iterator/include/boost/iterator_adaptors.hpp
Jeremy Siek 81e3df2b36 changed _MSC_VER to BOOST_MSVC
[SVN r10705]
2001-07-25 19:38:41 +00:00

1190 lines
43 KiB
C++

// (C) Copyright David Abrahams 2000. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
// Revision History:
// 08 Mar 2001 Jeremy Siek
// Added support for optional named template parameters.
// 19 Feb 2001 David Abrahams
// Rolled back reverse_iterator_pair_generator again, as it doesn't
// save typing on a conforming compiler.
// 18 Feb 2001 David Abrahams
// Reinstated reverse_iterator_pair_generator
// 16 Feb 2001 David Abrahams
// Add an implicit conversion operator to operator_arrow_proxy
// as CW and BCC workarounds.
// 11 Feb 2001 David Abrahams
// Switch to use of BOOST_STATIC_CONSTANT where possible
// 11 Feb 2001 Jeremy Siek
// Removed workaround for older MIPSpro compiler. The workaround
// was preventing the proper functionality of the underlying
// iterator being carried forward into the iterator adaptor.
// Also added is_bidirectional enum to avoid EDG compiler error.
// 11 Feb 2001 David Abrahams
// Borland fixes up the wazoo. It finally works!
// 10 Feb 2001 David Abrahams
// Removed traits argument from iterator_adaptor<> and switched to
// explicit trait specification for maximum ease-of-use.
// Added comments to detail::iterator_defaults<>
// Began using detail::iterator_defaults<> unconditionally for code clarity
// Changed uses of `Iterator' to `Base' where non-iterators can be used.
//
// 10 Feb 2001 David Abrahams
// Rolled in supposed Borland fixes from John Maddock, but not seeing any
// improvement yet
// Changed argument order to indirect_ generator, for convenience in the
// case of input iterators (where Reference must be a value type).
// Removed derivation of filter_iterator_policies from
// default_iterator_policies, since the iterator category is likely to be
// reduced (we don't want to allow illegal operations like decrement).
// Support for a simpler filter iterator interface.
//
// 09 Feb 2001 David Abrahams
// Improved interface to indirect_ and reverse_ iterators
// Rolled back Jeremy's new constructor for now; it was causing
// problems with counting_iterator_test
// Attempted fix for Borland
//
// 09 Feb 2001 Jeremy Siek
// Added iterator constructor to allow const adaptor
// from non-const adaptee.
// Changed make_xxx to pass iterators by-value to
// get arrays converted to pointers.
// Removed InnerIterator template parameter from
// indirect_iterator_generator.
// Rearranged parameters for make_filter_iterator
//
// 07 Feb 2001 Jeremy Siek
// Removed some const iterator adaptor generators.
// Added make_xxx_iterator() helper functions for remaining
// iterator adaptors.
// Removed some traits template parameters where they
// where no longer needed thanks to detail::iterator_traits.
// Moved some of the compile-time logic into enums for
// EDG compatibility.
//
// 07 Feb 2001 David Abrahams
// Removed iterator_adaptor_pair_generator and
// reverse_iterator_pair_generator (more such culling to come)
// Improved comments
// Changed all uses of std::iterator_traits as default arguments
// to boost::detail::iterator_traits for improved utility in
// non-generic contexts
// Fixed naming convention of non-template parameter names
//
// 06 Feb 2001 David Abrahams
// Produce operator-> proxy objects for InputIterators
// Added static assertions to do some basic concept checks
// Renamed single-type generators -> xxx_generator
// Renamed const/nonconst iterator generators -> xxx_pair_generator
// Added make_transform_iterator(iter, function)
// The existence of boost::detail::iterator_traits allowed many
// template arguments to be defaulted. Some arguments had to be
// moved to accomplish it.
//
// 04 Feb 2001 MWERKS bug workaround, concept checking for proper
// reference types (David Abrahams)
#ifndef BOOST_ITERATOR_ADAPTOR_DWA053000_HPP_
# define BOOST_ITERATOR_ADAPTOR_DWA053000_HPP_
# include <boost/iterator.hpp>
# include <boost/utility.hpp>
# include <boost/compressed_pair.hpp>
# include <boost/concept_check.hpp>
# include <boost/type.hpp>
# include <boost/static_assert.hpp>
# include <boost/type_traits.hpp>
# include <boost/detail/iterator.hpp>
# include <boost/detail/select_type.hpp>
# include <boost/detail/named_template_params.hpp>
// I was having some problems with VC6. I couldn't tell whether our hack for
// stock GCC was causing problems so I needed an easy way to turn it on and
// off. Now we can test the hack with various compilers and still have an
// "out" if it doesn't work. -dwa 7/31/00
# if __GNUC__ == 2 && __GNUC_MINOR__ <= 96 && !defined(__STL_USE_NAMESPACES)
# define BOOST_RELOPS_AMBIGUITY_BUG 1
# endif
namespace boost {
//============================================================================
// Concept checking classes that express the requirements for iterator
// policies and adapted types. These classes are mostly for
// documentation purposes, and are not used in this header file. They
// merely provide a more succinct statement of what is expected of the
// iterator policies.
template <class Policies, class Adapted, class Traits>
struct TrivialIteratorPoliciesConcept
{
typedef typename Traits::reference Reference;
void constraints() {
function_requires< AssignableConcept<Policies> >();
function_requires< DefaultConstructibleConcept<Policies> >();
function_requires< AssignableConcept<Adapted> >();
function_requires< DefaultConstructibleConcept<Adapted> >();
const_constraints();
}
void const_constraints() const {
Reference r = p.dereference(type<Reference>(), x);
b = p.equal(x, x);
ignore_unused_variable_warning(r);
}
Policies p;
Adapted x;
mutable bool b;
};
// Add InputIteratorPoliciesConcept?
template <class Policies, class Adapted, class Traits>
struct ForwardIteratorPoliciesConcept
{
typedef typename Traits::iterator_category iterator_category;
void constraints() {
function_requires<
TrivialIteratorPoliciesConcept<Policies, Adapted, Traits>
>();
p.increment(x);
std::forward_iterator_tag t = iterator_category();
ignore_unused_variable_warning(t);
}
Policies p;
Adapted x;
iterator_category category;
};
template <class Policies, class Adapted, class Traits>
struct BidirectionalIteratorPoliciesConcept
{
typedef typename Traits::iterator_category iterator_category;
void constraints() {
function_requires<
ForwardIteratorPoliciesConcept<Policies, Adapted, Traits>
>();
p.decrement(x);
std::bidirectional_iterator_tag t = iterator_category();
ignore_unused_variable_warning(t);
}
Policies p;
Adapted x;
};
template <class Policies, class Adapted, class Traits>
struct RandomAccessIteratorPoliciesConcept
{
typedef typename Traits::difference_type DifferenceType;
typedef typename Traits::iterator_category iterator_category;
void constraints() {
function_requires<
BidirectionalIteratorPoliciesConcept<Policies, Adapted, Traits>
>();
p.advance(x, n);
std::random_access_iterator_tag t = iterator_category();
const_constraints();
ignore_unused_variable_warning(t);
}
void const_constraints() const {
n = p.distance(type<DifferenceType>(), x, x);
b = p.less(x, x);
}
Policies p;
Adapted x;
mutable DifferenceType n;
mutable bool b;
};
//============================================================================
// Default policies for iterator adaptors. You can use this as a base
// class if you want to customize particular policies.
struct default_iterator_policies
{
// Some of these members were defined static, but Borland got confused
// and thought they were non-const. Also, Sun C++ does not like static
// function templates.
template <class Base>
void initialize(Base&)
{ }
// The "type<Reference>" parameter is a portable mechanism for
// the iterator_adaptor class to tell this member function what
// the Reference type is, which is needed for the return type.
template <class Reference, class Base>
Reference dereference(type<Reference>, const Base& x) const
{ return *x; }
template <class Base>
void increment(Base& x)
{ ++x; }
template <class Base>
void decrement(Base& x)
{ --x; }
template <class Base, class DifferenceType>
void advance(Base& x, DifferenceType n)
{ x += n; }
template <class Difference, class Iterator1, class Iterator2>
Difference distance(type<Difference>, const Iterator1& x,
const Iterator2& y) const
{ return y - x; }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x == y; }
template <class Iterator1, class Iterator2>
bool less(const Iterator1& x, const Iterator2& y) const
{ return x < y; }
};
// putting the comparisons in a base class avoids the g++
// ambiguous overload bug due to the relops operators
#ifdef BOOST_RELOPS_AMBIGUITY_BUG
template <class Derived, class Base>
struct iterator_comparisons : Base { };
template <class D1, class D2, class Base1, class Base2>
inline bool operator==(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().equal(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator!=(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return !x.policies().equal(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator<(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().less(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator>(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().less(y.iter(), x.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator>=(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return !x.policies().less(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator<=(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return !x.policies().less(y.iter(), x.iter());
}
#endif
namespace detail {
// operator->() needs special support for input iterators to strictly meet the
// standard's requirements. If *i is not a reference type, we must still
// produce a (constant) lvalue to which a pointer can be formed. We do that by
// returning an instantiation of this special proxy class template.
template <class T>
struct operator_arrow_proxy
{
operator_arrow_proxy(const T& x) : m_value(x) {}
const T* operator->() const { return &m_value; }
// This function is needed for MWCW and BCC, which won't call operator->
// again automatically per 13.3.1.2 para 8
operator const T*() const { return &m_value; }
T m_value;
};
template <class Iter>
inline operator_arrow_proxy<typename Iter::value_type>
operator_arrow(const Iter& i, std::input_iterator_tag) {
return operator_arrow_proxy<
#ifndef BOOST_MSVC
typename
#endif
Iter::value_type>(*i);
}
template <class Iter>
inline typename Iter::pointer
operator_arrow(const Iter& i, std::forward_iterator_tag) {
return &(*i);
}
template <class Category, class Value, class Pointer>
struct operator_arrow_result_generator
{
typedef operator_arrow_proxy<Value> proxy;
// Borland chokes unless it's an actual enum (!)
enum { is_input_iter
= (boost::is_convertible<Category*,std::input_iterator_tag*>::value
& !boost::is_convertible<Category*,std::forward_iterator_tag*>::value)
};
typedef typename boost::detail::if_true<(is_input_iter)>::template
then<
proxy,
// else
Pointer
>::type type;
};
# ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// Select default pointer and reference types for adapted non-pointer
// iterators based on the iterator and the value_type. Poor man's partial
// specialization is in use here.
template <bool is_pointer>
struct iterator_defaults_select
{
template <class Iterator,class Value>
struct traits
{
// The assumption is that iterator_traits can deduce these types
// properly as long as the iterator is not a pointer.
typedef typename boost::detail::iterator_traits<Iterator>::pointer pointer;
typedef typename boost::detail::iterator_traits<Iterator>::reference reference;
};
};
// Select default pointer and reference types for adapted pointer iterators
// given a (possibly-const) value_type.
template <>
struct iterator_defaults_select<true>
{
template <class Iterator,class Value>
struct traits
{
typedef Value* pointer;
typedef Value& reference;
};
};
// Consolidate selection of the default pointer and reference type
template <class Iterator,class Value>
struct iterator_defaults
{
BOOST_STATIC_CONSTANT(bool, is_ptr = boost::is_pointer<Iterator>::value);
typedef iterator_defaults_select<is_ptr>::template traits<Iterator,Value> traits;
typedef typename traits::pointer pointer;
typedef typename traits::reference reference;
};
# else
template <class Iterator,class Value>
struct iterator_defaults : iterator_traits<Iterator>
{
// Trying to factor the common is_same expression into an enum or a
// static bool constant confused Borland.
typedef typename if_true<(
::boost::is_same<Value,typename iterator_traits<Iterator>::value_type>::value
)>::template then<
typename iterator_traits<Iterator>::pointer,
Value*
>::type pointer;
typedef typename if_true<(
::boost::is_same<Value,typename iterator_traits<Iterator>::value_type>::value
)>::template then<
typename iterator_traits<Iterator>::reference,
Value&
>::type reference;
};
# endif
//===========================================================================
// Specify the defaults for iterator_adaptor's template parameters
struct default_value_type {
template <class Base, class Traits>
struct bind {
typedef typename boost::detail::iterator_traits<Base>::value_type type;
};
};
struct default_difference_type {
template <class Base, class Traits>
struct bind {
typedef typename boost::detail::iterator_traits<Base>::difference_type type;
};
};
struct default_iterator_category {
template <class Base, class Traits>
struct bind {
typedef typename boost::detail::iterator_traits<Base>::iterator_category type;
};
};
struct default_pointer {
template <class Base, class Traits>
struct bind {
typedef typename Traits::value_type Value;
typedef typename boost::detail::iterator_defaults<Base,Value>::pointer
type;
};
};
struct default_reference {
template <class Base, class Traits>
struct bind {
typedef typename Traits::value_type Value;
typedef typename boost::detail::iterator_defaults<Base,Value>::reference
type;
};
};
//===========================================================================
// Support for named template parameters
#if !defined(__BORLANDC__)
// Borland C++ thinks the nested recursive inheritance here is illegal.
template <class V = default_argument,
class R = default_argument,
class P = default_argument,
class C = default_argument,
class D = default_argument>
struct iter_traits_gen : public named_template_param_base {
template <class T>
struct value_type : public iter_traits_gen<T,R,P,C,D> { };
template <class T>
struct reference : public iter_traits_gen<V,T,P,C,D> { };
template <class T>
struct pointer : public iter_traits_gen<V,R,T,C,D> { };
template <class T>
struct iterator_category : public iter_traits_gen<V,R,P,T,D>{};
template <class T>
struct difference_type : public iter_traits_gen<V,R,P,C,T> { };
typedef boost::iterator<C, V, D, P, R> traits;
};
#endif
BOOST_NAMED_TEMPLATE_PARAM(value_type);
BOOST_NAMED_TEMPLATE_PARAM(reference);
BOOST_NAMED_TEMPLATE_PARAM(pointer);
BOOST_NAMED_TEMPLATE_PARAM(iterator_category);
BOOST_NAMED_TEMPLATE_PARAM(difference_type);
template <class Base, class Value, class Reference, class Pointer,
class Category, class Distance>
class iterator_adaptor_traits_gen
{
typedef boost::iterator<Category, Value, Distance, Pointer, Reference>
Traits0;
typedef typename get_value_type<Base,
typename boost::remove_const<Value>::type, Traits0
>::type value_type;
typedef typename get_difference_type<Base, Distance, Traits0>::type
difference_type;
typedef typename get_iterator_category<Base, Category, Traits0>::type
iterator_category;
typedef boost::iterator<iterator_category, value_type, difference_type,
Pointer, Reference> Traits1;
typedef typename get_pointer<Base, Pointer, Traits1>::type pointer;
typedef typename get_reference<Base, Reference, Traits1>::type reference;
public:
typedef boost::iterator<iterator_category, value_type, difference_type,
pointer, reference> type;
};
} // namespace detail
#if !defined(__BORLANDC__)
struct iterator_traits_generator
: public detail::iter_traits_gen<> { };
#endif
// This macro definition is only temporary in this file
# if !defined(BOOST_MSVC)
# define BOOST_ARG_DEPENDENT_TYPENAME typename
# else
# define BOOST_ARG_DEPENDENT_TYPENAME
# endif
template <class T> struct undefined;
//============================================================================
//iterator_adaptor - Adapts a generic piece of data as an iterator. Adaptation
// is especially easy if the data being adapted is itself an iterator
//
// Base - the base (usually iterator) type being wrapped.
//
// Policies - a set of policies determining how the resulting iterator
// works.
//
// Value - if supplied, the value_type of the resulting iterator, unless
// const. If const, a conforming compiler strips constness for the
// value_type. If not supplied, iterator_traits<Base>::value_type is used
//
// Reference - the reference type of the resulting iterator, and in
// particular, the result type of operator*(). If not supplied but
// Value is supplied, Value& is used. Otherwise
// iterator_traits<Base>::reference is used.
//
// Pointer - the pointer type of the resulting iterator, and in
// particular, the result type of operator->(). If not
// supplied but Value is supplied, Value* is used. Otherwise
// iterator_traits<Base>::pointer is used.
//
// Category - the iterator_category of the resulting iterator. If not
// supplied, iterator_traits<Base>::iterator_category is used.
//
// Distance - the difference_type of the resulting iterator. If not
// supplied, iterator_traits<Base>::difference_type is used.
template <class Base, class Policies,
class Value = detail::default_argument,
class Reference = BOOST_ARG_DEPENDENT_TYPENAME detail::choose_default_argument<Value>::type,
class Pointer = BOOST_ARG_DEPENDENT_TYPENAME detail::choose_default_argument<Reference>::type,
class Category = BOOST_ARG_DEPENDENT_TYPENAME detail::choose_default_argument<Pointer>::type,
class Distance = BOOST_ARG_DEPENDENT_TYPENAME detail::choose_default_argument<Category>::type
>
struct iterator_adaptor :
#ifdef BOOST_RELOPS_AMBIGUITY_BUG
iterator_comparisons<
iterator_adaptor<Base,Policies,Value,Reference,Pointer,Category,Distance>,
typename detail::iterator_adaptor_traits_gen<Base,Value,Reference,Pointer,Category, Distance>::type
>
#else
detail::iterator_adaptor_traits_gen<Base,Value,Reference,Pointer,Category,Distance>::type
#endif
{
typedef iterator_adaptor<Base,Policies,Value,Reference,Pointer,Category,Distance> self;
public:
typedef typename detail::iterator_adaptor_traits_gen<Base,Value,Reference,Pointer,Category,Distance>::type Traits;
typedef typename Traits::difference_type difference_type;
typedef typename Traits::value_type value_type;
typedef typename Traits::pointer pointer;
typedef typename Traits::reference reference;
typedef typename Traits::iterator_category iterator_category;
typedef Base base_type;
typedef Policies policies_type;
private:
BOOST_STATIC_CONSTANT(bool, is_input_or_output_iter
= (boost::is_convertible<iterator_category*,std::input_iterator_tag*>::value
|| boost::is_convertible<iterator_category*,std::output_iterator_tag*>::value));
// Iterators should satisfy one of the known categories
BOOST_STATIC_ASSERT(is_input_or_output_iter);
// Iterators >= ForwardIterator must produce real references
// as required by the C++ standard requirements in Table 74.
BOOST_STATIC_CONSTANT(bool, forward_iter_with_real_reference =
(!boost::is_convertible<iterator_category*,std::forward_iterator_tag*>::value
|| boost::is_same<reference,value_type&>::value
|| boost::is_same<reference,const value_type&>::value));
#if !defined(BOOST_MSVC)
// This check gives incorrect results in iter_traits_gen_test.cpp
BOOST_STATIC_ASSERT(forward_iter_with_real_reference);
#endif
public:
iterator_adaptor() { }
explicit
iterator_adaptor(const Base& it, const Policies& p = Policies())
: m_iter_p(it, p) {
policies().initialize(iter());
}
template <class Iter2, class Value2, class Pointer2, class Reference2>
iterator_adaptor (
const iterator_adaptor<Iter2,Policies,Value2,Reference2,Pointer2,Category,Distance>& src)
: m_iter_p(src.iter(), src.policies())
{
policies().initialize(iter());
}
#ifdef BOOST_MSVC
// This is required to prevent a bug in how VC++ generates
// the assignment operator for compressed_pair.
iterator_adaptor& operator= (const iterator_adaptor& x) {
m_iter_p = x.m_iter_p;
return *this;
}
#endif
reference operator*() const {
return policies().dereference(type<reference>(), iter());
}
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning( disable : 4284 )
#endif
typename boost::detail::operator_arrow_result_generator<iterator_category,value_type,pointer>::type
operator->() const
{ return detail::operator_arrow(*this, iterator_category()); }
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
value_type operator[](difference_type n) const
{ return *(*this + n); }
self& operator++() {
#ifdef __MWERKS__
// Odd bug, MWERKS couldn't deduce the type for the member template
// Workaround by explicitly specifying the type.
policies().increment<Base>(iter());
#else
policies().increment(iter());
#endif
return *this;
}
self operator++(int) { self tmp(*this); ++*this; return tmp; }
self& operator--() {
policies().decrement(iter());
return *this;
}
self operator--(int) { self tmp(*this); --*this; return tmp; }
self& operator+=(difference_type n) {
policies().advance(iter(), n);
return *this;
}
self& operator-=(difference_type n) {
policies().advance(iter(), -n);
return *this;
}
base_type base() const { return m_iter_p.first(); }
// Moved from global scope to avoid ambiguity with the operator-() which
// subtracts iterators from one another.
self operator-(difference_type x) const
{ self result(*this); return result -= x; }
private:
compressed_pair<Base,Policies> m_iter_p;
public: // implementation details (too many compilers have trouble when these are private).
Policies& policies() { return m_iter_p.second(); }
const Policies& policies() const { return m_iter_p.second(); }
Base& iter() { return m_iter_p.first(); }
const Base& iter() const { return m_iter_p.first(); }
};
template <class Base, class Policies, class Value, class Reference, class Pointer,
class Category, class Distance1, class Distance2>
iterator_adaptor<Base,Policies,Value,Reference,Pointer,Category,Distance1>
operator+(
iterator_adaptor<Base,Policies,Value,Reference,Pointer,Category,Distance1> p,
Distance2 x)
{
return p += x;
}
template <class Base, class Policies, class Value, class Reference, class Pointer,
class Category, class Distance1, class Distance2>
iterator_adaptor<Base,Policies,Value,Reference,Pointer,Category,Distance1>
operator+(
Distance2 x,
iterator_adaptor<Base,Policies,Value,Reference,Pointer,Category,Distance1> p)
{
return p += x;
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2, class Category,
class Distance>
typename iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>::difference_type
operator-(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
typedef typename iterator_adaptor<Iterator1,Policies,Value1,Reference1,
Pointer1,Category,Distance>::difference_type difference_type;
return x.policies().distance(type<difference_type>(), y.iter(), x.iter());
}
#ifndef BOOST_RELOPS_AMBIGUITY_BUG
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2,
class Category, class Distance>
inline bool
operator==(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().equal(x.iter(), y.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2,
class Category, class Distance>
inline bool
operator<(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().less(x.iter(), y.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2,
class Category, class Distance>
inline bool
operator>(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().less(y.iter(), x.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2,
class Category, class Distance>
inline bool
operator>=(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return !x.policies().less(x.iter(), y.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2,
class Category, class Distance>
inline bool
operator<=(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return !x.policies().less(y.iter(), x.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2,
class Category, class Distance>
inline bool
operator!=(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return !x.policies().equal(x.iter(), y.iter());
}
#endif
//=============================================================================
// Transform Iterator Adaptor
//
// Upon deference, apply some unary function object and return the
// result by value.
template <class AdaptableUnaryFunction>
struct transform_iterator_policies : public default_iterator_policies
{
transform_iterator_policies() { }
transform_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& iter) const
{ return m_f(*iter); }
AdaptableUnaryFunction m_f;
};
template <class AdaptableUnaryFunction, class Iterator>
class transform_iterator_generator
{
typedef typename AdaptableUnaryFunction::result_type value_type;
public:
typedef iterator_adaptor<Iterator,
transform_iterator_policies<AdaptableUnaryFunction>,
value_type, value_type, value_type*, std::input_iterator_tag>
type;
};
template <class AdaptableUnaryFunction, class Iterator>
inline typename transform_iterator_generator<AdaptableUnaryFunction,Iterator>::type
make_transform_iterator(
Iterator base,
const AdaptableUnaryFunction& f = AdaptableUnaryFunction())
{
typedef typename transform_iterator_generator<AdaptableUnaryFunction,Iterator>::type result_t;
return result_t(base, f);
}
//=============================================================================
// Indirect Iterators Adaptor
// Given a pointer to pointers (or iterator to iterators),
// apply a double dereference inside operator*().
//
// We use the term "outer" to refer to the first level iterator type
// and "inner" to refer to the second level iterator type. For
// example, given T**, T* is the inner iterator type and T** is the
// outer iterator type. Also, const T* would be the const inner
// iterator.
// We tried to implement this with transform_iterator, but that required
// using boost::remove_ref, which is not compiler portable.
struct indirect_iterator_policies : public default_iterator_policies
{
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& x) const
{ return **x; }
};
namespace detail {
# if !defined(BOOST_MSVC) // stragely instantiated even when unused! Maybe try a recursive template someday ;-)
template <class T>
struct value_type_of_value_type {
typedef typename boost::detail::iterator_traits<T>::value_type outer_value;
typedef typename boost::detail::iterator_traits<outer_value>::value_type type;
};
# endif
}
template <class OuterIterator, // Mutable or Immutable, does not matter
class Value
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::value_type_of_value_type<OuterIterator>::type
#endif
, class Reference = Value&
, class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<OuterIterator>::iterator_category
, class Pointer = Value*
>
struct indirect_iterator_generator
{
typedef iterator_adaptor<OuterIterator,
indirect_iterator_policies,Value,Reference,Pointer,Category> type;
};
template <class OuterIterator, // Mutable or Immutable, does not matter
class Value
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::value_type_of_value_type<OuterIterator>::type
#endif
, class Reference = Value&
, class ConstReference = const Value&
, class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<OuterIterator>::iterator_category
, class Pointer = Value*
, class ConstPointer = const Value*
>
struct indirect_iterator_pair_generator
{
typedef typename indirect_iterator_generator<OuterIterator,
Value, Reference,Category,Pointer>::type iterator;
typedef typename indirect_iterator_generator<OuterIterator,
Value, ConstReference,Category,ConstPointer>::type const_iterator;
};
#ifndef BOOST_MSVC
template <class OuterIterator>
inline typename indirect_iterator_generator<OuterIterator>::type
make_indirect_iterator(OuterIterator base)
{
typedef typename indirect_iterator_generator
<OuterIterator>::type result_t;
return result_t(base);
}
#endif
//=============================================================================
// Reverse Iterators Adaptor
struct reverse_iterator_policies : public default_iterator_policies
{
template <class Reference, class BidirectionalIterator>
Reference dereference(type<Reference>, const BidirectionalIterator& x) const
{ return *boost::prior(x); }
template <class BidirectionalIterator>
void increment(BidirectionalIterator& x) const
{ --x; }
template <class BidirectionalIterator>
void decrement(BidirectionalIterator& x) const
{ ++x; }
template <class BidirectionalIterator, class DifferenceType>
void advance(BidirectionalIterator& x, DifferenceType n) const
{ x -= n; }
template <class Difference, class Iterator1, class Iterator2>
Difference distance(type<Difference>, const Iterator1& x,
const Iterator2& y) const
{ return x - y; }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x == y; }
template <class Iterator1, class Iterator2>
bool less(const Iterator1& x, const Iterator2& y) const
{ return y < x; }
};
template <class BidirectionalIterator,
class Value = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<BidirectionalIterator>::value_type,
class Reference = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_defaults<BidirectionalIterator,Value>::reference,
class Pointer = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_defaults<BidirectionalIterator,Value>::pointer,
class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<BidirectionalIterator>::iterator_category,
class Distance = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<BidirectionalIterator>::difference_type
>
struct reverse_iterator_generator
{
typedef iterator_adaptor<BidirectionalIterator,reverse_iterator_policies,
Value,Reference,Pointer,Category,Distance> type;
};
template <class BidirectionalIterator>
inline typename reverse_iterator_generator<BidirectionalIterator>::type
make_reverse_iterator(BidirectionalIterator base)
{
typedef typename reverse_iterator_generator<BidirectionalIterator>::type result_t;
return result_t(base);
}
//=============================================================================
// Projection Iterators Adaptor
template <class AdaptableUnaryFunction>
struct projection_iterator_policies : public default_iterator_policies
{
projection_iterator_policies() { }
projection_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template <class Reference, class Iterator>
Reference dereference (type<Reference>, Iterator const& iter) const {
return m_f(*iter);
}
AdaptableUnaryFunction m_f;
};
template <class AdaptableUnaryFunction, class Iterator>
class projection_iterator_generator {
typedef typename AdaptableUnaryFunction::result_type value_type;
typedef projection_iterator_policies<AdaptableUnaryFunction> policies;
public:
typedef iterator_adaptor<Iterator,policies,value_type> type;
};
template <class AdaptableUnaryFunction, class Iterator>
class const_projection_iterator_generator {
typedef typename AdaptableUnaryFunction::result_type value_type;
typedef projection_iterator_policies<AdaptableUnaryFunction> policies;
public:
typedef iterator_adaptor<Iterator,policies,value_type,const value_type&,const value_type*> type;
};
template <class AdaptableUnaryFunction, class Iterator, class ConstIterator>
struct projection_iterator_pair_generator {
typedef typename projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type iterator;
typedef typename const_projection_iterator_generator<AdaptableUnaryFunction, ConstIterator>::type const_iterator;
};
template <class AdaptableUnaryFunction, class Iterator>
inline typename projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type
make_projection_iterator(
Iterator iter,
const AdaptableUnaryFunction& f = AdaptableUnaryFunction())
{
typedef typename projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type result_t;
return result_t(iter, f);
}
template <class AdaptableUnaryFunction, class Iterator>
inline typename const_projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type
make_const_projection_iterator(
Iterator iter,
const AdaptableUnaryFunction& f = AdaptableUnaryFunction())
{
typedef typename const_projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type result_t;
return result_t(iter, f);
}
//=============================================================================
// Filter Iterator Adaptor
template <class Predicate, class Iterator>
class filter_iterator_policies
{
public:
filter_iterator_policies() { }
filter_iterator_policies(const Predicate& p, const Iterator& end)
: m_predicate(p), m_end(end) { }
void initialize(Iterator& x) {
satisfy_predicate(x);
}
// The Iter template argument is neccessary for compatibility with a MWCW
// bug workaround
template <class Iter>
void increment(Iter& x) {
++x;
satisfy_predicate(x);
}
template <class Reference, class Iter>
Reference dereference(type<Reference>, const Iter& x) const
{ return *x; }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x == y; }
private:
void satisfy_predicate(Iterator& iter);
Predicate m_predicate;
Iterator m_end;
};
template <class Predicate, class Iterator>
void filter_iterator_policies<Predicate,Iterator>
::satisfy_predicate(Iterator& iter)
{
while (m_end != iter && !m_predicate(*iter))
++iter;
}
namespace detail {
// A type generator returning Base if T is derived from Base, and T otherwise.
template <class Base, class T>
struct reduce_to_base_class
{
typedef typename if_true<(
::boost::is_convertible<T*,Base*>::value
)>::template then<Base,T>::type type;
};
// "Steps down" the category of iterators below bidirectional so the category
// can be used with filter iterators.
template <class Iterator>
struct non_bidirectional_category
{
# if !defined(__MWERKS__) || __MWERKS__ > 0x4000
typedef typename reduce_to_base_class<
std::forward_iterator_tag,
typename iterator_traits<Iterator>::iterator_category
>::type type;
private:
// For some reason, putting this assertion in filter_iterator_generator fails inexplicably under MSVC
BOOST_STATIC_CONSTANT(
bool, is_bidirectional
= (!boost::is_convertible<type*, std::bidirectional_iterator_tag*>::value));
BOOST_STATIC_ASSERT(is_bidirectional);
# else
// is_convertible doesn't work with MWERKS
typedef typename iterator_traits<Iterator>::iterator_category input_category;
public:
typedef typename if_true<(
boost::is_same<input_category,std::random_access_iterator_tag>::value
|| boost::is_same<input_category,std::bidirectional_iterator_tag>::value
)>::template then<
std::forward_iterator_tag,
input_category
>::type type;
# endif
};
}
template <class Predicate, class Iterator,
class Value = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<Iterator>::value_type,
class Reference = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_defaults<Iterator,Value>::reference,
class Pointer = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_defaults<Iterator,Value>::pointer,
class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::non_bidirectional_category<Iterator>::type,
class Distance = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<Iterator>::difference_type
>
class filter_iterator_generator {
BOOST_STATIC_CONSTANT(bool, is_bidirectional
= (boost::is_convertible<Category*, std::bidirectional_iterator_tag*>::value));
#ifndef BOOST_MSVC // I don't have any idea why this occurs, but it doesn't seem to hurt too badly.
BOOST_STATIC_ASSERT(!is_bidirectional);
#endif
typedef filter_iterator_policies<Predicate,Iterator> policies_type;
public:
typedef iterator_adaptor<Iterator,policies_type,
Value,Reference,Pointer,Category,Distance> type;
};
// This keeps MSVC happy; it doesn't like to deduce default template arguments
// for template function return types
namespace detail {
template <class Predicate, class Iterator>
struct filter_generator {
typedef typename boost::filter_iterator_generator<Predicate,Iterator>::type type;
};
}
template <class Predicate, class Iterator>
inline typename detail::filter_generator<Predicate, Iterator>::type
make_filter_iterator(Iterator first, Iterator last, const Predicate& p = Predicate())
{
typedef filter_iterator_generator<Predicate, Iterator> Gen;
typedef filter_iterator_policies<Predicate,Iterator> policies_t;
typedef typename Gen::type result_t;
return result_t(first, policies_t(p, last));
}
} // namespace boost
# undef BOOST_ARG_DEPENDENT_TYPENAME
#endif