iterator/include/boost/iterator_adaptors.hpp
Dave Abrahams 6eeeb23332 Removed iterator_adaptor_pair_generator and
reverse_iterator_pair_generator (more such culling to come)

Improved comments

Changed all uses of std::iterator_traits as default arguments
to boost::detail::iterator_traits for improved utility in
non-generic contexts

Fixed naming convention of non-template parameter names


[SVN r9003]
2001-02-07 17:22:16 +00:00

844 lines
29 KiB
C++

// (C) Copyright David Abrahams 2000. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
// Revision History:
// 07 Feb 2001
// Removed iterator_adaptor_pair_generator and
// reverse_iterator_pair_generator (more such culling to come)
//
// Improved comments
//
// Changed all uses of std::iterator_traits as default arguments
// to boost::detail::iterator_traits for improved utility in
// non-generic contexts
//
// Fixed naming convention of non-template parameter names
//
// 06 Feb 2001
// Produce operator-> proxy objects for InputIterators
//
// Added static assertions to do some basic concept checks
//
// Renamed single-type generators -> xxx_generator
// Renamed const/nonconst iterator generators -> xxx_pair_generator
//
// Added make_transform_iterator(iter, function)
//
// The existence of boost::detail::iterator_traits allowed many
// template arguments to be defaulted. Some arguments had to be
// moved to accomplish it.
//
// 04 Feb 2001 MWERKS bug workaround, concept checking for proper
// reference types (David Abrahams)
#ifndef BOOST_ITERATOR_ADAPTOR_DWA053000_HPP_
# define BOOST_ITERATOR_ADAPTOR_DWA053000_HPP_
# include <boost/iterator.hpp>
# include <boost/utility.hpp>
# include <boost/compressed_pair.hpp>
# include <boost/concept_check.hpp>
# include <boost/type.hpp>
# include <boost/static_assert.hpp>
# include <boost/type_traits.hpp>
# include <boost/detail/iterator.hpp>
# include <boost/detail/select_type.hpp>
// I was having some problems with VC6. I couldn't tell whether our hack for
// stock GCC was causing problems so I needed an easy way to turn it on and
// off. Now we can test the hack with various compilers and still have an
// "out" if it doesn't work. -dwa 7/31/00
# if __GNUC__ == 2 && __GNUC_MINOR__ <= 96 && !defined(__STL_USE_NAMESPACES)
# define BOOST_RELOPS_AMBIGUITY_BUG 1
# endif
namespace boost {
//============================================================================
// Concept checking classes that express the requirements for iterator
// policies and adapted types. These classes are mostly for
// documentation purposes, and are not used in this header file. They
// merely provide a more succinct statement of what is expected of the
// iterator policies.
template <class Policies, class Adapted, class Traits>
struct TrivialIteratorPoliciesConcept
{
typedef typename Traits::reference Reference;
void constraints() {
function_requires< AssignableConcept<Policies> >();
function_requires< DefaultConstructibleConcept<Policies> >();
function_requires< AssignableConcept<Adapted> >();
function_requires< DefaultConstructibleConcept<Adapted> >();
const_constraints();
}
void const_constraints() const {
Reference r = p.dereference(type<Reference>(), x);
b = p.equal(x, x);
ignore_unused_variable_warning(r);
}
Policies p;
Adapted x;
mutable bool b;
};
// Add InputIteratorPoliciesConcept?
template <class Policies, class Adapted, class Traits>
struct ForwardIteratorPoliciesConcept
{
typedef typename Traits::iterator_category iterator_category;
void constraints() {
function_requires<
TrivialIteratorPoliciesConcept<Policies, Adapted, Traits>
>();
p.increment(x);
std::forward_iterator_tag t = iterator_category();
ignore_unused_variable_warning(t);
}
Policies p;
Adapted x;
iterator_category category;
};
template <class Policies, class Adapted, class Traits>
struct BidirectionalIteratorPoliciesConcept
{
typedef typename Traits::iterator_category iterator_category;
void constraints() {
function_requires<
ForwardIteratorPoliciesConcept<Policies, Adapted, Traits>
>();
p.decrement(x);
std::bidirectional_iterator_tag t = iterator_category();
ignore_unused_variable_warning(t);
}
Policies p;
Adapted x;
};
template <class Policies, class Adapted, class Traits>
struct RandomAccessIteratorPoliciesConcept
{
typedef typename Traits::difference_type DifferenceType;
typedef typename Traits::iterator_category iterator_category;
void constraints() {
function_requires<
BidirectionalIteratorPoliciesConcept<Policies, Adapted, Traits>
>();
p.advance(x, n);
std::random_access_iterator_tag t = iterator_category();
const_constraints();
ignore_unused_variable_warning(t);
}
void const_constraints() const {
n = p.distance(type<DifferenceType>(), x, x);
b = p.less(x, x);
}
Policies p;
Adapted x;
mutable DifferenceType n;
mutable bool b;
};
//============================================================================
// Default policies for iterator adaptors. You can use this as a base
// class if you want to customize particular policies.
struct default_iterator_policies
{
// Some of these members were defined static, but Borland got confused
// and thought they were non-const. Also, Sun C++ does not like static
// function templates.
template <class Iterator>
void initialize(Iterator&)
{ }
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& x) const
{ return *x; }
template <class Iterator>
void increment(Iterator& x)
{ ++x; }
template <class Iterator>
void decrement(Iterator& x)
{ --x; }
template <class Iterator, class DifferenceType>
void advance(Iterator& x, DifferenceType n)
{ x += n; }
template <class Difference, class Iterator1, class Iterator2>
Difference distance(type<Difference>, const Iterator1& x,
const Iterator2& y) const
{ return y - x; }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x == y; }
template <class Iterator1, class Iterator2>
bool less(const Iterator1& x, const Iterator2& y) const
{ return x < y; }
};
// putting the comparisons in a base class avoids the g++
// ambiguous overload bug due to the relops operators
#ifdef BOOST_RELOPS_AMBIGUITY_BUG
template <class Derived, class Base>
struct iterator_comparisons : Base { };
template <class D1, class D2, class Base1, class Base2>
inline bool operator==(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().equal(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator!=(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return !x.policies().equal(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator<(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().less(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator>(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().less(y.iter(), x.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator>=(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return !x.policies().less(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator<=(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return !x.policies().less(y.iter(), x.iter());
}
#endif
//============================================================================
// Some compilers (SGI MIPSpro 7.1.3.3) instantiate/compile member functions
// whether or not they are used. The following functions make sure that
// when the base iterators do not support particular operators, those
// operators do not get used.
namespace detail {
#if defined(__sgi) && !defined(__GNUC__)
// Dummy versions for iterators that don't support various operators
template <class Iter>
inline typename Iter::pointer
operator_arrow(const Iter&, std::output_iterator_tag) {
return typename Iter::pointer();
}
template <class Iter, class Diff>
inline void advance_impl(Iter&, Diff, std::input_iterator_tag) { }
template <class Iter, class Diff>
inline void advance_impl(Iter&, Diff, std::output_iterator_tag) { }
template <class Iter>
inline void decrement_impl(Iter&, std::input_iterator_tag) { }
template <class Iter>
inline void decrement_impl(Iter&, std::output_iterator_tag) { }
#endif
// Real versions
// operator->() needs special support for input iterators to strictly meet the
// standard's requirements. If *i is not a reference type, we must still
// produce a (constant) lvalue to which a pointer can be formed. We do that by
// returning an instantiation of this special proxy class template.
template <class T>
struct operator_arrow_proxy
{
operator_arrow_proxy(const T& x) : m_value(x) {}
const T* operator->() const { return &m_value; }
T m_value;
};
template <class Iter>
inline operator_arrow_proxy<typename Iter::value_type>
operator_arrow(const Iter& i, std::input_iterator_tag) {
return operator_arrow_proxy<typename Iter::value_type>(*i);
}
template <class Iter>
inline typename Iter::pointer
operator_arrow(const Iter& i, std::forward_iterator_tag) {
return &(*i);
}
template <class Traits>
struct operator_arrow_result_generator
{
typedef typename Traits::iterator_category category;
typedef operator_arrow_proxy<typename Traits::value_type> proxy;
typedef typename Traits::pointer pointer;
typedef typename boost::detail::if_true<(
boost::is_convertible<category,std::input_iterator_tag>::value
& !boost::is_convertible<category,std::forward_iterator_tag>::value
)>::template
then<
proxy,
// else
pointer
>::type type;
};
template <class Iter, class Diff>
inline void
advance_impl(Iter& i, Diff n, std::random_access_iterator_tag) {
i.policies().advance(i.iter(), n);
}
template <class Iter>
inline void
decrement_impl(Iter& i, std::bidirectional_iterator_tag) {
i.policies().decrement(i.iter());
}
} // namespace detail
//============================================================================
//iterator_adaptor - Adapts a generic piece of data as an iterator. Adaptation
// is especially easy if the data being adapted is itself an iterator
//
// Iterator - the iterator type being wrapped.
//
// Policies - a set of policies determining how the resulting iterator
// works.
//
// Traits - a class satisfying the same requirements as a specialization of
// std::iterator_traits for the resulting iterator.
//
template <class Iterator, class Policies,
class Traits = boost::detail::iterator_traits<Iterator>
>
struct iterator_adaptor :
#ifdef BOOST_RELOPS_AMBIGUITY_BUG
iterator_comparisons<
iterator_adaptor<Iterator,Policies,Traits>,
#endif
boost::iterator<typename Traits::iterator_category,
typename Traits::value_type, typename Traits::difference_type,
typename Traits::pointer, typename Traits::reference>
#ifdef BOOST_RELOPS_AMBIGUITY_BUG
>
#endif
{
typedef iterator_adaptor<Iterator, Policies, Traits> Self;
public:
typedef typename Traits::difference_type difference_type;
typedef typename Traits::value_type value_type;
typedef typename Traits::pointer pointer;
typedef typename Traits::reference reference;
typedef typename Traits::iterator_category iterator_category;
typedef Iterator iterator_type;
// Iterators should satisfy one of the known categories
BOOST_STATIC_ASSERT((boost::is_convertible<iterator_category,std::input_iterator_tag>::value
|| boost::is_convertible<iterator_category,std::output_iterator_tag>::value));
// Iterators >= ForwardIterator must produce real references.
BOOST_STATIC_ASSERT((!boost::is_convertible<iterator_category,std::forward_iterator_tag>::value
|| boost::is_same<reference,value_type&>::value
|| boost::is_same<reference,const value_type&>::value));
iterator_adaptor() { }
iterator_adaptor(const Iterator& it, const Policies& p = Policies())
: m_iter_p(it, p) {
policies().initialize(iter());
}
template <class OtherIter, class OtherTraits>
iterator_adaptor (const iterator_adaptor<OtherIter, Policies,
OtherTraits>& src)
: m_iter_p(src.iter(), src.policies()) {
policies().initialize(iter());
}
#ifdef BOOST_MSVC
// This is required to prevent a bug in how VC++ generates
// the assignment operator for compressed_pair.
iterator_adaptor& operator= (const iterator_adaptor& x) {
m_iter_p = x.m_iter_p;
return *this;
}
#endif
reference operator*() const {
return policies().dereference(type<reference>(), iter());
}
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning( disable : 4284 )
#endif
typename boost::detail::operator_arrow_result_generator<Traits>::type
operator->() const
{ return detail::operator_arrow(*this, iterator_category()); }
#ifdef _MSC_VER
# pragma warning(pop)
#endif
value_type operator[](difference_type n) const
{ return *(*this + n); }
Self& operator++() {
#ifdef __MWERKS__
// Odd bug, MWERKS couldn't deduce the type for the member template
// Workaround by explicitly specifying the type.
policies().increment<Iterator>(iter());
#else
policies().increment(iter());
#endif
return *this;
}
Self operator++(int) { Self tmp(*this); ++*this; return tmp; }
Self& operator--() {
detail::decrement_impl(*this, iterator_category());
return *this;
}
Self operator--(int) { Self tmp(*this); --*this; return tmp; }
Self& operator+=(difference_type n) {
detail::advance_impl(*this, n, iterator_category());
return *this;
}
Self& operator-=(difference_type n) {
detail::advance_impl(*this, -n, iterator_category());
return *this;
}
iterator_type base() const { return m_iter_p.first(); }
private:
typedef Policies policies_type;
compressed_pair<Iterator,Policies> m_iter_p;
public: // too many compilers have trouble when these are private.
Policies& policies() { return m_iter_p.second(); }
const Policies& policies() const { return m_iter_p.second(); }
Iterator& iter() { return m_iter_p.first(); }
const Iterator& iter() const { return m_iter_p.first(); }
};
template <class Iterator, class Policies, class Traits>
iterator_adaptor<Iterator,Policies,Traits>
operator-(iterator_adaptor<Iterator,Policies,Traits> p, const typename Traits::difference_type x)
{
return p -= x;
}
template <class Iterator, class Policies, class Traits>
iterator_adaptor<Iterator,Policies,Traits>
operator+(iterator_adaptor<Iterator,Policies,Traits> p, typename Traits::difference_type x)
{
return p += x;
}
template <class Iterator, class Policies, class Traits>
iterator_adaptor<Iterator,Policies,Traits>
operator+(typename Traits::difference_type x, iterator_adaptor<Iterator,Policies,Traits> p)
{
return p += x;
}
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
typename Traits1::difference_type operator-(
const iterator_adaptor<Iterator1,Policies,Traits1>& x,
const iterator_adaptor<Iterator2,Policies,Traits2>& y )
{
typedef typename Traits1::difference_type difference_type;
return x.policies().distance(type<difference_type>(), y.iter(), x.iter());
}
#ifndef BOOST_RELOPS_AMBIGUITY_BUG
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
inline bool
operator==(const iterator_adaptor<Iterator1,Policies,Traits1>& x, const iterator_adaptor<Iterator2,Policies,Traits2>& y) {
return x.policies().equal(x.iter(), y.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
inline bool
operator<(const iterator_adaptor<Iterator1,Policies,Traits1>& x, const iterator_adaptor<Iterator2,Policies,Traits2>& y) {
return x.policies().less(x.iter(), y.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
inline bool
operator>(const iterator_adaptor<Iterator1,Policies,Traits1>& x,
const iterator_adaptor<Iterator2,Policies,Traits2>& y) {
return x.policies().less(y.iter(), x.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
inline bool
operator>=(const iterator_adaptor<Iterator1,Policies,Traits1>& x, const iterator_adaptor<Iterator2,Policies,Traits2>& y) {
return !x.policies().less(x.iter(), y.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
inline bool
operator<=(const iterator_adaptor<Iterator1,Policies,Traits1>& x,
const iterator_adaptor<Iterator2,Policies,Traits2>& y) {
return !x.policies().less(y.iter(), x.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
inline bool
operator!=(const iterator_adaptor<Iterator1,Policies,Traits1>& x,
const iterator_adaptor<Iterator2,Policies,Traits2>& y) {
return !x.policies().equal(x.iter(), y.iter());
}
#endif
//=============================================================================
// Transform Iterator Adaptor
//
// Upon deference, apply some unary function object and return the
// result by value.
template <class AdaptableUnaryFunction>
struct transform_iterator_policies : public default_iterator_policies
{
transform_iterator_policies() { }
transform_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& iter) const
{ return m_f(*iter); }
AdaptableUnaryFunction m_f;
};
template <class AdaptableUnaryFunction, class IteratorTraits>
struct transform_iterator_traits {
typedef typename AdaptableUnaryFunction::result_type value_type;
typedef value_type reference;
typedef value_type* pointer;
typedef typename IteratorTraits::difference_type difference_type;
typedef std::input_iterator_tag iterator_category;
};
template <class AdaptableUnaryFunction,
class Iterator,
class Traits = boost::detail::iterator_traits<Iterator>
>
struct transform_iterator_generator
{
typedef transform_iterator_traits<AdaptableUnaryFunction,Traits>
transform_traits;
typedef iterator_adaptor<Iterator,
transform_iterator_policies<AdaptableUnaryFunction>, transform_traits>
type;
};
template <class AdaptableUnaryFunction, class Iterator>
typename transform_iterator_generator<AdaptableUnaryFunction,Iterator>::type
make_transform_iterator(
const Iterator& base,
const AdaptableUnaryFunction& f = AdaptableUnaryFunction())
{
typedef typename transform_iterator_generator<AdaptableUnaryFunction,Iterator>::type result_t;
return result_t(base, f);
}
//=============================================================================
// Indirect Iterators Adaptor
// Given a pointer to pointers (or iterator to iterators),
// apply a double dereference inside operator*().
//
// We use the term "outer" to refer to the first level iterator type
// and "inner" to refer to the second level iterator type. For
// example, given T**, T* is the inner iterator type and T** is the
// outer iterator type. Also, const T* would be the const inner
// iterator.
// We tried to implement this with transform_iterator, but that required
// using boost::remove_ref, which is not compiler portable.
struct indirect_iterator_policies : public default_iterator_policies
{
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& x) const
{ return **x; }
};
template <class OuterIterator,
class InnerIterator = typename boost::detail::iterator_traits<OuterIterator>::value_type,
class InnerTraits = boost::detail::iterator_traits<InnerIterator>,
class OuterTraits = boost::detail::iterator_traits<OuterIterator> // never needed (?)
>
struct indirect_traits
{
typedef typename OuterTraits::difference_type difference_type;
typedef typename InnerTraits::value_type value_type;
typedef typename InnerTraits::pointer pointer;
typedef typename InnerTraits::reference reference;
typedef typename OuterTraits::iterator_category iterator_category;
};
template <class OuterIterator, // Mutable or Immutable, does not matter
// Mutable -> mutable indirect iterator; Immutable -> immutable indirect iterator
class InnerIterator = typename boost::detail::iterator_traits<OuterIterator>::value_type,
class InnerTraits = boost::detail::iterator_traits<InnerIterator>,
class OuterTraits = boost::detail::iterator_traits<OuterIterator> // never needed (?)
>
struct indirect_iterator_generator
{
typedef iterator_adaptor<OuterIterator,
indirect_iterator_policies,
indirect_traits<OuterIterator, InnerIterator,
InnerTraits, OuterTraits>
> type;
};
template <class OuterIterator, // Mutable or Immutable, does not matter
class ConstInnerIterator, // Immutable
class ConstInnerTraits = boost::detail::iterator_traits<ConstInnerIterator>,
class InnerIterator = typename boost::detail::iterator_traits<OuterIterator>::value_type,
class InnerTraits = boost::detail::iterator_traits<InnerIterator>,
class OuterTraits = boost::detail::iterator_traits<OuterIterator> // never needed (?)
>
struct indirect_iterator_pair_generator
{
typedef iterator_adaptor<OuterIterator,
indirect_traits<OuterIterator, InnerIterator, InnerTraits, OuterTraits>,
indirect_iterator_policies> iterator;
typedef iterator_adaptor<OuterIterator,
indirect_traits<OuterIterator, ConstInnerIterator, ConstInnerTraits, OuterTraits>,
indirect_iterator_policies> const_iterator;
};
//=============================================================================
// Reverse Iterators Adaptor
struct reverse_iterator_policies : public default_iterator_policies
{
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& x) const
{ return *boost::prior(x); }
template <class Iterator>
void increment(Iterator& x) const
{ --x; }
template <class Iterator>
void decrement(Iterator& x) const
{ ++x; }
template <class Iterator, class DifferenceType>
void advance(Iterator& x, DifferenceType n) const
{ x -= n; }
template <class Difference, class Iterator1, class Iterator2>
Difference distance(type<Difference>, const Iterator1& x,
const Iterator2& y) const
{ return x - y; }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x == y; }
template <class Iterator1, class Iterator2>
bool less(const Iterator1& x, const Iterator2& y) const
{ return y < x; }
};
template <class Iterator,
class Traits = boost::detail::iterator_traits<Iterator>
>
struct reverse_iterator_generator
{
typedef iterator_adaptor<Iterator, reverse_iterator_policies,
Traits> type;
};
template <class ConstIterator,
class ConstTraits = boost::detail::iterator_traits<ConstIterator>
>
struct const_reverse_iterator_generator
{
typedef iterator_adaptor<ConstIterator, reverse_iterator_policies,
ConstTraits> type;
};
//=============================================================================
// Projection Iterators Adaptor
template <class AdaptableUnaryFunction>
struct projection_iterator_policies : public default_iterator_policies
{
projection_iterator_policies() { }
projection_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template <class Reference, class Iterator>
Reference dereference (type<Reference>, Iterator const& iter) const {
return m_f(*iter);
}
AdaptableUnaryFunction m_f;
};
template <class AdaptableUnaryFunction, class Traits>
struct projection_iterator_traits {
typedef typename AdaptableUnaryFunction::result_type value_type;
typedef value_type& reference;
typedef value_type* pointer;
typedef typename Traits::difference_type difference_type;
typedef typename Traits::iterator_category iterator_category;
};
template <class AdaptableUnaryFunction, class Traits>
struct const_projection_iterator_traits {
typedef typename AdaptableUnaryFunction::result_type value_type;
typedef value_type const& reference;
typedef value_type const* pointer;
typedef typename Traits::difference_type difference_type;
typedef typename Traits::iterator_category iterator_category;
};
template <class AdaptableUnaryFunction, class Iterator,
class Traits = boost::detail::iterator_traits<Iterator>
>
struct projection_iterator_generator {
typedef projection_iterator_traits<AdaptableUnaryFunction, Traits>
projection_traits;
typedef iterator_adaptor<Iterator,
projection_iterator_policies<AdaptableUnaryFunction>,
projection_traits> type;
};
template <class AdaptableUnaryFunction, class Iterator,
class Traits = boost::detail::iterator_traits<Iterator>
>
struct const_projection_iterator_generator {
typedef const_projection_iterator_traits<AdaptableUnaryFunction,
Traits> projection_traits;
typedef iterator_adaptor<Iterator,
projection_iterator_policies<AdaptableUnaryFunction>,
projection_traits> type;
};
template <class AdaptableUnaryFunction, class Iterator, class ConstIterator,
class Traits = boost::detail::iterator_traits<Iterator>,
class ConstTraits = boost::detail::iterator_traits<ConstIterator>
>
struct projection_iterator_pair_generator {
typedef projection_iterator_traits<AdaptableUnaryFunction, Traits>
projection_traits;
typedef const_projection_iterator_traits<AdaptableUnaryFunction,
ConstTraits> const_projection_traits;
typedef iterator_adaptor<Iterator, projection_iterator_policies<AdaptableUnaryFunction>,
projection_traits> iterator;
typedef iterator_adaptor<ConstIterator, projection_iterator_policies<AdaptableUnaryFunction>,
const_projection_traits > const_iterator;
};
//=============================================================================
// Filter Iterator Adaptor
template <class Predicate, class Iterator>
class filter_iterator_policies : public default_iterator_policies {
public:
filter_iterator_policies() { }
filter_iterator_policies(const Predicate& p, const Iterator& end)
: m_predicate(p), m_end(end) { }
void initialize(Iterator& x) {
advance(x);
}
// dwa 2/4/01 - The Iter template argument neccessary for compatibility with
// a MWCW bug workaround
template <class Iter>
void increment(Iter& x) {
++x;
advance(x);
}
private:
void advance(Iterator& iter)
{
while (m_end != iter && !m_predicate(*iter))
++iter;
}
Predicate m_predicate;
Iterator m_end;
};
template <class Predicate, class Iterator,
class Traits = boost::detail::iterator_traits<Iterator>
>
class filter_iterator_generator {
typedef filter_iterator_policies<Predicate, Iterator> Policies;
public:
typedef iterator_adaptor<Iterator, Policies, Traits> type;
};
} // namespace boost
#endif