iterator/include/boost/iterator_adaptors.hpp
Jens Maurer 51616fa845 removed superfluous "typename"
[SVN r9068]
2001-02-10 09:34:19 +00:00

999 lines
34 KiB
C++

// (C) Copyright David Abrahams 2000. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
// Revision History:
// 09 Feb 2001 David Abrahams
// Improved interface to indirect_ and reverse_ iterators
//
// Rolled back Jeremy's new constructor for now; it was causing
// problems with counting_iterator_test
//
// Attempted fix for Borland
//
// 09 Feb 2001 Jeremy Siek
// Added iterator constructor to allow const adaptor
// from non-const adaptee.
//
// Changed make_xxx to pass iterators by-value to
// get arrays converted to pointers.
//
// Removed InnerIterator template parameter from
// indirect_iterator_generator.
//
// Rearranged parameters for make_filter_iterator
//
// 07 Feb 2001 Jeremy Siek
// Removed some const iterator adaptor generators.
//
// Added make_xxx_iterator() helper functions for remaining
// iterator adaptors.
//
// Removed some traits template parameters where they
// where no longer needed thanks to detail::iterator_traits.
//
// Moved some of the compile-time logic into enums for
// EDG compatibility.
//
// 07 Feb 2001 David Abrahams
// Removed iterator_adaptor_pair_generator and
// reverse_iterator_pair_generator (more such culling to come)
//
// Improved comments
//
// Changed all uses of std::iterator_traits as default arguments
// to boost::detail::iterator_traits for improved utility in
// non-generic contexts
//
// Fixed naming convention of non-template parameter names
//
// 06 Feb 2001 David Abrahams
// Produce operator-> proxy objects for InputIterators
//
// Added static assertions to do some basic concept checks
//
// Renamed single-type generators -> xxx_generator
// Renamed const/nonconst iterator generators -> xxx_pair_generator
//
// Added make_transform_iterator(iter, function)
//
// The existence of boost::detail::iterator_traits allowed many
// template arguments to be defaulted. Some arguments had to be
// moved to accomplish it.
//
// 04 Feb 2001 MWERKS bug workaround, concept checking for proper
// reference types (David Abrahams)
#ifndef BOOST_ITERATOR_ADAPTOR_DWA053000_HPP_
# define BOOST_ITERATOR_ADAPTOR_DWA053000_HPP_
# include <boost/iterator.hpp>
# include <boost/utility.hpp>
# include <boost/compressed_pair.hpp>
# include <boost/concept_check.hpp>
# include <boost/type.hpp>
# include <boost/static_assert.hpp>
# include <boost/type_traits.hpp>
# include <boost/detail/iterator.hpp>
# include <boost/detail/select_type.hpp>
// I was having some problems with VC6. I couldn't tell whether our hack for
// stock GCC was causing problems so I needed an easy way to turn it on and
// off. Now we can test the hack with various compilers and still have an
// "out" if it doesn't work. -dwa 7/31/00
# if __GNUC__ == 2 && __GNUC_MINOR__ <= 96 && !defined(__STL_USE_NAMESPACES)
# define BOOST_RELOPS_AMBIGUITY_BUG 1
# endif
namespace boost {
//============================================================================
// Concept checking classes that express the requirements for iterator
// policies and adapted types. These classes are mostly for
// documentation purposes, and are not used in this header file. They
// merely provide a more succinct statement of what is expected of the
// iterator policies.
template <class Policies, class Adapted, class Traits>
struct TrivialIteratorPoliciesConcept
{
typedef typename Traits::reference Reference;
void constraints() {
function_requires< AssignableConcept<Policies> >();
function_requires< DefaultConstructibleConcept<Policies> >();
function_requires< AssignableConcept<Adapted> >();
function_requires< DefaultConstructibleConcept<Adapted> >();
const_constraints();
}
void const_constraints() const {
Reference r = p.dereference(type<Reference>(), x);
b = p.equal(x, x);
ignore_unused_variable_warning(r);
}
Policies p;
Adapted x;
mutable bool b;
};
// Add InputIteratorPoliciesConcept?
template <class Policies, class Adapted, class Traits>
struct ForwardIteratorPoliciesConcept
{
typedef typename Traits::iterator_category iterator_category;
void constraints() {
function_requires<
TrivialIteratorPoliciesConcept<Policies, Adapted, Traits>
>();
p.increment(x);
std::forward_iterator_tag t = iterator_category();
ignore_unused_variable_warning(t);
}
Policies p;
Adapted x;
iterator_category category;
};
template <class Policies, class Adapted, class Traits>
struct BidirectionalIteratorPoliciesConcept
{
typedef typename Traits::iterator_category iterator_category;
void constraints() {
function_requires<
ForwardIteratorPoliciesConcept<Policies, Adapted, Traits>
>();
p.decrement(x);
std::bidirectional_iterator_tag t = iterator_category();
ignore_unused_variable_warning(t);
}
Policies p;
Adapted x;
};
template <class Policies, class Adapted, class Traits>
struct RandomAccessIteratorPoliciesConcept
{
typedef typename Traits::difference_type DifferenceType;
typedef typename Traits::iterator_category iterator_category;
void constraints() {
function_requires<
BidirectionalIteratorPoliciesConcept<Policies, Adapted, Traits>
>();
p.advance(x, n);
std::random_access_iterator_tag t = iterator_category();
const_constraints();
ignore_unused_variable_warning(t);
}
void const_constraints() const {
n = p.distance(type<DifferenceType>(), x, x);
b = p.less(x, x);
}
Policies p;
Adapted x;
mutable DifferenceType n;
mutable bool b;
};
//============================================================================
// Default policies for iterator adaptors. You can use this as a base
// class if you want to customize particular policies.
struct default_iterator_policies
{
// Some of these members were defined static, but Borland got confused
// and thought they were non-const. Also, Sun C++ does not like static
// function templates.
template <class Iterator>
void initialize(Iterator&)
{ }
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& x) const
{ return *x; }
template <class Iterator>
void increment(Iterator& x)
{ ++x; }
template <class Iterator>
void decrement(Iterator& x)
{ --x; }
template <class Iterator, class DifferenceType>
void advance(Iterator& x, DifferenceType n)
{ x += n; }
template <class Difference, class Iterator1, class Iterator2>
Difference distance(type<Difference>, const Iterator1& x,
const Iterator2& y) const
{ return y - x; }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x == y; }
template <class Iterator1, class Iterator2>
bool less(const Iterator1& x, const Iterator2& y) const
{ return x < y; }
};
// putting the comparisons in a base class avoids the g++
// ambiguous overload bug due to the relops operators
#ifdef BOOST_RELOPS_AMBIGUITY_BUG
template <class Derived, class Base>
struct iterator_comparisons : Base { };
template <class D1, class D2, class Base1, class Base2>
inline bool operator==(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().equal(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator!=(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return !x.policies().equal(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator<(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().less(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator>(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().less(y.iter(), x.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator>=(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return !x.policies().less(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
inline bool operator<=(const iterator_comparisons<D1,Base1>& xb,
const iterator_comparisons<D2,Base2>& yb)
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return !x.policies().less(y.iter(), x.iter());
}
#endif
//============================================================================
// Some compilers (SGI MIPSpro 7.1.3.3) instantiate/compile member functions
// whether or not they are used. The following functions make sure that
// when the base iterators do not support particular operators, those
// operators do not get used.
namespace detail {
#if defined(__sgi) && !defined(__GNUC__)
// Dummy versions for iterators that don't support various operators
template <class Iter>
inline typename Iter::pointer
operator_arrow(const Iter&, std::output_iterator_tag) {
return typename Iter::pointer();
}
template <class Iter, class Diff>
inline void advance_impl(Iter&, Diff, std::input_iterator_tag) { }
template <class Iter, class Diff>
inline void advance_impl(Iter&, Diff, std::output_iterator_tag) { }
template <class Iter>
inline void decrement_impl(Iter&, std::input_iterator_tag) { }
template <class Iter>
inline void decrement_impl(Iter&, std::output_iterator_tag) { }
#endif
// Real versions
// operator->() needs special support for input iterators to strictly meet the
// standard's requirements. If *i is not a reference type, we must still
// produce a (constant) lvalue to which a pointer can be formed. We do that by
// returning an instantiation of this special proxy class template.
template <class T>
struct operator_arrow_proxy
{
operator_arrow_proxy(const T& x) : m_value(x) {}
const T* operator->() const { return &m_value; }
T m_value;
};
template <class Iter>
inline operator_arrow_proxy<typename Iter::value_type>
operator_arrow(const Iter& i, std::input_iterator_tag) {
return operator_arrow_proxy<typename Iter::value_type>(*i);
}
template <class Iter>
inline typename Iter::pointer
operator_arrow(const Iter& i, std::forward_iterator_tag) {
return &(*i);
}
template <class Traits>
struct operator_arrow_result_generator
{
typedef typename Traits::iterator_category category;
typedef operator_arrow_proxy<typename Traits::value_type> proxy;
typedef typename Traits::pointer pointer;
enum { is_input_iter = boost::is_convertible<category,std::input_iterator_tag>::value
& !boost::is_convertible<category,std::forward_iterator_tag>::value };
typedef typename boost::detail::if_true<(is_input_iter)>::template
then<
proxy,
// else
pointer
>::type type;
};
template <class Iter, class Diff>
inline void
advance_impl(Iter& i, Diff n, std::random_access_iterator_tag) {
i.policies().advance(i.iter(), n);
}
template <class Iter>
inline void
decrement_impl(Iter& i, std::bidirectional_iterator_tag) {
i.policies().decrement(i.iter());
}
} // namespace detail
//============================================================================
//iterator_adaptor - Adapts a generic piece of data as an iterator. Adaptation
// is especially easy if the data being adapted is itself an iterator
//
// Iterator - the iterator type being wrapped.
//
// Policies - a set of policies determining how the resulting iterator
// works.
//
// Traits - a class satisfying the same requirements as a specialization of
// std::iterator_traits for the resulting iterator.
//
template <class Iterator, class Policies,
class Traits = boost::detail::iterator_traits<Iterator>
>
struct iterator_adaptor :
#ifdef BOOST_RELOPS_AMBIGUITY_BUG
iterator_comparisons<
iterator_adaptor<Iterator,Policies,Traits>,
#endif
boost::iterator<typename Traits::iterator_category,
typename Traits::value_type, typename Traits::difference_type,
typename Traits::pointer, typename Traits::reference>
#ifdef BOOST_RELOPS_AMBIGUITY_BUG
>
#endif
{
typedef iterator_adaptor<Iterator, Policies, Traits> Self;
public:
typedef typename Traits::difference_type difference_type;
typedef typename Traits::value_type value_type;
typedef typename Traits::pointer pointer;
typedef typename Traits::reference reference;
typedef typename Traits::iterator_category iterator_category;
typedef Iterator iterator_type;
enum { is_input_or_output_iter =
boost::is_convertible<iterator_category*,std::input_iterator_tag*>::value
|| boost::is_convertible<iterator_category*,std::output_iterator_tag*>::value };
// Iterators should satisfy one of the known categories
BOOST_STATIC_ASSERT(is_input_or_output_iter);
// Iterators >= ForwardIterator must produce real references.
enum { forward_iter_with_real_reference =
(!boost::is_convertible<iterator_category,std::forward_iterator_tag>::value
|| boost::is_same<reference,value_type&>::value
|| boost::is_same<reference,const value_type&>::value) };
BOOST_STATIC_ASSERT(forward_iter_with_real_reference);
iterator_adaptor() { }
iterator_adaptor(const Iterator& it, const Policies& p = Policies())
: m_iter_p(it, p) {
policies().initialize(iter());
}
#if 0 // ndef BOOST_MSVC
// To allow construction of const adaptor from non-const adaptee.
// However, when this is defined MSVC gives ambiguous error.
template <class OtherIterator>
iterator_adaptor(const OtherIterator& it, const Policies& p = Policies())
: m_iter_p(it, p) {
policies().initialize(iter());
}
#endif
template <class OtherIter, class OtherTraits>
iterator_adaptor (const iterator_adaptor<OtherIter, Policies,
OtherTraits>& src)
: m_iter_p(src.iter(), src.policies()) {
policies().initialize(iter());
}
#ifdef BOOST_MSVC
// This is required to prevent a bug in how VC++ generates
// the assignment operator for compressed_pair.
iterator_adaptor& operator= (const iterator_adaptor& x) {
m_iter_p = x.m_iter_p;
return *this;
}
#endif
reference operator*() const {
return policies().dereference(type<reference>(), iter());
}
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning( disable : 4284 )
#endif
typename boost::detail::operator_arrow_result_generator<Traits>::type
operator->() const
{ return detail::operator_arrow(*this, iterator_category()); }
#ifdef _MSC_VER
# pragma warning(pop)
#endif
value_type operator[](difference_type n) const
{ return *(*this + n); }
Self& operator++() {
#ifdef __MWERKS__
// Odd bug, MWERKS couldn't deduce the type for the member template
// Workaround by explicitly specifying the type.
policies().increment<Iterator>(iter());
#else
policies().increment(iter());
#endif
return *this;
}
Self operator++(int) { Self tmp(*this); ++*this; return tmp; }
Self& operator--() {
detail::decrement_impl(*this, iterator_category());
return *this;
}
Self operator--(int) { Self tmp(*this); --*this; return tmp; }
Self& operator+=(difference_type n) {
detail::advance_impl(*this, n, iterator_category());
return *this;
}
Self& operator-=(difference_type n) {
detail::advance_impl(*this, -n, iterator_category());
return *this;
}
iterator_type base() const { return m_iter_p.first(); }
private:
typedef Policies policies_type;
compressed_pair<Iterator,Policies> m_iter_p;
public: // too many compilers have trouble when these are private.
Policies& policies() { return m_iter_p.second(); }
const Policies& policies() const { return m_iter_p.second(); }
Iterator& iter() { return m_iter_p.first(); }
const Iterator& iter() const { return m_iter_p.first(); }
};
template <class Iterator, class Policies, class Traits>
iterator_adaptor<Iterator,Policies,Traits>
operator-(iterator_adaptor<Iterator,Policies,Traits> p, const typename Traits::difference_type x)
{
return p -= x;
}
template <class Iterator, class Policies, class Traits>
iterator_adaptor<Iterator,Policies,Traits>
operator+(iterator_adaptor<Iterator,Policies,Traits> p, typename Traits::difference_type x)
{
return p += x;
}
template <class Iterator, class Policies, class Traits>
iterator_adaptor<Iterator,Policies,Traits>
operator+(typename Traits::difference_type x, iterator_adaptor<Iterator,Policies,Traits> p)
{
return p += x;
}
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
typename Traits1::difference_type operator-(
const iterator_adaptor<Iterator1,Policies,Traits1>& x,
const iterator_adaptor<Iterator2,Policies,Traits2>& y )
{
typedef typename Traits1::difference_type difference_type;
return x.policies().distance(type<difference_type>(), y.iter(), x.iter());
}
#ifndef BOOST_RELOPS_AMBIGUITY_BUG
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
inline bool
operator==(const iterator_adaptor<Iterator1,Policies,Traits1>& x, const iterator_adaptor<Iterator2,Policies,Traits2>& y) {
return x.policies().equal(x.iter(), y.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
inline bool
operator<(const iterator_adaptor<Iterator1,Policies,Traits1>& x, const iterator_adaptor<Iterator2,Policies,Traits2>& y) {
return x.policies().less(x.iter(), y.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
inline bool
operator>(const iterator_adaptor<Iterator1,Policies,Traits1>& x,
const iterator_adaptor<Iterator2,Policies,Traits2>& y) {
return x.policies().less(y.iter(), x.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
inline bool
operator>=(const iterator_adaptor<Iterator1,Policies,Traits1>& x, const iterator_adaptor<Iterator2,Policies,Traits2>& y) {
return !x.policies().less(x.iter(), y.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
inline bool
operator<=(const iterator_adaptor<Iterator1,Policies,Traits1>& x,
const iterator_adaptor<Iterator2,Policies,Traits2>& y) {
return !x.policies().less(y.iter(), x.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Traits1, class Traits2>
inline bool
operator!=(const iterator_adaptor<Iterator1,Policies,Traits1>& x,
const iterator_adaptor<Iterator2,Policies,Traits2>& y) {
return !x.policies().equal(x.iter(), y.iter());
}
#endif
//=============================================================================
// Transform Iterator Adaptor
//
// Upon deference, apply some unary function object and return the
// result by value.
template <class AdaptableUnaryFunction>
struct transform_iterator_policies : public default_iterator_policies
{
transform_iterator_policies() { }
transform_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& iter) const
{ return m_f(*iter); }
AdaptableUnaryFunction m_f;
};
template <class AdaptableUnaryFunction, class Iterator>
class transform_iterator_generator
{
typedef typename boost::detail::iterator_traits<Iterator>::difference_type
difference_type;
typedef typename AdaptableUnaryFunction::result_type value_type;
public:
typedef boost::iterator<std::input_iterator_tag,
value_type, difference_type, value_type*, value_type> transform_traits;
typedef iterator_adaptor<Iterator,
transform_iterator_policies<AdaptableUnaryFunction>, transform_traits>
type;
};
template <class AdaptableUnaryFunction, class Iterator>
inline typename transform_iterator_generator<AdaptableUnaryFunction,Iterator>::type
make_transform_iterator(
Iterator base,
const AdaptableUnaryFunction& f = AdaptableUnaryFunction())
{
typedef typename transform_iterator_generator<AdaptableUnaryFunction,Iterator>::type result_t;
return result_t(base, f);
}
//=============================================================================
// Indirect Iterators Adaptor
// Given a pointer to pointers (or iterator to iterators),
// apply a double dereference inside operator*().
//
// We use the term "outer" to refer to the first level iterator type
// and "inner" to refer to the second level iterator type. For
// example, given T**, T* is the inner iterator type and T** is the
// outer iterator type. Also, const T* would be the const inner
// iterator.
// We tried to implement this with transform_iterator, but that required
// using boost::remove_ref, which is not compiler portable.
struct indirect_iterator_policies : public default_iterator_policies
{
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& x) const
{ return **x; }
};
// This macro definition is only temporary in this file
# if !defined(BOOST_MSVC)
# define BOOST_ARG_DEPENDENT_TYPENAME typename
# else
# define BOOST_ARG_DEPENDENT_TYPENAME
# endif
} template <class T> struct undefined; namespace boost {
namespace detail {
# if !defined(BOOST_MSVC) // stragely instantiated even when unused! Maybe try a recursive template someday ;-)
template <class T>
struct value_type_of_value_type {
typedef typename boost::detail::iterator_traits<T>::value_type outer_value;
typedef typename boost::detail::iterator_traits<outer_value>::value_type type;
};
# endif
}
template <class OuterIterator, // Mutable or Immutable, does not matter
class Value
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::value_type_of_value_type<OuterIterator>::type
#endif
, class Pointer = Value*
, class Reference = Value&
>
class indirect_iterator_generator
{
typedef boost::detail::iterator_traits<OuterIterator> outer_traits;
typedef typename outer_traits::difference_type difference_type;
typedef typename outer_traits::iterator_category iterator_category;
typedef typename boost::remove_const<Value>::type value_type;
typedef Pointer pointer;
typedef Reference reference;
public:
typedef boost::iterator<iterator_category, value_type, difference_type, pointer, reference> indirect_traits;
typedef iterator_adaptor<OuterIterator, indirect_iterator_policies, indirect_traits> type;
};
template <class OuterIterator, // Mutable or Immutable, does not matter
class Value
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::value_type_of_value_type<OuterIterator>::type
#endif
, class Pointer = Value*
, class Reference = Value&
, class ConstPointer = const Value*
, class ConstReference = const Value&
>
struct indirect_iterator_pair_generator
{
typedef typename indirect_iterator_generator<OuterIterator,
Value, Pointer, Reference>::type iterator;
typedef typename indirect_iterator_generator<OuterIterator,
Value, ConstPointer, ConstReference>::type const_iterator;
};
// Tried to allow InnerTraits to be provided by explicit template
// argument to the function, but could not get it to work. -Jeremy Siek
template <class Value, class OuterIterator>
inline typename indirect_iterator_generator<OuterIterator,Value>::type
make_indirect_iterator(OuterIterator base, Value* = 0)
{
typedef typename indirect_iterator_generator
<OuterIterator, Value>::type result_t;
return result_t(base);
}
# if 0 // This just doesn't seem to work under any circumstances!
template <class OuterIterator>
inline typename indirect_iterator_generator<OuterIterator>::type
make_indirect_iterator(OuterIterator base)
{
typedef typename indirect_iterator_generator
<OuterIterator>::type result_t;
return result_t(base);
}
# endif
//=============================================================================
// Reverse Iterators Adaptor
struct reverse_iterator_policies : public default_iterator_policies
{
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& x) const
{ return *boost::prior(x); }
template <class Iterator>
void increment(Iterator& x) const
{ --x; }
template <class Iterator>
void decrement(Iterator& x) const
{ ++x; }
template <class Iterator, class DifferenceType>
void advance(Iterator& x, DifferenceType n) const
{ x -= n; }
template <class Difference, class Iterator1, class Iterator2>
Difference distance(type<Difference>, const Iterator1& x,
const Iterator2& y) const
{ return x - y; }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x == y; }
template <class Iterator1, class Iterator2>
bool less(const Iterator1& x, const Iterator2& y) const
{ return y < x; }
};
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace detail {
template <bool is_pointer>
struct iterator_defaults_select
{
template <class Iterator,class Value>
struct traits
{
typedef typename boost::detail::iterator_traits<Iterator>::value_type value_type;
typedef typename boost::detail::iterator_traits<Iterator>::pointer pointer;
typedef typename boost::detail::iterator_traits<Iterator>::reference reference;
};
};
template <>
struct iterator_defaults_select<true>
{
template <class Iterator,class Value>
struct traits
{
typedef Value value_type;
typedef Value* pointer;
typedef Value& reference;
};
};
template <class Iterator,class Value>
struct iterator_defaults
{
enum { is_ptr = boost::is_pointer<Iterator>::value };
typedef iterator_defaults_select<is_ptr>::template traits<Iterator,Value> traits;
typedef typename traits::pointer pointer;
typedef typename traits::reference reference;
};
}
#endif
template <class Iterator,
class Value = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<Iterator>::value_type,
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
class Pointer = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<Iterator>::pointer,
class Reference = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<Iterator>::reference,
#else
class Pointer = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_defaults<Iterator,Value>::pointer,
class Reference = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_defaults<Iterator,Value>::reference,
#endif
class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<Iterator>::iterator_category,
class Distance = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<Iterator>::difference_type
>
struct reverse_iterator_generator
{
typedef typename boost::remove_const<Value>::type value_type;
typedef boost::iterator<Category,value_type,Distance,Pointer,Reference> traits;
typedef iterator_adaptor<Iterator,reverse_iterator_policies,traits> type;
};
template <class Iterator>
inline typename reverse_iterator_generator<Iterator>::type
make_reverse_iterator(Iterator base)
{
typedef typename reverse_iterator_generator<Iterator>::type result_t;
return result_t(base);
}
//=============================================================================
// Projection Iterators Adaptor
template <class AdaptableUnaryFunction>
struct projection_iterator_policies : public default_iterator_policies
{
projection_iterator_policies() { }
projection_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template <class Reference, class Iterator>
Reference dereference (type<Reference>, Iterator const& iter) const {
return m_f(*iter);
}
AdaptableUnaryFunction m_f;
};
template <class AdaptableUnaryFunction, class Iterator>
class projection_iterator_generator {
typedef boost::detail::iterator_traits<Iterator> Traits;
typedef typename AdaptableUnaryFunction::result_type value_type;
typedef boost::iterator<typename Traits::iterator_category,
value_type, typename Traits::difference_type, value_type*, value_type&>
projection_traits;
public:
typedef iterator_adaptor<Iterator,
projection_iterator_policies<AdaptableUnaryFunction>,
projection_traits> type;
};
template <class AdaptableUnaryFunction, class Iterator>
class const_projection_iterator_generator {
typedef boost::detail::iterator_traits<Iterator> Traits;
typedef typename AdaptableUnaryFunction::result_type value_type;
typedef boost::iterator<typename Traits::iterator_category,
value_type, typename Traits::difference_type, const value_type*, const value_type&>
projection_traits;
public:
typedef iterator_adaptor<Iterator,
projection_iterator_policies<AdaptableUnaryFunction>,
projection_traits> type;
};
template <class AdaptableUnaryFunction, class Iterator, class ConstIterator>
struct projection_iterator_pair_generator {
typedef typename projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type iterator;
typedef typename const_projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type const_iterator;
};
template <class AdaptableUnaryFunction, class Iterator>
inline typename projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type
make_projection_iterator(
Iterator iter,
const AdaptableUnaryFunction& f = AdaptableUnaryFunction())
{
typedef typename projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type result_t;
return result_t(iter, f);
}
template <class AdaptableUnaryFunction, class Iterator>
inline typename const_projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type
make_const_projection_iterator(
Iterator iter,
const AdaptableUnaryFunction& f = AdaptableUnaryFunction())
{
typedef typename const_projection_iterator_generator<AdaptableUnaryFunction, Iterator>::type result_t;
return result_t(iter, f);
}
//=============================================================================
// Filter Iterator Adaptor
template <class Predicate, class Iterator>
class filter_iterator_policies : public default_iterator_policies {
public:
filter_iterator_policies() { }
filter_iterator_policies(const Predicate& p, const Iterator& end)
: m_predicate(p), m_end(end) { }
void initialize(Iterator& x) {
advance(x);
}
// dwa 2/4/01 - The Iter template argument neccessary for compatibility with
// a MWCW bug workaround
template <class Iter>
void increment(Iter& x) {
++x;
advance(x);
}
private:
void advance(Iterator& iter)
{
while (m_end != iter && !m_predicate(*iter))
++iter;
}
Predicate m_predicate;
Iterator m_end;
};
template <class Predicate, class Iterator,
class Traits = boost::detail::iterator_traits<Iterator>
>
class filter_iterator_generator {
typedef filter_iterator_policies<Predicate, Iterator> Policies;
public:
typedef filter_iterator_policies<Predicate, Iterator> policies_type;
typedef iterator_adaptor<Iterator, Policies, Traits> type;
};
// WARNING: Do not use this three argument version of
// make_filter_iterator() if the iterator is a builtin pointer type
// and if your compiler does not support partial specialization.
// If the Predicate argument "p" is left out, an explicit template
// argument for the Predicate is required, i.e.,
// make_filter_iterator<Predicate>(f, l).
template <class Predicate, class Iterator>
inline typename filter_iterator_generator<Predicate, Iterator>::type
make_filter_iterator(Iterator first, Iterator last, const Predicate& p = Predicate())
{
typedef filter_iterator_generator<Predicate, Iterator> Gen;
typedef typename Gen::policies_type policies_t;
typedef typename Gen::type result_t;
return result_t(first, policies_t(p, last));
}
// Supply the Traits type via an exaplicit template argument, i.e.,
// make_filter_iterator<Traits>(f, l).
//
// If the Predicate argument "p" is left out, an explicit template
// argument for the Predicate is also required, i.e.,
// make_filter_iterator<Traits, Predicate>(f, l).
template <class Traits, class Predicate, class Iterator>
inline typename filter_iterator_generator<Predicate, Iterator, Traits>::type
make_filter_iterator(Iterator first, Iterator last, const Predicate& p = Predicate(), Traits* = 0)
{
typedef filter_iterator_generator<Predicate, Iterator, Traits> Gen;
typedef typename Gen::policies_type policies_t;
typedef typename Gen::type result_t;
return result_t(first, policies_t(p, last));
}
} // namespace boost
# undef BOOST_ARG_DEPENDENT_TYPENAME
#endif