return boost::math::test::report_errors();
}
#else
int main(void)
{
return 0;
}
#endif

View File

@ -0,0 +1,16 @@
// (C) Copyright Matt Borland 2022.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/ccmath/next.hpp>
#include "test_compile_result.hpp"
void compile_and_link_test()
{
check_result<float>(boost::math::ccmath::nextafter(1.0F, 1.05F));
check_result<double>(boost::math::ccmath::nextafter(1.0, 1.0));
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
check_result<long double>(boost::math::ccmath::nexttoward(1.0L, 1.0L));
#endif
}