
New Iterator Concepts

Author: David Abrahams, Jeremy Siek, Thomas Witt
Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@styleadvisor.com
Organization: Boost Consulting, Indiana University Open Systems Lab, Zephyr Associates,

Inc.
Date: 2004-04-06
Number: This is a revised version of n1550=03-0133, which was accepted for Techni-

cal Report 1 by the C++ standard committee’s library working group. This
proposal is a revision of paper n1297, n1477, and n1531.

Copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. All rights
reserved

Abstract: We propose a new system of iterator concepts that treat access and positioning inde-
pendently. This allows the concepts to more closely match the requirements of algorithms and
provides better categorizations of iterators that are used in practice.

Table of Contents

Motivation

Impact on the Standard

Possible (but not proposed) Changes to the Working Paper

Changes to Algorithm Requirements
Deprecations
vector<bool>

Design

Proposed Text

Addition to [lib.iterator.requirements]

Iterator Value Access Concepts [lib.iterator.value.access]
Readable Iterators [lib.readable.iterators]
Writable Iterators [lib.writable.iterators]
Swappable Iterators [lib.swappable.iterators]
Lvalue Iterators [lib.lvalue.iterators]

Iterator Traversal Concepts [lib.iterator.traversal]
Incrementable Iterators [lib.incrementable.iterators]
Single Pass Iterators [lib.single.pass.iterators]
Forward Traversal Iterators [lib.forward.traversal.iterators]
Bidirectional Traversal Iterators [lib.bidirectional.traversal.iterators]
Random Access Traversal Iterators [lib.random.access.traversal.iterators]
Interoperable Iterators [lib.interoperable.iterators]

Addition to [lib.iterator.synopsis]

Addition to [lib.iterator.traits]

Footnotes

1

mailto:dave@boost-consulting.com
mailto:jsiek@osl.iu.edu
mailto:witt@styleadvisor.com
http://www.boost-consulting.com
http://www.osl.iu.edu
http://www.styleadvisor.com
http://www.styleadvisor.com


Motivation

The standard iterator categories and requirements are flawed because they use a single hierarchy of concepts
to address two orthogonal issues: iterator traversal and value access. As a result, many algorithms with
requirements expressed in terms of the iterator categories are too strict. Also, many real-world iterators can not
be accurately categorized. A proxy-based iterator with random-access traversal, for example, may only legally
have a category of “input iterator”, so generic algorithms are unable to take advantage of its random-access
capabilities. The current iterator concept hierarchy is geared towards iterator traversal (hence the category
names), while requirements that address value access sneak in at various places. The following table gives a
summary of the current value access requirements in the iterator categories.

Value Access Requirements in Existing Iterator Categories
Output Iterator *i = a

Input Iterator *i is convertible to T

Forward Iterator *i is T& (or const T& once issue 200 is resolved)
Random Access Iterator i[n] is convertible to T (also i[n] = t is required for mutable itera-

tors once issue 299 is resolved)

Because iterator traversal and value access are mixed together in a single hierarchy, many useful iterators
can not be appropriately categorized. For example, vector<bool>::iterator is almost a random access
iterator, but the return type is not bool& (see issue 96 and Herb Sutter’s paper J16/99-0008 = WG21 N1185).
Therefore, the iterators of vector<bool> only meet the requirements of input iterator and output iterator. This
is so nonintuitive that the C++ standard contradicts itself on this point. In paragraph 23.2.4/1 it says that a
vector is a sequence that supports random access iterators.

Another difficult-to-categorize iterator is the transform iterator, an adaptor which applies a unary function
object to the dereferenced value of the some underlying iterator (see transform iterator). For unary functions
such as times, the return type of operator* clearly needs to be the result type of the function object, which
is typically not a reference. Because random access iterators are required to return lvalues from operator*, if
you wrap int* with a transform iterator, you do not get a random access iterator as might be expected, but
an input iterator.

A third example is found in the vertex and edge iterators of the Boost Graph Library. These iterators
return vertex and edge descriptors, which are lightweight handles created on-the-fly. They must be returned by-
value. As a result, their current standard iterator category is input iterator tag, which means that, strictly
speaking, you could not use these iterators with algorithms like min element(). As a temporary solution, the
concept Multi-Pass Input Iterator was introduced to describe the vertex and edge descriptors, but as the design
notes for the concept suggest, a better solution is needed.

In short, there are many useful iterators that do not fit into the current standard iterator categories. As a
result, the following bad things happen:

• Iterators are often mis-categorized.

• Algorithm requirements are more strict than necessary, because they cannot separate the need for random
access or bidirectional traversal from the need for a true reference return type.

Impact on the Standard

This proposal for TR1 is a pure extension. Further, the new iterator concepts are backward-compatible with
the old iterator requirements, and old iterators are forward-compatible with the new iterator concepts. That
is to say, iterators that satisfy the old requirements also satisfy appropriate concepts in the new system, and
iterators modeling the new concepts will automatically satisfy the appropriate old requirements.

Possible (but not proposed) Changes to the Working Paper

The extensions in this paper suggest several changes we might make to the working paper for the next standard.
These changes are not a formal part of this proposal for TR1.

Changes to Algorithm Requirements

The algorithms in the standard library could benefit from the new iterator concepts because the new concepts
provide a more accurate way to express their type requirements. The result is algorithms that are usable in
more situations and have fewer type requirements.

2

http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/lwg-active.html#200
http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/lwg-active.html#299
http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/lwg-active.html#96
http://www.boost.org/libs/utility/transform_iterator.htm
http://www.boost.org/libs/graph/doc/table_of_contents.html
http://www.boost.org/libs/utility/MultiPassInputIterator.html


For the next working paper (but not for TR1), the committee should consider the following changes to the
type requirements of algorithms. These changes are phrased as textual substitutions, listing the algorithms to
which each textual substitution applies.

Forward Iterator -> Forward Traversal Iterator and Readable Iterator

find end, adjacent find, search, search n, rotate copy, lower bound, upper bound, equal range,
binary search, min element, max element

Forward Iterator (1) -> Single Pass Iterator and Readable Iterator, Forward Iterator (2) -> Forward Traver-
sal Iterator and Readable Iterator

find first of

Forward Iterator -> Readable Iterator and Writable Iterator

iter swap

Forward Iterator -> Single Pass Iterator and Writable Iterator

fill, generate

Forward Iterator -> Forward Traversal Iterator and Swappable Iterator

rotate

Forward Iterator (1) -> Swappable Iterator and Single Pass Iterator, Forward Iterator (2) -> Swappable
Iterator and Incrementable Iterator

swap ranges

Forward Iterator -> Forward Traversal Iterator and Readable Iterator and Writable Iterator remove,
remove if, unique

Forward Iterator -> Single Pass Iterator and Readable Iterator and Writable Iterator

replace, replace if

Bidirectional Iterator -> Bidirectional Traversal Iterator and Swappable Iterator reverse

Bidirectional Iterator -> Bidirectional Traversal Iterator and Readable and Swappable Iterator
partition

Bidirectional Iterator (1) -> Bidirectional Traversal Iterator and Readable Iterator, Bidirectional Iterator
(2) -> Bidirectional Traversal Iterator and Writable Iterator

copy backwards

Bidirectional Iterator -> Bidirectional Traversal Iterator and Swappable Iterator and Readable Iterator
next permutation, prev permutation

Bidirectional Iterator -> Bidirectional Traversal Iterator and Readable Iterator and Writable Iterator
stable partition, inplace merge

Bidirectional Iterator -> Bidirectional Traversal Iterator and Readable Iterator reverse copy

Random Access Iterator -> Random Access Traversal Iterator and Readable and Writable Iterator
random shuffle, sort, stable sort, partial sort, nth element, push heap, pop heap make heap,
sort heap

Input Iterator (2) -> Incrementable Iterator and Readable Iterator equal, mismatch

Input Iterator (2) -> Incrementable Iterator and Readable Iterator transform

Deprecations

For the next working paper (but not for TR1), the committee should consider deprecating the old iterator tags,
and std::iterator traits, since it will be superceded by individual traits metafunctions.

3



vector<bool>

For the next working paper (but not for TR1), the committee should consider reclassifying vector<bool>::iterator
as a Random Access Traversal Iterator and Readable Iterator and Writable Iterator.

Design

The iterator requirements are to be separated into two groups. One set of concepts handles the syntax and
semantics of value access:

• Readable Iterator

• Writable Iterator

• Swappable Iterator

• Lvalue Iterator

The access concepts describe requirements related to operator* and operator->, including the value type,
reference, and pointer associated types.

The other set of concepts handles traversal:

• Incrementable Iterator

• Single Pass Iterator

• Forward Traversal Iterator

• Bidirectional Traversal Iterator

• Random Access Traversal Iterator

The refinement relationships for the traversal concepts are in the following diagram.

In addition to the iterator movement operators, such as operator++, the traversal concepts also include
requirements on position comparison such as operator== and operator<. The reason for the fine grain slicing
of the concepts into the Incrementable and Single Pass is to provide concepts that are exact matches with the
original input and output iterator requirements.

This proposal also includes a concept for specifying when an iterator is interoperable with another iterator,
in the sense that int* is interoperable with int const*.

• Interoperable Iterators

The relationship between the new iterator concepts and the old are given in the following diagram.

4



Like the old iterator requirements, we provide tags for purposes of dispatching based on the traversal
concepts. The tags are related via inheritance so that a tag is convertible to another tag if the concept
associated with the first tag is a refinement of the second tag.

Our design reuses iterator traits<Iter>::iterator category to indicate an iterator’s traversal capa-
bility. To specify capabilities not captured by any old-style iterator category, an iterator designer can use an
iterator category type that is convertible to both the the most-derived old iterator category tag which fits,
and the appropriate new iterator traversal tag.

We do not provide tags for the purposes of dispatching based on the access concepts, in part because we could
not find a way to automatically infer the right access tags for old-style iterators. An iterator’s writability may
be dependent on the assignability of its value type and there’s no known way to detect whether an arbitrary
type is assignable. Fortunately, the need for dispatching based on access capability is not as great as the need
for dispatching based on traversal capability.

A difficult design decision concerned the operator[]. The direct approach for specifying operator[] would
have a return type of reference; the same as operator*. However, going in this direction would mean that an
iterator satisfying the old Random Access Iterator requirements would not necessarily be a model of Readable
or Writable Lvalue Iterator. Instead we have chosen a design that matches the preferred resolution of issue 299:
operator[] is only required to return something convertible to the value type (for a Readable Iterator), and
is required to support assignment i[n] = t (for a Writable Iterator).

Proposed Text

Addition to [lib.iterator.requirements]

Iterator Value Access Concepts [lib.iterator.value.access]

In the tables below, X is an iterator type, a is a constant object of type X, R is std::iterator traits<X>::reference,
T is std::iterator traits<X>::value type, and v is a constant object of type T.

Readable Iterators [lib.readable.iterators]

A class or built-in type X models the Readable Iterator concept for value type T if, in addition to X being
Assignable and Copy Constructible, the following expressions are valid and respect the stated semantics. U is
the type of any specified member of type T.

Readable Iterator Requirements (in addition to Assignable and Copy Constructible)
Expression Return Type Note/Precondition
iterator traits<X>::value typeT Any non-reference, non-cv-qualified type

5

http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/lwg-active.html#299


Readable Iterator Requirements (in addition to Assignable and Copy Constructible)
Expression Return Type Note/Precondition
*a Convertible to T

pre: a is dereferenceable. If a == b then *a is
equivalent to *b.

a->m U& pre: pre: (*a).m is well-defined. Equivalent to
(*a).m.

Writable Iterators [lib.writable.iterators]

A class or built-in type X models the Writable Iterator concept if, in addition to X being Copy Constructible,
the following expressions are valid and respect the stated semantics. Writable Iterators have an associated set
of value types.

Writable Iterator Requirements (in addition to Copy Constructible)
Expression Return Type Precondition
*a = o pre: The type of o is in the set of

value types of X

Swappable Iterators [lib.swappable.iterators]

A class or built-in type X models the Swappable Iterator concept if, in addition to X being Copy Constructible,
the following expressions are valid and respect the stated semantics.

Swappable Iterator Requirements (in addition to Copy Constructible)
Expression Return Type Postcondition
iter swap(a, b) void the pointed to values are exchanged

[Note: An iterator that is a model of the Readable and Writable Iterator concepts is also a model
of Swappable Iterator. –end note]

Lvalue Iterators [lib.lvalue.iterators]

The Lvalue Iterator concept adds the requirement that the return type of operator* type be a reference to the
value type of the iterator.

Lvalue Iterator Requirements
Expression Return

Type
Note/Assertion

*a T& T is cv iterator traits<X>::value type
where cv is an optional cv-qualification. pre:
a is dereferenceable. If a == b then *a is
equivalent to *b.

Iterator Traversal Concepts [lib.iterator.traversal]

In the tables below, X is an iterator type, a and b are constant objects of type X, r and s are mutable objects
of type X, T is std::iterator traits<X>::value type, and v is a constant object of type T.

Incrementable Iterators [lib.incrementable.iterators]

A class or built-in type X models the Incrementable Iterator concept if, in addition to X being Assignable and
Copy Constructible, the following expressions are valid and respect the stated semantics.

6



Incrementable Iterator Requirements (in addition to Assignable, Copy Constructible)
Expression Return Type Assertion/Semantics
++r X& &r == &++r

r++ X

{
X tmp = r;
++r;
return tmp;

}

iterator traversal<X>::type Convertible to
incrementable traversal tag

Single Pass Iterators [lib.single.pass.iterators]

A class or built-in type X models the Single Pass Iterator concept if the following expressions are valid and
respect the stated semantics.

Single Pass Iterator Requirements (in addition to Incrementable Iterator and Equality Comparable)
Expression Return Type Assertion/Semantics / Pre-

/Post-condition
++r X& pre: r is dereferenceable; post:

r is dereferenceable or r is past-
the-end

a == b convertible to bool == is an equivalence relation over
its domain

a != b convertible to bool !(a == b)

iterator traversal<X>::type Convertible to
single pass traversal tag

Forward Traversal Iterators [lib.forward.traversal.iterators]

A class or built-in type X models the Forward Traversal Iterator concept if, in addition to X meeting the
requirements of Default Constructible and Single Pass Iterator, the following expressions are valid and respect
the stated semantics.

Forward Traversal Iterator Requirements (in addition to Default Constructible and Single Pass Iterator)
Expression Return Type Assertion/Note
X u; X& note: u may have a singular

value.
++r X& r == s and r is dereference-

able implies ++r == ++s.

iterator traits<X>::difference type A signed integral type representing
the distance between iterators

iterator traversal<X>::type Convertible to
forward traversal tag

Bidirectional Traversal Iterators [lib.bidirectional.traversal.iterators]

A class or built-in type X models the Bidirectional Traversal Iterator concept if, in addition to X meeting the
requirements of Forward Traversal Iterator, the following expressions are valid and respect the stated semantics.

7



Bidirectional Traversal Iterator Requirements (in addition to Forward Traversal Iterator)
Expression Return Type Assertion/Semantics

/ Pre-/Post-condition
--r X& pre: there exists s such

that r == ++s. post: s is
dereferenceable. --(++r)
== r. --r == --s im-
plies r == s. &r ==
&--r.

r-- convertible to const X&

{
X tmp = r;
--r;
return tmp;

}

iterator traversal<X>::type Convertible to
bidirectional traversal tag

Random Access Traversal Iterators [lib.random.access.traversal.iterators]

A class or built-in type X models the Random Access Traversal Iterator concept if the following expressions are
valid and respect the stated semantics. In the table below, Distance is iterator traits<X>::difference type
and n represents a constant object of type Distance.

Random Access Traversal Iterator Requirements (in addition to Bidirectional Traversal Iterator)
Expression Return Type Operational Se-

mantics
Assertion/ Pre-

condition
r += n X&

{
Distance m = n;
if (m >= 0)
while (m--)
++r;

else
while (m++)
--r;

return r;
}

a + n, n + a X { X tmp = a; return
tmp += n; }

r -= n X& return r += -n

a - n X { X tmp = a; return
tmp -= n; }

b - a Distance a < b ?
distance(a,b) :
-distance(b,a)

pre: there exists a
value n of Distance
such that a + n ==
b. b == a + (b -
a).

a[n] convertible to T *(a + n) pre: a is a readable
iterator

a[n] = v convertible to T *(a + n) = v pre: a is a writable
iterator

a < b convertible to bool b - a > 0 < is a total ordering
relation

8



Random Access Traversal Iterator Requirements (in addition to Bidirectional Traversal Iterator)
Expression Return Type Operational Se-

mantics
Assertion/ Pre-

condition
a > b convertible to bool b < a > is a total ordering

relation
a >= b convertible to bool !(a < b)

a <= b convertible to bool !(a > b)

iterator traversal<X>::typeConvertible to
random access traversal tag

Interoperable Iterators [lib.interoperable.iterators]

A class or built-in type X that models Single Pass Iterator is interoperable with a class or built-in type Y that also
models Single Pass Iterator if the following expressions are valid and respect the stated semantics. In the tables
below, x is an object of type X, y is an object of type Y, Distance is iterator traits<Y>::difference type,
and n represents a constant object of type Distance.

Expression Return Type Assertion/Precondition/Postcondition
y = x Y post: y == x

Y(x) Y post: Y(x) == x

x == y convertible to bool == is an equivalence relation over its domain.
y == x convertible to bool == is an equivalence relation over its domain.
x != y convertible to bool bool(a==b) != bool(a!=b) over its domain.
y != x convertible to bool bool(a==b) != bool(a!=b) over its domain.

If X and Y both model Random Access Traversal Iterator then the following additional requirements must
be met.

Expres-
sion

Return Type Operational Se-
mantics

Assertion/ Precondition

x < y convertible to bool y - x > 0 < is a total ordering relation
y < x convertible to bool x - y > 0 < is a total ordering relation
x > y convertible to bool y < x > is a total ordering relation
y > x convertible to bool x < y > is a total ordering relation
x >= y convertible to bool !(x < y)

y >= x convertible to bool !(y < x)

x <= y convertible to bool !(x > y)

y <= x convertible to bool !(y > x)

y - x Distance distance(Y(x),y) pre: there exists a value n of Distance
such that x + n == y. y == x + (y -
x).

x - y Distance distance(y,Y(x)) pre: there exists a value n of Distance
such that y + n == x. x == y + (x -
y).

Addition to [lib.iterator.synopsis]

// lib.iterator.traits, traits and tags
template <class Iterator> struct is readable iterator;
template <class Iterator> struct iterator traversal;

struct incrementable traversal tag { };
struct single pass traversal tag : incrementable traversal tag { };
struct forward traversal tag : single pass traversal tag { };

9



struct bidirectional traversal tag : forward traversal tag { };
struct random access traversal tag : bidirectional traversal tag { };

Addition to [lib.iterator.traits]

The is readable iterator class template satisfies the UnaryTypeTrait requirements.
Given an iterator type X, is readable iterator<X>::value yields true if, for an object a of type X, *a is

convertible to iterator traits<X>::value type, and false otherwise.
iterator traversal<X>::type is

category-to-traversal (iterator traits<X>::iterator category)

where category-to-traversal is defined as follows

category-to-traversal (C) =
if (C is convertible to incrementable traversal tag)

return C;
else if (C is convertible to random access iterator tag)

return random access traversal tag;
else if (C is convertible to bidirectional iterator tag)

return bidirectional traversal tag;
else if (C is convertible to forward iterator tag)

return forward traversal tag;
else if (C is convertible to input iterator tag)

return single pass traversal tag;
else if (C is convertible to output iterator tag)

return incrementable traversal tag;
else

the program is ill-formed

Footnotes

The UnaryTypeTrait concept is defined in n1519; the LWG is considering adding the requirement that special-
izations are derived from their nested ::type.

10

http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1519.htm
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1519.htm

	Table of Contents
	Motivation
	Impact on the Standard
	Possible (but not proposed) Changes to the Working Paper
	Changes to Algorithm Requirements
	Deprecations
	vector<bool>


	Design
	Proposed Text
	Addition to [lib.iterator.requirements]
	Iterator Value Access Concepts [lib.iterator.value.access]
	Readable Iterators [lib.readable.iterators]
	Writable Iterators [lib.writable.iterators]
	Swappable Iterators [lib.swappable.iterators]
	Lvalue Iterators [lib.lvalue.iterators]

	Iterator Traversal Concepts [lib.iterator.traversal]
	Incrementable Iterators [lib.incrementable.iterators]
	Single Pass Iterators [lib.single.pass.iterators]
	Forward Traversal Iterators [lib.forward.traversal.iterators]
	Bidirectional Traversal Iterators [lib.bidirectional.traversal.iterators]
	Random Access Traversal Iterators [lib.random.access.traversal.iterators]
	Interoperable Iterators [lib.interoperable.iterators]


	Addition to [lib.iterator.synopsis]
	Addition to [lib.iterator.traits]

	Footnotes

