mirror of
https://github.com/boostorg/iterator.git
synced 2025-05-11 13:33:56 +00:00
Added first (rough) draft of quickbook documentation
[SVN r30962]
This commit is contained in:
parent
48f7be7015
commit
ae10a3b706
20
doc/Jamfile.v2
Normal file
20
doc/Jamfile.v2
Normal file
@ -0,0 +1,20 @@
|
||||
# Copyright Thomas Witt 2005. Use, modification, and distribution are
|
||||
# subject to the Boost Software License, Version 1.0. (See accompanying
|
||||
# file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
using quickbook ;
|
||||
|
||||
xml iterator
|
||||
:
|
||||
quickbook/iterator.qbk
|
||||
;
|
||||
|
||||
boostbook standalone
|
||||
:
|
||||
iterator
|
||||
:
|
||||
<xsl:param>toc.max.depth=3
|
||||
<xsl:param>toc.section.depth=3
|
||||
<xsl:param>chunk.section.depth=4
|
||||
;
|
||||
|
333
doc/quickbook/adaptor.qbk
Normal file
333
doc/quickbook/adaptor.qbk
Normal file
@ -0,0 +1,333 @@
|
||||
|
||||
[section:adaptor Iterator Adaptor]
|
||||
|
||||
The `iterator_adaptor` class template adapts some `Base` [#base]_
|
||||
type to create a new iterator. Instantiations of `iterator_adaptor`
|
||||
are derived from a corresponding instantiation of `iterator_facade`
|
||||
and implement the core behaviors in terms of the `Base` type. In
|
||||
essence, `iterator_adaptor` merely forwards all operations to an
|
||||
instance of the `Base` type, which it stores as a member.
|
||||
|
||||
.. [#base] The term "Base" here does not refer to a base class and is
|
||||
not meant to imply the use of derivation. We have followed the lead
|
||||
of the standard library, which provides a base() function to access
|
||||
the underlying iterator object of a `reverse_iterator` adaptor.
|
||||
|
||||
The user of `iterator_adaptor` creates a class derived from an
|
||||
instantiation of `iterator_adaptor` and then selectively
|
||||
redefines some of the core member functions described in the
|
||||
`iterator_facade` core requirements table. The `Base` type need
|
||||
not meet the full requirements for an iterator; it need only
|
||||
support the operations used by the core interface functions of
|
||||
`iterator_adaptor` that have not been redefined in the user's
|
||||
derived class.
|
||||
|
||||
Several of the template parameters of `iterator_adaptor` default
|
||||
to `use_default`. This allows the
|
||||
user to make use of a default parameter even when she wants to
|
||||
specify a parameter later in the parameter list. Also, the
|
||||
defaults for the corresponding associated types are somewhat
|
||||
complicated, so metaprogramming is required to compute them, and
|
||||
`use_default` can help to simplify the implementation. Finally,
|
||||
the identity of the `use_default` type is not left unspecified
|
||||
because specification helps to highlight that the `Reference`
|
||||
template parameter may not always be identical to the iterator's
|
||||
`reference` type, and will keep users from making mistakes based on
|
||||
that assumption.
|
||||
|
||||
[section:adaptor_reference Reference]
|
||||
|
||||
[h2 Synopsis]
|
||||
|
||||
template <
|
||||
class Derived
|
||||
, class Base
|
||||
, class Value = use_default
|
||||
, class CategoryOrTraversal = use_default
|
||||
, class Reference = use_default
|
||||
, class Difference = use_default
|
||||
>
|
||||
class iterator_adaptor
|
||||
: public iterator_facade<Derived, *V'*, *C'*, *R'*, *D'*> // see details
|
||||
{
|
||||
friend class iterator_core_access;
|
||||
public:
|
||||
iterator_adaptor();
|
||||
explicit iterator_adaptor(Base const& iter);
|
||||
typedef Base base_type;
|
||||
Base const& base() const;
|
||||
protected:
|
||||
typedef iterator_adaptor iterator_adaptor\_;
|
||||
Base const& base_reference() const;
|
||||
Base& base_reference();
|
||||
private: // Core iterator interface for iterator_facade.
|
||||
typename iterator_adaptor::reference dereference() const;
|
||||
|
||||
template <
|
||||
class OtherDerived, class OtherIterator, class V, class C, class R, class D
|
||||
>
|
||||
bool equal(iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const;
|
||||
|
||||
void advance(typename iterator_adaptor::difference_type n);
|
||||
void increment();
|
||||
void decrement();
|
||||
|
||||
template <
|
||||
class OtherDerived, class OtherIterator, class V, class C, class R, class D
|
||||
>
|
||||
typename iterator_adaptor::difference_type distance_to(
|
||||
iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const;
|
||||
|
||||
private:
|
||||
Base m_iterator; // exposition only
|
||||
};
|
||||
|
||||
__ base_parameters_
|
||||
|
||||
.. _requirements:
|
||||
|
||||
[h2 Requirements]
|
||||
|
||||
`static_cast<Derived*>(iterator_adaptor*)` shall be well-formed.
|
||||
The `Base` argument shall be Assignable and Copy Constructible.
|
||||
|
||||
|
||||
.. _base_parameters:
|
||||
|
||||
[h2 Base Class Parameters]
|
||||
|
||||
The *V'*, *C'*, *R'*, and *D'* parameters of the `iterator_facade`
|
||||
used as a base class in the summary of `iterator_adaptor`
|
||||
above are defined as follows:
|
||||
|
||||
[pre
|
||||
*V'* = if (Value is use_default)
|
||||
return iterator_traits<Base>::value_type
|
||||
else
|
||||
return Value
|
||||
|
||||
*C'* = if (CategoryOrTraversal is use_default)
|
||||
return iterator_traversal<Base>::type
|
||||
else
|
||||
return CategoryOrTraversal
|
||||
|
||||
*R'* = if (Reference is use_default)
|
||||
if (Value is use_default)
|
||||
return iterator_traits<Base>::reference
|
||||
else
|
||||
return Value&
|
||||
else
|
||||
return Reference
|
||||
|
||||
*D'* = if (Difference is use_default)
|
||||
return iterator_traits<Base>::difference_type
|
||||
else
|
||||
return Difference
|
||||
]
|
||||
|
||||
[h2 Operations]
|
||||
|
||||
[h3 Public]
|
||||
|
||||
|
||||
iterator_adaptor();
|
||||
|
||||
[*Requires:] The `Base` type must be Default Constructible.\n
|
||||
[*Returns:] An instance of `iterator_adaptor` with
|
||||
`m_iterator` default constructed.
|
||||
|
||||
|
||||
explicit iterator_adaptor(Base const& iter);
|
||||
|
||||
[*Returns:] An instance of `iterator_adaptor` with
|
||||
`m_iterator` copy constructed from `iter`.
|
||||
|
||||
Base const& base() const;
|
||||
|
||||
[*Returns:] `m_iterator`
|
||||
|
||||
|
||||
[h3 Protected]
|
||||
|
||||
Base const& base_reference() const;
|
||||
|
||||
[*Returns:] A const reference to `m_iterator`.
|
||||
|
||||
|
||||
Base& base_reference();
|
||||
|
||||
[*Returns:] A non-const reference to `m_iterator`.
|
||||
|
||||
[h3 Private]
|
||||
|
||||
typename iterator_adaptor::reference dereference() const;
|
||||
|
||||
[*Returns:] `*m_iterator`
|
||||
|
||||
|
||||
template <
|
||||
class OtherDerived, class OtherIterator, class V, class C, class R, class D
|
||||
>
|
||||
bool equal(iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const;
|
||||
|
||||
[*Returns:] `m_iterator == x.base()`
|
||||
|
||||
|
||||
void advance(typename iterator_adaptor::difference_type n);
|
||||
|
||||
[*Effects:] `m_iterator += n;`
|
||||
|
||||
void increment();
|
||||
|
||||
[*Effects:] `++m_iterator;`
|
||||
|
||||
void decrement();
|
||||
|
||||
[*Effects:] `--m_iterator;`
|
||||
|
||||
|
||||
template <
|
||||
class OtherDerived, class OtherIterator, class V, class C, class R, class D
|
||||
>
|
||||
typename iterator_adaptor::difference_type distance_to(
|
||||
iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const;
|
||||
|
||||
[*Returns:] `y.base() - m_iterator`
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:adaptor_tutorial Tutorial]
|
||||
|
||||
In this section we'll further refine the `node_iter` class
|
||||
template we developed in the |fac_tut|_. If you haven't already
|
||||
read that material, you should go back now and check it out because
|
||||
we're going to pick up right where it left off.
|
||||
|
||||
.. |fac_tut| replace:: `iterator_facade` tutorial
|
||||
.. _fac_tut: iterator_facade.html#tutorial-example
|
||||
|
||||
[blurb [*`node_base*` really *is* an iterator]\n\n
|
||||
It's not really a very interesting iterator, since `node_base`
|
||||
is an abstract class: a pointer to a `node_base` just points
|
||||
at some base subobject of an instance of some other class, and
|
||||
incrementing a `node_base*` moves it past this base subobject
|
||||
to who-knows-where? The most we can do with that incremented
|
||||
position is to compare another `node_base*` to it. In other
|
||||
words, the original iterator traverses a one-element array.
|
||||
]
|
||||
|
||||
You probably didn't think of it this way, but the `node_base*`
|
||||
object that underlies `node_iterator` is itself an iterator,
|
||||
just like all other pointers. If we examine that pointer closely
|
||||
from an iterator perspective, we can see that it has much in common
|
||||
with the `node_iterator` we're building. First, they share most
|
||||
of the same associated types (`value_type`, `reference`,
|
||||
`pointer`, and `difference_type`). Second, even some of the
|
||||
core functionality is the same: `operator*` and `operator==` on
|
||||
the `node_iterator` return the result of invoking the same
|
||||
operations on the underlying pointer, via the `node_iterator`\ 's
|
||||
|dereference_and_equal|_). The only real behavioral difference
|
||||
between `node_base*` and `node_iterator` can be observed when
|
||||
they are incremented: `node_iterator` follows the
|
||||
`m_next` pointer, while `node_base*` just applies an address offset.
|
||||
|
||||
.. |dereference_and_equal| replace:: `dereference` and `equal` member functions
|
||||
.. _dereference_and_equal: iterator_facade.html#implementing-the-core-operations
|
||||
|
||||
It turns out that the pattern of building an iterator on another
|
||||
iterator-like type (the `Base` [#base]_ type) while modifying
|
||||
just a few aspects of the underlying type's behavior is an
|
||||
extremely common one, and it's the pattern addressed by
|
||||
`iterator_adaptor`. Using `iterator_adaptor` is very much like
|
||||
using `iterator_facade`, but because iterator_adaptor tries to
|
||||
mimic as much of the `Base` type's behavior as possible, we
|
||||
neither have to supply a `Value` argument, nor implement any core
|
||||
behaviors other than `increment`. The implementation of
|
||||
`node_iter` is thus reduced to:
|
||||
|
||||
template <class Value>
|
||||
class node_iter
|
||||
: public boost::iterator_adaptor<
|
||||
node_iter<Value> // Derived
|
||||
, Value* // Base
|
||||
, boost::use_default // Value
|
||||
, boost::forward_traversal_tag // CategoryOrTraversal
|
||||
>
|
||||
{
|
||||
private:
|
||||
struct enabler {}; // a private type avoids misuse
|
||||
|
||||
public:
|
||||
node_iter()
|
||||
: node_iter::iterator_adaptor_(0) {}
|
||||
|
||||
explicit node_iter(Value* p)
|
||||
: node_iter::iterator_adaptor_(p) {}
|
||||
|
||||
template <class OtherValue>
|
||||
node_iter(
|
||||
node_iter<OtherValue> const& other
|
||||
, typename boost::enable_if<
|
||||
boost::is_convertible<OtherValue*,Value*>
|
||||
, enabler
|
||||
>::type = enabler()
|
||||
)
|
||||
: node_iter::iterator_adaptor_(other.base()) {}
|
||||
|
||||
private:
|
||||
friend class boost::iterator_core_access;
|
||||
void increment() { this->base_reference() = this->base()->next(); }
|
||||
};
|
||||
|
||||
Note the use of `node_iter::iterator_adaptor_` here: because
|
||||
`iterator_adaptor` defines a nested `iterator_adaptor_` type
|
||||
that refers to itself, that gives us a convenient way to refer to
|
||||
the complicated base class type of `node_iter<Value>`. [Note:
|
||||
this technique is known not to work with Borland C++ 5.6.4 and
|
||||
Metrowerks CodeWarrior versions prior to 9.0]
|
||||
|
||||
You can see an example program that exercises this version of the
|
||||
node iterators
|
||||
[@../example/node_iterator3.cpp `here`].
|
||||
|
||||
|
||||
In the case of `node_iter`, it's not very compelling to pass
|
||||
`boost::use_default` as `iterator_adaptor` 's `Value`
|
||||
argument; we could have just passed `node_iter` 's `Value`
|
||||
along to `iterator_adaptor`, and that'd even be shorter! Most
|
||||
iterator class templates built with `iterator_adaptor` are
|
||||
parameterized on another iterator type, rather than on its
|
||||
`value_type`. For example, `boost::reverse_iterator` takes an
|
||||
iterator type argument and reverses its direction of traversal,
|
||||
since the original iterator and the reversed one have all the same
|
||||
associated types, `iterator_adaptor` 's delegation of default
|
||||
types to its `Base` saves the implementor of
|
||||
`boost::reverse_iterator` from writing:
|
||||
|
||||
std::iterator_traits<Iterator>::*some-associated-type*
|
||||
|
||||
at least four times.
|
||||
|
||||
We urge you to review the documentation and implementations of
|
||||
|reverse_iterator|_ and the other Boost `specialized iterator
|
||||
adaptors`__ to get an idea of the sorts of things you can do with
|
||||
`iterator_adaptor`. In particular, have a look at
|
||||
|transform_iterator|_, which is perhaps the most straightforward
|
||||
adaptor, and also |counting_iterator|_, which demonstrates that
|
||||
`iterator_adaptor`\ 's `Base` type needn't be an iterator.
|
||||
|
||||
.. |reverse_iterator| replace:: `reverse_iterator`
|
||||
.. _reverse_iterator: reverse_iterator.html
|
||||
|
||||
.. |counting_iterator| replace:: `counting_iterator`
|
||||
.. _counting_iterator: counting_iterator.html
|
||||
|
||||
.. |transform_iterator| replace:: `transform_iterator`
|
||||
.. _transform_iterator: transform_iterator.html
|
||||
|
||||
__ index.html#specialized-adaptors
|
||||
|
||||
|
||||
[endsect]
|
||||
|
||||
[endsect]
|
160
doc/quickbook/archetypes.qbk
Normal file
160
doc/quickbook/archetypes.qbk
Normal file
@ -0,0 +1,160 @@
|
||||
|
||||
[section:archetypes Iterator Archetypes]
|
||||
|
||||
The `iterator_archetype` class constructs a minimal implementation of
|
||||
one of the iterator access concepts and one of the iterator traversal concepts.
|
||||
This is used for doing a compile-time check to see if a the type requirements
|
||||
of a template are really enough to cover the implementation of the template.
|
||||
For further information see the documentation for the |concepts|_ library.
|
||||
|
||||
[h2 Synopsis]
|
||||
|
||||
namespace iterator_archetypes
|
||||
{
|
||||
// Access categories
|
||||
|
||||
typedef /*implementation defined*/ readable_iterator_t;
|
||||
typedef /*implementation defined*/ writable_iterator_t;
|
||||
typedef /*implementation defined*/ readable_writable_iterator_t;
|
||||
typedef /*implementation defined*/ readable_lvalue_iterator_t;
|
||||
typedef /*implementation defined*/ writable_lvalue_iterator_t;
|
||||
|
||||
}
|
||||
|
||||
template <
|
||||
class Value
|
||||
, class AccessCategory
|
||||
, class TraversalCategory
|
||||
>
|
||||
class iterator_archetype
|
||||
{
|
||||
typedef /* see below */ value_type;
|
||||
typedef /* see below */ reference;
|
||||
typedef /* see below */ pointer;
|
||||
typedef /* see below */ difference_type;
|
||||
typedef /* see below */ iterator_category;
|
||||
};
|
||||
|
||||
[h3 Access Category Tags]
|
||||
|
||||
The access category types provided correspond to the following
|
||||
standard iterator access concept combinations:
|
||||
|
||||
readable_iterator_t :=
|
||||
|
||||
Readable Iterator
|
||||
|
||||
writable_iterator_t :=
|
||||
|
||||
Writeable Iterator
|
||||
|
||||
readable_writable_iterator_t :=
|
||||
|
||||
Readable Iterator & Writeable Iterator & Swappable Iterator
|
||||
|
||||
readable_lvalue_iterator_t :=
|
||||
|
||||
Readable Iterator & Lvalue Iterator
|
||||
|
||||
writeable_lvalue_iterator_t :=
|
||||
|
||||
Readable Iterator & Writeable Iterator & Swappable Iterator & Lvalue Iterator
|
||||
|
||||
[h3 Traits]
|
||||
|
||||
The nested trait types are defined as follows:
|
||||
|
||||
|
||||
if (AccessCategory == readable_iterator_t)
|
||||
|
||||
value_type = Value
|
||||
reference = Value
|
||||
pointer = Value*
|
||||
|
||||
else if (AccessCategory == writable_iterator_t)
|
||||
|
||||
value_type = void
|
||||
reference = void
|
||||
pointer = void
|
||||
|
||||
else if (AccessCategory == readable_writable_iterator_t)
|
||||
|
||||
value_type = Value
|
||||
|
||||
reference :=
|
||||
|
||||
A type X that is convertible to Value for which the following
|
||||
expression is valid. Given an object x of type X and v of type
|
||||
Value.
|
||||
|
||||
x = v
|
||||
|
||||
pointer = Value*
|
||||
|
||||
else if (AccessCategory == readable_lvalue_iterator_t)
|
||||
|
||||
value_type = Value
|
||||
reference = Value const&
|
||||
pointer = Value const*
|
||||
|
||||
else if (AccessCategory == writable_lvalue_iterator_t)
|
||||
|
||||
value_type = Value
|
||||
reference = Value&
|
||||
pointer = Value*
|
||||
|
||||
if ( TraversalCategory is convertible to forward_traversal_tag )
|
||||
|
||||
difference_type := ptrdiff_t
|
||||
|
||||
else
|
||||
|
||||
difference_type := unspecified type
|
||||
|
||||
|
||||
iterator_category :=
|
||||
|
||||
A type X satisfying the following two constraints:
|
||||
|
||||
1. X is convertible to X1, and not to any more-derived
|
||||
type, where X1 is defined by:
|
||||
|
||||
if (reference is a reference type
|
||||
&& TraversalCategory is convertible to forward_traversal_tag)
|
||||
{
|
||||
if (TraversalCategory is convertible to random_access_traversal_tag)
|
||||
X1 = random_access_iterator_tag
|
||||
else if (TraversalCategory is convertible to bidirectional_traversal_tag)
|
||||
X1 = bidirectional_iterator_tag
|
||||
else
|
||||
X1 = forward_iterator_tag
|
||||
}
|
||||
else
|
||||
{
|
||||
if (TraversalCategory is convertible to single_pass_traversal_tag
|
||||
&& reference != void)
|
||||
X1 = input_iterator_tag
|
||||
else
|
||||
X1 = output_iterator_tag
|
||||
}
|
||||
|
||||
2. X is convertible to TraversalCategory
|
||||
|
||||
|
||||
[h2 Requirements]
|
||||
|
||||
The `AccessCategory` argument must be one of the predefined access
|
||||
category tags. The `TraversalCategory` must be one of the standard
|
||||
traversal tags. The `Value` type must satisfy the requirements of
|
||||
the iterator concept specified by `AccessCategory` and
|
||||
`TraversalCategory` as implied by the nested traits types.
|
||||
|
||||
[h2 Concepts]
|
||||
|
||||
`iterator_archetype` models the iterator concepts specified by the
|
||||
`AccessCategory` and `TraversalCategory`
|
||||
arguments. `iterator_archetype` does not model any other access
|
||||
concepts or any more derived traversal concepts.
|
||||
|
||||
|
||||
[endsect]
|
54
doc/quickbook/concept_checking.qbk
Normal file
54
doc/quickbook/concept_checking.qbk
Normal file
@ -0,0 +1,54 @@
|
||||
[section:concept_checking Concept Checking]
|
||||
|
||||
The iterator concept checking classes provide a mechanism for a
|
||||
template to report better error messages when a user instantiates the
|
||||
template with a type that does not meet the requirements of the
|
||||
template. For an introduction to using concept checking classes, see
|
||||
the documentation for the boost::concept_check library.
|
||||
|
||||
[h2 `iterator_concepts.hpp` Synopsis]
|
||||
|
||||
namespace boost_concepts {
|
||||
|
||||
// Iterator Access Concepts
|
||||
|
||||
template <typename Iterator>
|
||||
class ReadableIteratorConcept;
|
||||
|
||||
template <
|
||||
typename Iterator
|
||||
, typename ValueType = std::iterator_traits<Iterator>::value_type
|
||||
>
|
||||
class WritableIteratorConcept;
|
||||
|
||||
template <typename Iterator>
|
||||
class SwappableIteratorConcept;
|
||||
|
||||
template <typename Iterator>
|
||||
class LvalueIteratorConcept;
|
||||
|
||||
// Iterator Traversal Concepts
|
||||
|
||||
template <typename Iterator>
|
||||
class IncrementableIteratorConcept;
|
||||
|
||||
template <typename Iterator>
|
||||
class SinglePassIteratorConcept;
|
||||
|
||||
template <typename Iterator>
|
||||
class ForwardTraversalConcept;
|
||||
|
||||
template <typename Iterator>
|
||||
class BidirectionalTraversalConcept;
|
||||
|
||||
template <typename Iterator>
|
||||
class RandomAccessTraversalConcept;
|
||||
|
||||
// Interoperability
|
||||
|
||||
template <typename Iterator, typename ConstIterator>
|
||||
class InteroperableIteratorConcept;
|
||||
|
||||
}
|
||||
|
||||
[endsect]
|
362
doc/quickbook/concepts.qbk
Normal file
362
doc/quickbook/concepts.qbk
Normal file
@ -0,0 +1,362 @@
|
||||
|
||||
[section:concepts Iterator Concepts]
|
||||
|
||||
[section:concepts_access Access]
|
||||
|
||||
[h2 Readable Iterator Concept]
|
||||
|
||||
A class or built-in type `X` models the *Readable Iterator* concept
|
||||
for value type `T` if, in addition to `X` being Assignable and
|
||||
Copy Constructible, the following expressions are valid and respect
|
||||
the stated semantics. `U` is the type of any specified member of
|
||||
type `T`.
|
||||
|
||||
[table Readable Iterator Requirements (in addition to Assignable and Copy Constructible)
|
||||
[
|
||||
[Expression]
|
||||
[Return Type]
|
||||
[Note/Precondition]
|
||||
]
|
||||
[
|
||||
[`iterator_traits<X>::value_type`]
|
||||
[`T`]
|
||||
[Any non-reference, non cv-qualified type]
|
||||
]
|
||||
[
|
||||
[`*a`]
|
||||
[ Convertible to `T`]
|
||||
[pre: `a` is dereferenceable. If `a == b` then `*a` is equivalent to `*b`.]
|
||||
]
|
||||
[
|
||||
[`a->m`]
|
||||
[`U&`]
|
||||
[pre: `(*a).m` is well-defined. Equivalent to `(*a).m`.]
|
||||
]
|
||||
]
|
||||
|
||||
[h2 Writable Iterator Concept ]
|
||||
|
||||
|
||||
A class or built-in type `X` models the *Writable Iterator* concept
|
||||
if, in addition to `X` being Copy Constructible, the following
|
||||
expressions are valid and respect the stated semantics. Writable
|
||||
Iterators have an associated *set of value types*.
|
||||
|
||||
[table Writable Iterator Requirements (in addition to Copy Constructible)
|
||||
[
|
||||
[Expression]
|
||||
[Return Type]
|
||||
[Precondition]
|
||||
]
|
||||
[
|
||||
[`*a = o` ]
|
||||
[]
|
||||
[pre: The type of `o` is in the set of value types of `X`]
|
||||
]
|
||||
]
|
||||
|
||||
[h2 Swappable Iterator Concept]
|
||||
|
||||
A class or built-in type `X` models the *Swappable Iterator* concept
|
||||
if, in addition to `X` being Copy Constructible, the following
|
||||
expressions are valid and respect the stated semantics.
|
||||
|
||||
[table Swappable Iterator Requirements (in addition to Copy Constructible)
|
||||
[
|
||||
[Expression]
|
||||
[Return Type]
|
||||
[Postcondition]
|
||||
]
|
||||
[
|
||||
[`iter_swap(a, b)`]
|
||||
[`void`]
|
||||
[the pointed to values are exchanged]
|
||||
]
|
||||
]
|
||||
|
||||
[blurb *Note:* An iterator that is a model of the *Readable* and *Writable Iterator* concepts
|
||||
is also a model of *Swappable Iterator*. *--end note*]
|
||||
|
||||
[h2 Lvalue Iterator Concept]
|
||||
|
||||
The *Lvalue Iterator* concept adds the requirement that the return
|
||||
type of `operator*` type be a reference to the value type of the
|
||||
iterator.
|
||||
|
||||
[table Lvalue Iterator Requirements
|
||||
[
|
||||
[Expression]
|
||||
[Return Type]
|
||||
[Note/Assertion]
|
||||
]
|
||||
[
|
||||
[`*a` ]
|
||||
[`T&` ]
|
||||
[
|
||||
`T` is *cv* `iterator_traits<X>::value_type` where *cv* is an optional cv-qualification.
|
||||
pre: `a` is dereferenceable. If `a == b` then `*a` is equivalent to `*b`.
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:concepts_traversal Traversal]
|
||||
|
||||
[h2 Incrementable Iterator Concept]
|
||||
|
||||
|
||||
A class or built-in type `X` models the *Incrementable Iterator*
|
||||
concept if, in addition to `X` being Assignable and Copy
|
||||
Constructible, the following expressions are valid and respect the
|
||||
stated semantics.
|
||||
|
||||
|
||||
[table Incrementable Iterator Requirements (in addition to Assignable, Copy Constructible)
|
||||
[
|
||||
[Expression ]
|
||||
[Return Type]
|
||||
[Assertion/Semantics ]
|
||||
]
|
||||
[
|
||||
[`++r` ]
|
||||
[`X&` ]
|
||||
[`&r == &++r`]
|
||||
]
|
||||
[
|
||||
[`r++` ]
|
||||
[`X` ]
|
||||
[``
|
||||
{
|
||||
X tmp = r;
|
||||
++r;
|
||||
return tmp;
|
||||
}
|
||||
``]
|
||||
]
|
||||
[
|
||||
[`iterator_traversal<X>::type`]
|
||||
[Convertible to `incrementable_traversal_tag`]
|
||||
[]
|
||||
]
|
||||
]
|
||||
|
||||
[h2 Single Pass Iterator Concept]
|
||||
|
||||
A class or built-in type `X` models the *Single Pass Iterator*
|
||||
concept if the following expressions are valid and respect the stated
|
||||
semantics.
|
||||
|
||||
[table Single Pass Iterator Requirements (in addition to Incrementable Iterator and Equality Comparable)
|
||||
[
|
||||
[Expression]
|
||||
[Return Type]
|
||||
[Assertion/Semantics / Pre-/Post-condition]
|
||||
]
|
||||
[
|
||||
[`++r`]
|
||||
[`X&`]
|
||||
[pre:\n`r` is dereferenceable;\npost:\n`r` is dereferenceable or\n`r` is past-the-end]
|
||||
]
|
||||
[
|
||||
[`a == b`]
|
||||
[convertible to `bool`]
|
||||
[`==` is an equivalence relation over its domain]
|
||||
]
|
||||
[
|
||||
[`a != b`]
|
||||
[convertible to `bool`]
|
||||
[`!(a == b)`]
|
||||
]
|
||||
[
|
||||
[`iterator_traversal<X>::type`]
|
||||
[Convertible to`single_pass_traversal_tag`]
|
||||
[]
|
||||
]
|
||||
]
|
||||
|
||||
|
||||
[h2 Forward Traversal Concept]
|
||||
|
||||
A class or built-in type `X` models the *Forward Traversal*
|
||||
concept if, in addition to `X` meeting the requirements of Default
|
||||
Constructible and Single Pass Iterator, the following expressions are
|
||||
valid and respect the stated semantics.
|
||||
|
||||
[table Forward Traversal Iterator Requirements (in addition to Default Constructible and Single Pass Iterator)
|
||||
[
|
||||
[Expression]
|
||||
[Return Type]
|
||||
[Assertion/Note]
|
||||
]
|
||||
[
|
||||
[`X u;`]
|
||||
[`X&`]
|
||||
[note: `u` may have a singular value.]
|
||||
]
|
||||
[
|
||||
[`++r`]
|
||||
[`X&`]
|
||||
[`r == s` and `r` is dereferenceable implies `++r == ++s.`]
|
||||
]
|
||||
[
|
||||
[`iterator_traits<X>::difference_type`]
|
||||
[A signed integral type representing the distance between iterators]
|
||||
[]
|
||||
]
|
||||
[
|
||||
[`iterator_traversal<X>::type`]
|
||||
[Convertible to `forward_traversal_tag`]
|
||||
[]
|
||||
]
|
||||
]
|
||||
|
||||
[h2 Bidirectional Traversal Concept]
|
||||
|
||||
A class or built-in type `X` models the *Bidirectional Traversal*
|
||||
concept if, in addition to `X` meeting the requirements of Forward
|
||||
Traversal Iterator, the following expressions are valid and respect
|
||||
the stated semantics.
|
||||
|
||||
[table Bidirectional Traversal Iterator Requirements (in addition to Forward Traversal Iterator)
|
||||
[
|
||||
[Expression]
|
||||
[Return Type]
|
||||
[Assertion/Semantics/Pre-/Post-condition]
|
||||
]
|
||||
[
|
||||
[`--r`]
|
||||
[`X&`]
|
||||
[pre: there exists `s` such that `r == ++s`.\n post: `s` is dereferenceable. `--(++r) == r`. `--r == --s` implies `r == s`. `&r == &--r`.]
|
||||
]
|
||||
[
|
||||
[`r--`]
|
||||
[convertible to `const X&`]
|
||||
[``
|
||||
{
|
||||
X tmp = r;
|
||||
--r;
|
||||
return tmp;
|
||||
}
|
||||
``]
|
||||
]
|
||||
[
|
||||
[`iterator_traversal<X>::type`]
|
||||
[Convertible to `bidirectional_traversal_tag`]
|
||||
[]
|
||||
]
|
||||
]
|
||||
|
||||
[h2 Random Access Traversal Concept]
|
||||
|
||||
A class or built-in type `X` models the *Random Access Traversal*
|
||||
concept if the following expressions are valid and respect the stated
|
||||
semantics. In the table below, `Distance` is
|
||||
`iterator_traits<X>::difference_type` and `n` represents a
|
||||
constant object of type `Distance`.
|
||||
|
||||
[table Random Access Traversal Iterator Requirements (in addition to Bidirectional Traversal)
|
||||
[
|
||||
[Expression]
|
||||
[Return Type]
|
||||
[Operational Semantics]
|
||||
[Assertion/Precondition]
|
||||
]
|
||||
[
|
||||
[`r += n`]
|
||||
[ `X&`]
|
||||
[``
|
||||
{
|
||||
Distance m = n;
|
||||
if (m >= 0)
|
||||
while (m--)
|
||||
++r;
|
||||
else
|
||||
while (m++)
|
||||
--r;
|
||||
return r;
|
||||
}
|
||||
``]
|
||||
[ ]
|
||||
]
|
||||
[
|
||||
[`a + n`, `n + a`]
|
||||
[`X`]
|
||||
[``
|
||||
{
|
||||
X tmp = a;
|
||||
return tmp+= n;
|
||||
}
|
||||
``]
|
||||
[]
|
||||
]
|
||||
[
|
||||
[`r -= n`]
|
||||
[`X&`]
|
||||
[`return r += -n`]
|
||||
[]
|
||||
]
|
||||
[
|
||||
[`a - n`]
|
||||
[`X`]
|
||||
[``
|
||||
{
|
||||
X tmp = a;
|
||||
return tmp-= n;
|
||||
}
|
||||
``]
|
||||
[]
|
||||
]
|
||||
[
|
||||
[`b - a`]
|
||||
[`Distance`]
|
||||
[`a < b ? distance(a,b) : -distance(b,a)`]
|
||||
[pre: there exists a value `n` of `Distance` such that `a + n == b`. `b == a + (b - a)`.]
|
||||
]
|
||||
[
|
||||
[`a\[n\]`]
|
||||
[convertible to T]
|
||||
[`*(a + n)`]
|
||||
[pre: a is a *Readable Iterator*]
|
||||
]
|
||||
[
|
||||
[`a\[n\] = v`]
|
||||
[convertible to T]
|
||||
[`*(a + n) = v`]
|
||||
[pre: a is a *Writable iterator*]
|
||||
]
|
||||
[
|
||||
[`a < b`]
|
||||
[convertible to `bool`]
|
||||
[`b - a > 0`]
|
||||
[`<` is a total ordering relation]
|
||||
]
|
||||
[
|
||||
[`a > b`]
|
||||
[convertible to `bool`]
|
||||
[`b < a`]
|
||||
[`>` is a total ordering relation]
|
||||
]
|
||||
[
|
||||
[`a >= b`]
|
||||
[convertible to `bool`]
|
||||
[`!(a < b)`]
|
||||
[]
|
||||
]
|
||||
[
|
||||
[`a <= b`]
|
||||
[convertible to `bool`]
|
||||
[`!(a > b)`]
|
||||
[]
|
||||
]
|
||||
[
|
||||
[`iterator_traversal<X>::type`]
|
||||
[convertible to `random_access_traversal_tag`]
|
||||
[]
|
||||
[]
|
||||
]
|
||||
]
|
||||
|
||||
[endsect]
|
||||
|
||||
[endsect]
|
192
doc/quickbook/counting_iterator.qbk
Normal file
192
doc/quickbook/counting_iterator.qbk
Normal file
@ -0,0 +1,192 @@
|
||||
|
||||
[section:counting Counting Iterator]
|
||||
|
||||
A `counting_iterator` adapts an object by adding an `operator*` that
|
||||
returns the current value of the object. All other iterator operations
|
||||
are forwarded to the adapted object.
|
||||
|
||||
|
||||
[h2 Example]
|
||||
|
||||
|
||||
This example fills an array with numbers and a second array with
|
||||
pointers into the first array, using `counting_iterator` for both
|
||||
tasks. Finally `indirect_iterator` is used to print out the numbers
|
||||
into the first array via indirection through the second array.
|
||||
|
||||
int N = 7;
|
||||
std::vector<int> numbers;
|
||||
typedef std::vector<int>::iterator n_iter;
|
||||
std::copy(boost::counting_iterator<int>(0),
|
||||
boost::counting_iterator<int>(N),
|
||||
std::back_inserter(numbers));
|
||||
|
||||
std::vector<std::vector<int>::iterator> pointers;
|
||||
std::copy(boost::make_counting_iterator(numbers.begin()),
|
||||
boost::make_counting_iterator(numbers.end()),
|
||||
std::back_inserter(pointers));
|
||||
|
||||
std::cout << "indirectly printing out the numbers from 0 to "
|
||||
<< N << std::endl;
|
||||
std::copy(boost::make_indirect_iterator(pointers.begin()),
|
||||
boost::make_indirect_iterator(pointers.end()),
|
||||
std::ostream_iterator<int>(std::cout, " "));
|
||||
std::cout << std::endl;
|
||||
|
||||
|
||||
The output is:
|
||||
|
||||
indirectly printing out the numbers from 0 to 7
|
||||
0 1 2 3 4 5 6
|
||||
|
||||
The source code for this example can be found [@../example/counting_iterator_example.cpp here].
|
||||
|
||||
[h2 Reference]
|
||||
|
||||
|
||||
[h3 Synopsis]
|
||||
|
||||
template <
|
||||
class Incrementable
|
||||
, class CategoryOrTraversal = use_default
|
||||
, class Difference = use_default
|
||||
>
|
||||
class counting_iterator
|
||||
{
|
||||
public:
|
||||
typedef Incrementable value_type;
|
||||
typedef const Incrementable& reference;
|
||||
typedef const Incrementable* pointer;
|
||||
typedef /* see below */ difference_type;
|
||||
typedef /* see below */ iterator_category;
|
||||
|
||||
counting_iterator();
|
||||
counting_iterator(counting_iterator const& rhs);
|
||||
explicit counting_iterator(Incrementable x);
|
||||
Incrementable const& base() const;
|
||||
reference operator*() const;
|
||||
counting_iterator& operator++();
|
||||
counting_iterator& operator--();
|
||||
private:
|
||||
Incrementable m_inc; // exposition
|
||||
};
|
||||
|
||||
|
||||
If the `Difference` argument is `use_default` then
|
||||
`difference_type` is an unspecified signed integral
|
||||
type. Otherwise `difference_type` is `Difference`.
|
||||
|
||||
`iterator_category` is determined according to the following
|
||||
algorithm:
|
||||
|
||||
if (CategoryOrTraversal is not use_default)
|
||||
return CategoryOrTraversal
|
||||
else if (numeric_limits<Incrementable>::is_specialized)
|
||||
return |iterator-category|_\ (
|
||||
random_access_traversal_tag, Incrementable, const Incrementable&)
|
||||
else
|
||||
return |iterator-category|_\ (
|
||||
iterator_traversal<Incrementable>::type,
|
||||
Incrementable, const Incrementable&)
|
||||
|
||||
[blurb *Note:* implementers are encouraged to provide an implementation of
|
||||
`operator-` and a `difference_type` that avoids overflows in
|
||||
the cases where `std::numeric_limits<Incrementable>::is_specialized`
|
||||
is true.]
|
||||
|
||||
[h3 Requirements]
|
||||
|
||||
|
||||
The `Incrementable` argument shall be Copy Constructible and Assignable.
|
||||
|
||||
If `iterator_category` is convertible to `forward_iterator_tag`
|
||||
or `forward_traversal_tag`, the following must be well-formed:
|
||||
|
||||
Incrementable i, j;
|
||||
++i; // pre-increment
|
||||
i == j; // operator equal
|
||||
|
||||
|
||||
If `iterator_category` is convertible to
|
||||
`bidirectional_iterator_tag` or `bidirectional_traversal_tag`,
|
||||
the following expression must also be well-formed:
|
||||
|
||||
--i
|
||||
|
||||
If `iterator_category` is convertible to
|
||||
`random_access_iterator_tag` or `random_access_traversal_tag`,
|
||||
the following must must also be valid:
|
||||
|
||||
counting_iterator::difference_type n;
|
||||
i += n;
|
||||
n = i - j;
|
||||
i < j;
|
||||
|
||||
|
||||
[h3 Concepts]
|
||||
|
||||
|
||||
Specializations of `counting_iterator` model Readable Lvalue
|
||||
Iterator. In addition, they model the concepts corresponding to the
|
||||
iterator tags to which their `iterator_category` is convertible.
|
||||
Also, if `CategoryOrTraversal` is not `use_default` then
|
||||
`counting_iterator` models the concept corresponding to the iterator
|
||||
tag `CategoryOrTraversal`. Otherwise, if
|
||||
`numeric_limits<Incrementable>::is_specialized`, then
|
||||
`counting_iterator` models Random Access Traversal Iterator.
|
||||
Otherwise, `counting_iterator` models the same iterator traversal
|
||||
concepts modeled by `Incrementable`.
|
||||
|
||||
`counting_iterator<X,C1,D1>` is interoperable with
|
||||
`counting_iterator<Y,C2,D2>` if and only if `X` is
|
||||
interoperable with `Y`.
|
||||
|
||||
|
||||
[h3 Operations]
|
||||
|
||||
|
||||
In addition to the operations required by the concepts modeled by
|
||||
`counting_iterator`, `counting_iterator` provides the following
|
||||
operations.
|
||||
|
||||
|
||||
counting_iterator();
|
||||
|
||||
[*Requires: ] `Incrementable` is Default Constructible.\n
|
||||
[*Effects: ] Default construct the member `m_inc`.
|
||||
|
||||
|
||||
counting_iterator(counting_iterator const& rhs);
|
||||
|
||||
[*Effects: ] Construct member `m_inc` from `rhs.m_inc`.
|
||||
|
||||
|
||||
|
||||
explicit counting_iterator(Incrementable x);
|
||||
|
||||
[*Effects: ] Construct member `m_inc` from `x`.
|
||||
|
||||
|
||||
reference operator*() const;
|
||||
|
||||
[*Returns: ] `m_inc`
|
||||
|
||||
|
||||
counting_iterator& operator++();
|
||||
|
||||
[*Effects: ] `++m_inc`\n
|
||||
[*Returns: ] `*this`
|
||||
|
||||
|
||||
counting_iterator& operator--();
|
||||
|
||||
[*Effects: ] `--m_inc`\n
|
||||
[*Returns: ] `*this`
|
||||
|
||||
|
||||
Incrementable const& base() const;
|
||||
|
||||
[*Returns: ] `m_inc`
|
||||
|
||||
|
||||
[endsect]
|
619
doc/quickbook/facade.qbk
Normal file
619
doc/quickbook/facade.qbk
Normal file
@ -0,0 +1,619 @@
|
||||
|
||||
[section:facade Iterator Facade]
|
||||
|
||||
While the iterator interface is rich, there is a core subset of the
|
||||
interface that is necessary for all the functionality. We have
|
||||
identified the following core behaviors for iterators:
|
||||
|
||||
* dereferencing
|
||||
* incrementing
|
||||
* decrementing
|
||||
* equality comparison
|
||||
* random-access motion
|
||||
* distance measurement
|
||||
|
||||
In addition to the behaviors listed above, the core interface elements
|
||||
include the associated types exposed through iterator traits:
|
||||
`value_type`, `reference`, `difference_type`, and
|
||||
`iterator_category`.
|
||||
|
||||
Iterator facade uses the Curiously Recurring Template
|
||||
Pattern (CRTP) [Cop95]_ so that the user can specify the behavior
|
||||
of `iterator_facade` in a derived class. Former designs used
|
||||
policy objects to specify the behavior, but that approach was
|
||||
discarded for several reasons:
|
||||
|
||||
1. the creation and eventual copying of the policy object may create
|
||||
overhead that can be avoided with the current approach.
|
||||
|
||||
2. The policy object approach does not allow for custom constructors
|
||||
on the created iterator types, an essential feature if
|
||||
`iterator_facade` should be used in other library
|
||||
implementations.
|
||||
|
||||
3. Without the use of CRTP, the standard requirement that an
|
||||
iterator's `operator++` returns the iterator type itself
|
||||
would mean that all iterators built with the library would
|
||||
have to be specializations of `iterator_facade<...>`, rather
|
||||
than something more descriptive like
|
||||
`indirect_iterator<T*>`. Cumbersome type generator
|
||||
metafunctions would be needed to build new parameterized
|
||||
iterators, and a separate `iterator_adaptor` layer would be
|
||||
impossible.
|
||||
|
||||
[h2 Usage]
|
||||
|
||||
The user of `iterator_facade` derives his iterator class from a
|
||||
specialization of `iterator_facade` and passes the derived
|
||||
iterator class as `iterator_facade`\ 's first template parameter.
|
||||
The order of the other template parameters have been carefully
|
||||
chosen to take advantage of useful defaults. For example, when
|
||||
defining a constant lvalue iterator, the user can pass a
|
||||
const-qualified version of the iterator's `value_type` as
|
||||
`iterator_facade`\ 's `Value` parameter and omit the
|
||||
`Reference` parameter which follows.
|
||||
|
||||
The derived iterator class must define member functions implementing
|
||||
the iterator's core behaviors. The following table describes
|
||||
expressions which are required to be valid depending on the category
|
||||
of the derived iterator type. These member functions are described
|
||||
briefly below and in more detail in the iterator facade
|
||||
requirements.
|
||||
|
||||
[table Core Interface
|
||||
[
|
||||
[Expression]
|
||||
[Effects]
|
||||
]
|
||||
[
|
||||
[`i.dereference()`]
|
||||
[Access the value referred to]
|
||||
[
|
||||
[`i.equal(j)`]
|
||||
[Compare for equality with `j`]
|
||||
]
|
||||
[
|
||||
[`i.increment()`]
|
||||
[Advance by one position]
|
||||
]
|
||||
[
|
||||
[`i.decrement()`]
|
||||
[Retreat by one position]
|
||||
]
|
||||
[
|
||||
[`i.advance(n)`]
|
||||
[Advance by `n` positions]
|
||||
[
|
||||
[`i.distance_to(j)`]
|
||||
[Measure the distance to `j`]
|
||||
]
|
||||
]
|
||||
|
||||
[/ .. Should we add a comment that a zero overhead implementation of iterator_facade is possible with proper inlining?]
|
||||
|
||||
In addition to implementing the core interface functions, an iterator
|
||||
derived from `iterator_facade` typically defines several
|
||||
constructors. To model any of the standard iterator concepts, the
|
||||
iterator must at least have a copy constructor. Also, if the iterator
|
||||
type `X` is meant to be automatically interoperate with another
|
||||
iterator type `Y` (as with constant and mutable iterators) then
|
||||
there must be an implicit conversion from `X` to `Y` or from `Y`
|
||||
to `X` (but not both), typically implemented as a conversion
|
||||
constructor. Finally, if the iterator is to model Forward Traversal
|
||||
Iterator or a more-refined iterator concept, a default constructor is
|
||||
required.
|
||||
|
||||
[h2 Iterator Core Access]
|
||||
|
||||
`iterator_facade` and the operator implementations need to be able
|
||||
to access the core member functions in the derived class. Making the
|
||||
core member functions public would expose an implementation detail to
|
||||
the user. The design used here ensures that implementation details do
|
||||
not appear in the public interface of the derived iterator type.
|
||||
|
||||
Preventing direct access to the core member functions has two
|
||||
advantages. First, there is no possibility for the user to accidently
|
||||
use a member function of the iterator when a member of the value_type
|
||||
was intended. This has been an issue with smart pointer
|
||||
implementations in the past. The second and main advantage is that
|
||||
library implementers can freely exchange a hand-rolled iterator
|
||||
implementation for one based on `iterator_facade` without fear of
|
||||
breaking code that was accessing the public core member functions
|
||||
directly.
|
||||
|
||||
In a naive implementation, keeping the derived class' core member
|
||||
functions private would require it to grant friendship to
|
||||
`iterator_facade` and each of the seven operators. In order to
|
||||
reduce the burden of limiting access, `iterator_core_access` is
|
||||
provided, a class that acts as a gateway to the core member functions
|
||||
in the derived iterator class. The author of the derived class only
|
||||
needs to grant friendship to `iterator_core_access` to make his core
|
||||
member functions available to the library.
|
||||
|
||||
|
||||
`iterator_core_access` will be typically implemented as an empty
|
||||
class containing only private static member functions which invoke the
|
||||
iterator core member functions. There is, however, no need to
|
||||
standardize the gateway protocol. Note that even if
|
||||
`iterator_core_access` used public member functions it would not
|
||||
open a safety loophole, as every core member function preserves the
|
||||
invariants of the iterator.
|
||||
|
||||
[h2 `operator\[\]`]
|
||||
|
||||
The indexing operator for a generalized iterator presents special
|
||||
challenges. A random access iterator's `operator[]` is only
|
||||
required to return something convertible to its `value_type`.
|
||||
Requiring that it return an lvalue would rule out currently-legal
|
||||
random-access iterators which hold the referenced value in a data
|
||||
member (e.g. |counting|_), because `*(p+n)` is a reference
|
||||
into the temporary iterator `p+n`, which is destroyed when
|
||||
`operator[]` returns.
|
||||
|
||||
.. |counting| replace:: `counting_iterator`
|
||||
|
||||
Writable iterators built with `iterator_facade` implement the
|
||||
semantics required by the preferred resolution to `issue 299`_ and
|
||||
adopted by proposal n1550_: the result of `p[n]` is an object
|
||||
convertible to the iterator's `value_type`, and `p[n] = x` is
|
||||
equivalent to `*(p + n) = x` (Note: This result object may be
|
||||
implemented as a proxy containing a copy of `p+n`). This approach
|
||||
will work properly for any random-access iterator regardless of the
|
||||
other details of its implementation. A user who knows more about
|
||||
the implementation of her iterator is free to implement an
|
||||
`operator[]` that returns an lvalue in the derived iterator
|
||||
class; it will hide the one supplied by `iterator_facade` from
|
||||
clients of her iterator.
|
||||
|
||||
.. _n1550: http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html
|
||||
|
||||
.. _`issue 299`: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-active.html#299
|
||||
|
||||
.. _`operator arrow`:
|
||||
|
||||
[h2 `operator->`]
|
||||
|
||||
The `reference` type of a readable iterator (and today's input
|
||||
iterator) need not in fact be a reference, so long as it is
|
||||
convertible to the iterator's `value_type`. When the `value_type`
|
||||
is a class, however, it must still be possible to access members
|
||||
through `operator->`. Therefore, an iterator whose `reference`
|
||||
type is not in fact a reference must return a proxy containing a copy
|
||||
of the referenced value from its `operator->`.
|
||||
|
||||
The return types for `iterator_facade`\ 's `operator->` and
|
||||
`operator[]` are not explicitly specified. Instead, those types
|
||||
are described in terms of a set of requirements, which must be
|
||||
satisfied by the `iterator_facade` implementation.
|
||||
|
||||
.. [Cop95] [Coplien, 1995] Coplien, J., Curiously Recurring Template
|
||||
Patterns, C++ Report, February 1995, pp. 24-27.
|
||||
|
||||
[section:facade_reference Reference]
|
||||
|
||||
template <
|
||||
class Derived
|
||||
, class Value
|
||||
, class CategoryOrTraversal
|
||||
, class Reference = Value&
|
||||
, class Difference = ptrdiff_t
|
||||
>
|
||||
class iterator_facade {
|
||||
public:
|
||||
typedef remove_const<Value>::type value_type;
|
||||
typedef Reference reference;
|
||||
typedef Value\* pointer;
|
||||
typedef Difference difference_type;
|
||||
typedef /* see below__ \*/ iterator_category;
|
||||
|
||||
reference operator\*() const;
|
||||
/* see below__ \*/ operator->() const;
|
||||
/* see below__ \*/ operator[](difference_type n) const;
|
||||
Derived& operator++();
|
||||
Derived operator++(int);
|
||||
Derived& operator--();
|
||||
Derived operator--(int);
|
||||
Derived& operator+=(difference_type n);
|
||||
Derived& operator-=(difference_type n);
|
||||
Derived operator-(difference_type n) const;
|
||||
protected:
|
||||
typedef iterator_facade iterator_facade\_;
|
||||
};
|
||||
|
||||
// Comparison operators
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
typename enable_if_interoperable<Dr1,Dr2,bool>::type // exposition
|
||||
operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
typename enable_if_interoperable<Dr1,Dr2,bool>::type
|
||||
operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
typename enable_if_interoperable<Dr1,Dr2,bool>::type
|
||||
operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
typename enable_if_interoperable<Dr1,Dr2,bool>::type
|
||||
operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
typename enable_if_interoperable<Dr1,Dr2,bool>::type
|
||||
operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
typename enable_if_interoperable<Dr1,Dr2,bool>::type
|
||||
operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
// Iterator difference
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
/* see below__ \*/
|
||||
operator-(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
// Iterator addition
|
||||
template <class Dr, class V, class TC, class R, class D>
|
||||
Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&,
|
||||
typename Derived::difference_type n);
|
||||
|
||||
template <class Dr, class V, class TC, class R, class D>
|
||||
Derived operator+ (typename Derived::difference_type n,
|
||||
iterator_facade<Dr,V,TC,R,D> const&);
|
||||
|
||||
__ `iterator category`_
|
||||
|
||||
__ `operator arrow`_
|
||||
|
||||
__ brackets_
|
||||
|
||||
__ minus_
|
||||
|
||||
.. _`iterator category`:
|
||||
|
||||
The `iterator_category` member of `iterator_facade` is
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
*iterator-category*\ (CategoryOrTraversal, value_type, reference)
|
||||
|
||||
where *iterator-category* is defined as follows:
|
||||
|
||||
.. include:: facade_iterator_category.rst
|
||||
|
||||
The `enable_if_interoperable` template used above is for exposition
|
||||
purposes. The member operators should only be in an overload set
|
||||
provided the derived types `Dr1` and `Dr2` are interoperable,
|
||||
meaning that at least one of the types is convertible to the other. The
|
||||
`enable_if_interoperable` approach uses SFINAE to take the operators
|
||||
out of the overload set when the types are not interoperable.
|
||||
The operators should behave *as-if* `enable_if_interoperable`
|
||||
were defined to be:
|
||||
|
||||
template <bool, typename> enable_if_interoperable_impl
|
||||
{};
|
||||
|
||||
template <typename T> enable_if_interoperable_impl<true,T>
|
||||
{ typedef T type; };
|
||||
|
||||
template<typename Dr1, typename Dr2, typename T>
|
||||
struct enable_if_interoperable
|
||||
: enable_if_interoperable_impl<
|
||||
is_convertible<Dr1,Dr2>::value || is_convertible<Dr2,Dr1>::value
|
||||
, T
|
||||
>
|
||||
{};
|
||||
|
||||
|
||||
[h2 Requirements]
|
||||
|
||||
The following table describes the typical valid expressions on
|
||||
`iterator_facade`\ 's `Derived` parameter, depending on the
|
||||
iterator concept(s) it will model. The operations in the first
|
||||
column must be made accessible to member functions of class
|
||||
`iterator_core_access`. In addition,
|
||||
`static_cast<Derived*>(iterator_facade*)` shall be well-formed.
|
||||
|
||||
In the table below, `F` is `iterator_facade<X,V,C,R,D>`, `a` is an
|
||||
object of type `X`, `b` and `c` are objects of type `const X`,
|
||||
`n` is an object of `F::difference_type`, `y` is a constant
|
||||
object of a single pass iterator type interoperable with `X`, and `z`
|
||||
is a constant object of a random access traversal iterator type
|
||||
interoperable with `X`.
|
||||
|
||||
.. _`core operations`:
|
||||
|
||||
.. topic:: `iterator_facade` Core Operations
|
||||
|
||||
[table Core Operations
|
||||
[
|
||||
[Expression]
|
||||
[Return Type]
|
||||
[Assertion/Note]
|
||||
[Used to implement Iterator Concept(s)]
|
||||
]
|
||||
[
|
||||
[`c.dereference()`]
|
||||
[`F::reference`]
|
||||
[]
|
||||
[Readable Iterator, Writable Iterator]
|
||||
]
|
||||
[
|
||||
[`c.equal(y)`]
|
||||
[convertible to bool]
|
||||
[true iff `c` and `y` refer to the same position]
|
||||
[Single Pass Iterator]
|
||||
]
|
||||
[
|
||||
[`a.increment()`]
|
||||
[unused]
|
||||
[]
|
||||
[Incrementable Iterator]
|
||||
]
|
||||
[
|
||||
[`a.decrement()`]
|
||||
[unused]
|
||||
[]
|
||||
[Bidirectional Traversal Iterator]
|
||||
]
|
||||
[
|
||||
[`a.advance(n)`]
|
||||
[unused]
|
||||
[]
|
||||
[Random Access Traversal Iterator]
|
||||
]
|
||||
[
|
||||
[`c.distance_to(z)`]
|
||||
[convertible to `F::difference_type`]
|
||||
[equivalent to `distance(c, X(z))`.]
|
||||
[Random Access Traversal Iterator]
|
||||
]
|
||||
]
|
||||
|
||||
[h2 Operations]
|
||||
|
||||
The operations in this section are described in terms of operations on
|
||||
the core interface of `Derived` which may be inaccessible
|
||||
(i.e. private). The implementation should access these operations
|
||||
through member functions of class `iterator_core_access`.
|
||||
|
||||
reference operator*() const;
|
||||
|
||||
[*Returns:] `static_cast<Derived const*>(this)->dereference()`
|
||||
|
||||
operator->() const; (see below__)
|
||||
|
||||
__ `operator arrow`_
|
||||
|
||||
[*Returns:] If `reference` is a reference type, an object of type `pointer` equal to: `&static_cast<Derived const*>(this)->dereference()`
|
||||
Otherwise returns an object of unspecified type such that,
|
||||
`(*static_cast<Derived const*>(this))->m` is equivalent to `(w = **static_cast<Derived const*>(this),
|
||||
w.m)` for some temporary object `w` of type `value_type`.
|
||||
|
||||
.. _brackets:
|
||||
|
||||
*unspecified* operator[](difference_type n) const;
|
||||
|
||||
[*Returns:] an object convertible to `value_type`. For constant
|
||||
objects `v` of type `value_type`, and `n` of type
|
||||
`difference_type`, `(*this)[n] = v` is equivalent to
|
||||
`*(*this + n) = v`, and `static_cast<value_type
|
||||
const&>((*this)[n])` is equivalent to
|
||||
`static_cast<value_type const&>(*(*this + n))`
|
||||
|
||||
Derived& operator++();
|
||||
|
||||
[*Effects:]
|
||||
|
||||
static_cast<Derived*>(this)->increment();
|
||||
return *static_cast<Derived*>(this);
|
||||
|
||||
Derived operator++(int);
|
||||
|
||||
[*Effects:]
|
||||
|
||||
Derived tmp(static_cast<Derived const*>(this));
|
||||
++*this;
|
||||
return tmp;
|
||||
|
||||
Derived& operator--();
|
||||
|
||||
[*Effects:]
|
||||
|
||||
static_cast<Derived*>(this)->decrement();
|
||||
return *static_cast<Derived*>(this);
|
||||
|
||||
Derived operator--(int);
|
||||
|
||||
[*Effects:]
|
||||
|
||||
Derived tmp(static_cast<Derived const*>(this));
|
||||
--*this;
|
||||
return tmp;
|
||||
|
||||
|
||||
Derived& operator+=(difference_type n);
|
||||
|
||||
[*Effects:]
|
||||
|
||||
static_cast<Derived*>(this)->advance(n);
|
||||
return *static_cast<Derived*>(this);
|
||||
|
||||
|
||||
Derived& operator-=(difference_type n);
|
||||
|
||||
[*Effects:]
|
||||
|
||||
static_cast<Derived*>(this)->advance(-n);
|
||||
return *static_cast<Derived*>(this);
|
||||
|
||||
|
||||
Derived operator-(difference_type n) const;
|
||||
|
||||
[*Effects:]
|
||||
|
||||
Derived tmp(static_cast<Derived const*>(this));
|
||||
return tmp -= n;
|
||||
|
||||
template <class Dr, class V, class TC, class R, class D>
|
||||
Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&,
|
||||
typename Derived::difference_type n);
|
||||
|
||||
template <class Dr, class V, class TC, class R, class D>
|
||||
Derived operator+ (typename Derived::difference_type n,
|
||||
iterator_facade<Dr,V,TC,R,D> const&);
|
||||
|
||||
[*Effects:]
|
||||
|
||||
Derived tmp(static_cast<Derived const*>(this));
|
||||
return tmp += n;
|
||||
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
typename enable_if_interoperable<Dr1,Dr2,bool>::type
|
||||
operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
[*Returns:]
|
||||
|
||||
if `is_convertible<Dr2,Dr1>::value`
|
||||
|
||||
then
|
||||
`((Dr1 const&)lhs).equal((Dr2 const&)rhs)`.
|
||||
|
||||
Otherwise,
|
||||
`((Dr2 const&)rhs).equal((Dr1 const&)lhs)`.
|
||||
|
||||
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
typename enable_if_interoperable<Dr1,Dr2,bool>::type
|
||||
operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
[*Returns:]
|
||||
|
||||
if `is_convertible<Dr2,Dr1>::value`
|
||||
|
||||
then
|
||||
`!((Dr1 const&)lhs).equal((Dr2 const&)rhs)`.
|
||||
|
||||
Otherwise,
|
||||
`!((Dr2 const&)rhs).equal((Dr1 const&)lhs)`.
|
||||
|
||||
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
typename enable_if_interoperable<Dr1,Dr2,bool>::type
|
||||
operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
[*Returns:]
|
||||
|
||||
if `is_convertible<Dr2,Dr1>::value`
|
||||
|
||||
then
|
||||
`((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) < 0`.
|
||||
|
||||
Otherwise,
|
||||
`((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) > 0`.
|
||||
|
||||
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
typename enable_if_interoperable<Dr1,Dr2,bool>::type
|
||||
operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
[*Returns:]
|
||||
|
||||
if `is_convertible<Dr2,Dr1>::value`
|
||||
|
||||
then
|
||||
`((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) <= 0`.
|
||||
|
||||
Otherwise,
|
||||
`((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) >= 0`.
|
||||
|
||||
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
typename enable_if_interoperable<Dr1,Dr2,bool>::type
|
||||
operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
[*Returns:]
|
||||
|
||||
if `is_convertible<Dr2,Dr1>::value`
|
||||
|
||||
then
|
||||
`((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) > 0`.
|
||||
|
||||
Otherwise,
|
||||
`((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) < 0`.
|
||||
|
||||
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
typename enable_if_interoperable<Dr1,Dr2,bool>::type
|
||||
operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
[*Returns:]
|
||||
|
||||
if `is_convertible<Dr2,Dr1>::value`
|
||||
|
||||
then
|
||||
`((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) >= 0`.
|
||||
|
||||
Otherwise,
|
||||
`((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) <= 0`.
|
||||
|
||||
.. _minus:
|
||||
|
||||
|
||||
template <class Dr1, class V1, class TC1, class R1, class D1,
|
||||
class Dr2, class V2, class TC2, class R2, class D2>
|
||||
typename enable_if_interoperable<Dr1,Dr2,difference>::type
|
||||
operator -(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
|
||||
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
|
||||
|
||||
[*Return Type:]
|
||||
|
||||
if `is_convertible<Dr2,Dr1>::value`
|
||||
|
||||
then
|
||||
`difference` shall be
|
||||
`iterator_traits<Dr1>::difference_type`.
|
||||
|
||||
Otherwise
|
||||
`difference` shall be `iterator_traits<Dr2>::difference_type`
|
||||
|
||||
[*Returns:]
|
||||
|
||||
if `is_convertible<Dr2,Dr1>::value`
|
||||
|
||||
then
|
||||
`-((Dr1 const&)lhs).distance_to((Dr2 const&)rhs)`.
|
||||
|
||||
Otherwise,
|
||||
`((Dr2 const&)rhs).distance_to((Dr1 const&)lhs)`.
|
||||
|
||||
|
||||
[endsect]
|
||||
|
||||
[include facade_tutorial.qbk]
|
||||
|
||||
[endsect]
|
507
doc/quickbook/facade_tutorial.qbk
Normal file
507
doc/quickbook/facade_tutorial.qbk
Normal file
@ -0,0 +1,507 @@
|
||||
|
||||
[section:facade_tutorial Tutorial]
|
||||
|
||||
In this section we'll walk through the implementation of a few
|
||||
iterators using `iterator_facade`, based around the simple
|
||||
example of a linked list of polymorphic objects. This example was
|
||||
inspired by a
|
||||
[@http://thread.gmane.org/gmane.comp.lib.boost.user/5100 `posting`]
|
||||
by Keith Macdonald on the
|
||||
[@../../../more/mailing_lists.htm#users `Boost-Users`]
|
||||
mailing list.
|
||||
|
||||
|
||||
[h2 The Problem]
|
||||
|
||||
|
||||
Say we've written a polymorphic linked list node base class:
|
||||
|
||||
# include <iostream>
|
||||
|
||||
struct node_base
|
||||
{
|
||||
node_base() : m_next(0) {}
|
||||
|
||||
// Each node manages all of its tail nodes
|
||||
virtual ~node_base() { delete m_next; }
|
||||
|
||||
// Access the rest of the list
|
||||
node_base* next() const { return m_next; }
|
||||
|
||||
// print to the stream
|
||||
virtual void print(std::ostream& s) const = 0;
|
||||
|
||||
// double the value
|
||||
virtual void double_me() = 0;
|
||||
|
||||
void append(node_base* p)
|
||||
{
|
||||
if (m_next)
|
||||
m_next->append(p);
|
||||
else
|
||||
m_next = p;
|
||||
}
|
||||
|
||||
private:
|
||||
node_base* m_next;
|
||||
};
|
||||
|
||||
Lists can hold objects of different types by linking together
|
||||
specializations of the following template:
|
||||
|
||||
template <class T>
|
||||
struct node : node_base
|
||||
{
|
||||
node(T x)
|
||||
: m_value(x)
|
||||
{}
|
||||
|
||||
void print(std::ostream& s) const { s << this->m_value; }
|
||||
void double_me() { m_value += m_value; }
|
||||
|
||||
private:
|
||||
T m_value;
|
||||
};
|
||||
|
||||
And we can print any node using the following streaming operator:
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& s, node_base const& n)
|
||||
{
|
||||
n.print(s);
|
||||
return s;
|
||||
}
|
||||
|
||||
Our first challenge is to build an appropriate iterator over these
|
||||
lists.
|
||||
|
||||
[h2 A Basic Iterator Using `iterator_facade`]
|
||||
|
||||
We will construct a `node_iterator` class using inheritance from
|
||||
`iterator_facade` to implement most of the iterator's operations.
|
||||
|
||||
|
||||
# include "node.hpp"
|
||||
# include <boost/iterator/iterator_facade.hpp>
|
||||
|
||||
class node_iterator
|
||||
: public boost::iterator_facade<...>
|
||||
{
|
||||
...
|
||||
};
|
||||
|
||||
|
||||
|
||||
[h2 Template Arguments for `iterator_facade`]
|
||||
|
||||
`iterator_facade` has several template parameters, so we must decide
|
||||
what types to use for the arguments. The parameters are `Derived`,
|
||||
`Value`, `CategoryOrTraversal`, `Reference`, and `Difference`.
|
||||
|
||||
|
||||
[h3 `Derived`]
|
||||
|
||||
Because `iterator_facade` is meant to be used with the CRTP
|
||||
[Cop95]_ the first parameter is the iterator class name itself,
|
||||
`node_iterator`.
|
||||
|
||||
[h3 `Value`]
|
||||
|
||||
The `Value` parameter determines the `node_iterator`\ 's
|
||||
`value_type`. In this case, we are iterating over `node_base`
|
||||
objects, so `Value` will be `node_base`.
|
||||
|
||||
|
||||
[h3 `CategoryOrTraversal`]
|
||||
|
||||
Now we have to determine which `iterator traversal concept`_ our
|
||||
`node_iterator` is going to model. Singly-linked lists only have
|
||||
forward links, so our iterator can't can't be a `bidirectional
|
||||
traversal iterator`_. Our iterator should be able to make multiple
|
||||
passes over the same linked list (unlike, say, an
|
||||
`istream_iterator` which consumes the stream it traverses), so it
|
||||
must be a `forward traversal iterator`_. Therefore, we'll pass
|
||||
`boost::forward_traversal_tag` in this position [#category]_.
|
||||
|
||||
.. [#category] `iterator_facade` also supports old-style category
|
||||
tags, so we could have passed `std::forward_iterator_tag` here;
|
||||
either way, the resulting iterator's `iterator_category` will
|
||||
end up being `std::forward_iterator_tag`.
|
||||
|
||||
[h3 `Reference`]
|
||||
|
||||
The `Reference` argument becomes the type returned by
|
||||
`node_iterator`\ 's dereference operation, and will also be the
|
||||
same as `std::iterator_traits<node_iterator>::reference`. The
|
||||
library's default for this parameter is `Value&`; since
|
||||
`node_base&` is a good choice for the iterator's `reference`
|
||||
type, we can omit this argument, or pass `use_default`.
|
||||
|
||||
[h3 `Difference`]
|
||||
|
||||
The `Difference` argument determines how the distance between
|
||||
two `node_iterator`\ s will be measured and will also be the
|
||||
same as `std::iterator_traits<node_iterator>::difference_type`.
|
||||
The library's default for `Difference` is `std::ptrdiff_t`, an
|
||||
appropriate type for measuring the distance between any two
|
||||
addresses in memory, and one that works for almost any iterator,
|
||||
so we can omit this argument, too.
|
||||
|
||||
The declaration of `node_iterator` will therefore look something
|
||||
like:
|
||||
|
||||
# include "node.hpp"
|
||||
# include <boost/iterator/iterator_facade.hpp>
|
||||
|
||||
class node_iterator
|
||||
: public boost::iterator_facade<
|
||||
node_iterator
|
||||
, node_base
|
||||
, boost::forward_traversal_tag
|
||||
>
|
||||
{
|
||||
...
|
||||
};
|
||||
|
||||
|
||||
[h2 Constructors and Data Members]
|
||||
|
||||
Next we need to decide how to represent the iterator's position.
|
||||
This representation will take the form of data members, so we'll
|
||||
also need to write constructors to initialize them. The
|
||||
`node_iterator`\ 's position is quite naturally represented using
|
||||
a pointer to a `node_base`. We'll need a constructor to build an
|
||||
iterator from a `node_base*`, and a default constructor to
|
||||
satisfy the `forward traversal iterator`_ requirements [#default]_.
|
||||
Our `node_iterator` then becomes:
|
||||
|
||||
# include "node.hpp"
|
||||
# include <boost/iterator/iterator_facade.hpp>
|
||||
|
||||
class node_iterator
|
||||
: public boost::iterator_facade<
|
||||
node_iterator
|
||||
, node_base
|
||||
, boost::forward_traversal_tag
|
||||
>
|
||||
{
|
||||
public:
|
||||
node_iterator()
|
||||
: m_node(0)
|
||||
{}
|
||||
|
||||
explicit node_iterator(node_base* p)
|
||||
: m_node(p)
|
||||
{}
|
||||
|
||||
private:
|
||||
...
|
||||
node_base* m_node;
|
||||
};
|
||||
|
||||
.. [#default] Technically, the C++ standard places almost no
|
||||
requirements on a default-constructed iterator, so if we were
|
||||
really concerned with efficiency, we could've written the
|
||||
default constructor to leave `m_node` uninitialized.
|
||||
|
||||
[h2 Implementing the Core Operations]
|
||||
|
||||
The last step is to implement the `core operations`_ required by
|
||||
the concepts we want our iterator to model. Referring to the
|
||||
table__, we can see that the first three rows are applicable
|
||||
because `node_iterator` needs to satisfy the requirements for
|
||||
`readable iterator`_, `single pass iterator`_, and `incrementable
|
||||
iterator`_.
|
||||
|
||||
__ `core operations`_
|
||||
|
||||
We therefore need to supply `dereference`,
|
||||
`equal`, and `increment` members. We don't want these members
|
||||
to become part of `node_iterator`\ 's public interface, so we can
|
||||
make them private and grant friendship to
|
||||
`boost::iterator_core_access`, a "back-door" that
|
||||
`iterator_facade` uses to get access to the core operations:
|
||||
|
||||
# include "node.hpp"
|
||||
# include <boost/iterator/iterator_facade.hpp>
|
||||
|
||||
class node_iterator
|
||||
: public boost::iterator_facade<
|
||||
node_iterator
|
||||
, node_base
|
||||
, boost::forward_traversal_tag
|
||||
>
|
||||
{
|
||||
public:
|
||||
node_iterator()
|
||||
: m_node(0) {}
|
||||
|
||||
explicit node_iterator(node_base* p)
|
||||
: m_node(p) {}
|
||||
|
||||
private:
|
||||
friend class boost::iterator_core_access;
|
||||
|
||||
void increment() { m_node = m_node->next(); }
|
||||
|
||||
bool equal(node_iterator const& other) const
|
||||
{
|
||||
return this->m_node == other.m_node;
|
||||
}
|
||||
|
||||
node_base& dereference() const { return *m_node; }
|
||||
|
||||
node_base* m_node;
|
||||
};
|
||||
|
||||
Voila; a complete and conforming readable, forward-traversal
|
||||
iterator! For a working example of its use, see
|
||||
[@../example/node_iterator1.cpp `this program`].
|
||||
|
||||
__ ../example/node_iterator1.cpp
|
||||
|
||||
[h2 A constant `node_iterator`]
|
||||
|
||||
[blurb *Constant and Mutable iterators*\n\n
|
||||
The term **mutable iterator** means an iterator through which
|
||||
the object it references (its "referent") can be modified. A
|
||||
**constant iterator** is one which doesn't allow modification of
|
||||
its referent.\n\n
|
||||
The words *constant* and *mutable* don't refer to the ability to
|
||||
modify the iterator itself. For example, an `int const*` is a
|
||||
non-\ `const` *constant iterator*, which can be incremented
|
||||
but doesn't allow modification of its referent, and `int*
|
||||
const` is a `const` *mutable iterator*, which cannot be
|
||||
modified but which allows modification of its referent.\n\n
|
||||
Confusing? We agree, but those are the standard terms. It
|
||||
probably doesn't help much that a container's constant iterator
|
||||
is called `const_iterator`.
|
||||
]
|
||||
|
||||
Now, our `node_iterator` gives clients access to both `node`\
|
||||
's `print(std::ostream&) const` member function, but also its
|
||||
mutating `double_me()` member. If we wanted to build a
|
||||
*constant* `node_iterator`, we'd only have to make three
|
||||
changes:
|
||||
|
||||
class const_node_iterator
|
||||
: public boost::iterator_facade<
|
||||
node_iterator
|
||||
, node_base **const**
|
||||
, boost::forward_traversal_tag
|
||||
>
|
||||
{
|
||||
public:
|
||||
const_node_iterator()
|
||||
: m_node(0) {}
|
||||
|
||||
explicit const_node_iterator(node_base* p)
|
||||
: m_node(p) {}
|
||||
|
||||
private:
|
||||
friend class boost::iterator_core_access;
|
||||
|
||||
void increment() { m_node = m_node->next(); }
|
||||
|
||||
bool equal(const_node_iterator const& other) const
|
||||
{
|
||||
return this->m_node == other.m_node;
|
||||
}
|
||||
|
||||
node_base **const**\ & dereference() const { return \*m_node; }
|
||||
|
||||
node_base **const**\ * m_node;
|
||||
};
|
||||
|
||||
[blurb `const` and an iterator's `value_type`\n\n
|
||||
The C++ standard requires an iterator's `value_type` *not* be
|
||||
`const`\ -qualified, so `iterator_facade` strips the
|
||||
`const` from its `Value` parameter in order to produce the
|
||||
iterator's `value_type`. Making the `Value` argument
|
||||
`const` provides a useful hint to `iterator_facade` that the
|
||||
iterator is a *constant iterator*, and the default `Reference`
|
||||
argument will be correct for all lvalue iterators.
|
||||
]
|
||||
|
||||
As a matter of fact, `node_iterator` and `const_node_iterator`
|
||||
are so similar that it makes sense to factor the common code out
|
||||
into a template as follows:
|
||||
|
||||
template <class Value>
|
||||
class node_iter
|
||||
: public boost::iterator_facade<
|
||||
node_iter<Value>
|
||||
, Value
|
||||
, boost::forward_traversal_tag
|
||||
>
|
||||
{
|
||||
public:
|
||||
node_iter()
|
||||
: m_node(0) {}
|
||||
|
||||
explicit node_iter(Value* p)
|
||||
: m_node(p) {}
|
||||
|
||||
private:
|
||||
friend class boost::iterator_core_access;
|
||||
|
||||
bool equal(node_iter<Value> const& other) const
|
||||
{
|
||||
return this->m_node == other.m_node;
|
||||
}
|
||||
|
||||
void increment()
|
||||
{ m_node = m_node->next(); }
|
||||
|
||||
Value& dereference() const
|
||||
{ return *m_node; }
|
||||
|
||||
Value* m_node;
|
||||
};
|
||||
typedef node_iter<node_base> node_iterator;
|
||||
typedef node_iter<node_base const> node_const_iterator;
|
||||
|
||||
|
||||
[h2 Interoperability]
|
||||
|
||||
Our `const_node_iterator` works perfectly well on its own, but
|
||||
taken together with `node_iterator` it doesn't quite meet
|
||||
expectations. For example, we'd like to be able to pass a
|
||||
`node_iterator` where a `node_const_iterator` was expected,
|
||||
just as you can with `std::list<int>`\ 's `iterator` and
|
||||
`const_iterator`. Furthermore, given a `node_iterator` and a
|
||||
`node_const_iterator` into the same list, we should be able to
|
||||
compare them for equality.
|
||||
|
||||
This expected ability to use two different iterator types together
|
||||
is known as |interoperability|_. Achieving interoperability in
|
||||
our case is as simple as templatizing the `equal` function and
|
||||
adding a templatized converting constructor [#broken]_ [#random]_:
|
||||
|
||||
template <class Value>
|
||||
class node_iter
|
||||
: public boost::iterator_facade<
|
||||
node_iter<Value>
|
||||
, Value
|
||||
, boost::forward_traversal_tag
|
||||
>
|
||||
{
|
||||
public:
|
||||
node_iter()
|
||||
: m_node(0) {}
|
||||
|
||||
explicit node_iter(Value* p)
|
||||
: m_node(p) {}
|
||||
|
||||
template <class OtherValue>
|
||||
node_iter(node_iter<OtherValue> const& other)
|
||||
: m_node(other.m_node) {}
|
||||
|
||||
private:
|
||||
friend class boost::iterator_core_access;
|
||||
template <class> friend class node_iter;
|
||||
|
||||
template <class OtherValue>
|
||||
bool equal(node_iter<OtherValue> const& other) const
|
||||
{
|
||||
return this->m_node == other.m_node;
|
||||
}
|
||||
|
||||
void increment()
|
||||
{ m_node = m_node->next(); }
|
||||
|
||||
Value& dereference() const
|
||||
{ return *m_node; }
|
||||
|
||||
Value* m_node;
|
||||
};
|
||||
typedef impl::node_iterator<node_base> node_iterator;
|
||||
typedef impl::node_iterator<node_base const> node_const_iterator;
|
||||
|
||||
.. |interoperability| replace:: **interoperability**
|
||||
.. _interoperability: new-iter-concepts.html#interoperable-iterators-lib-interoperable-iterators
|
||||
|
||||
.. [#broken] If you're using an older compiler and it can't handle
|
||||
this example, see the `example code`__ for workarounds.
|
||||
|
||||
.. [#random] If `node_iterator` had been a `random access
|
||||
traversal iterator`_, we'd have had to templatize its
|
||||
`distance_to` function as well.
|
||||
|
||||
|
||||
__ ../example/node_iterator2.hpp
|
||||
|
||||
You can see an example program which exercises our interoperable
|
||||
iterators
|
||||
[@../example/node_iterator2.cpp `here`].
|
||||
|
||||
|
||||
[h2 Telling the Truth]
|
||||
|
||||
Now `node_iterator` and `node_const_iterator` behave exactly as
|
||||
you'd expect... almost. We can compare them and we can convert in
|
||||
one direction: from `node_iterator` to `node_const_iterator`.
|
||||
If we try to convert from `node_const_iterator` to
|
||||
`node_iterator`, we'll get an error when the converting
|
||||
constructor tries to initialize `node_iterator`\ 's `m_node`, a
|
||||
`node*` with a `node const*`. So what's the problem?
|
||||
|
||||
The problem is that
|
||||
`boost::`\ |is_convertible|_\ `<node_const_iterator,node_iterator>::value`
|
||||
will be `true`, but it should be `false`. |is_convertible|_
|
||||
lies because it can only see as far as the *declaration* of
|
||||
`node_iter`\ 's converting constructor, but can't look inside at
|
||||
the *definition* to make sure it will compile. A perfect solution
|
||||
would make `node_iter`\ 's converting constructor disappear when
|
||||
the `m_node` conversion would fail.
|
||||
|
||||
.. |is_convertible| replace:: `is_convertible`
|
||||
.. _is_convertible: ../../type_traits/index.html#relationships
|
||||
|
||||
In fact, that sort of magic is possible using
|
||||
|enable_if|__. By rewriting the converting constructor as
|
||||
follows, we can remove it from the overload set when it's not
|
||||
appropriate:
|
||||
|
||||
#include <boost/type_traits/is_convertible.hpp>
|
||||
#include <boost/utility/enable_if.hpp>
|
||||
|
||||
...
|
||||
|
||||
private:
|
||||
struct enabler {};
|
||||
|
||||
public:
|
||||
template <class OtherValue>
|
||||
node_iter(
|
||||
node_iter<OtherValue> const& other
|
||||
, typename boost::enable_if<
|
||||
boost::is_convertible<OtherValue*,Value*>
|
||||
, enabler
|
||||
>::type = enabler()
|
||||
)
|
||||
: m_node(other.m_node) {}
|
||||
|
||||
.. |enable_if| replace:: `boost::enable_if`
|
||||
__ ../../utility/enable_if.html
|
||||
|
||||
|
||||
[h2 Wrap Up]
|
||||
|
||||
This concludes our `iterator_facade` tutorial, but before you
|
||||
stop reading we urge you to take a look at |iterator_adaptor|__.
|
||||
There's another way to approach writing these iterators which might
|
||||
even be superior.
|
||||
|
||||
.. |iterator_adaptor| replace:: `iterator_adaptor`
|
||||
__ iterator_adaptor.html
|
||||
|
||||
.. _`iterator traversal concept`: new-iter-concepts.html#iterator-traversal-concepts-lib-iterator-traversal
|
||||
.. _`readable iterator`: new-iter-concepts.html#readable-iterators-lib-readable-iterators
|
||||
.. _`lvalue iterator`: new-iter-concepts.html#lvalue-iterators-lib-lvalue-iterators
|
||||
.. _`single pass iterator`: new-iter-concepts.html#single-pass-iterators-lib-single-pass-iterators
|
||||
.. _`incrementable iterator`: new-iter-concepts.html#incrementable-iterators-lib-incrementable-iterators
|
||||
.. _`forward traversal iterator`: new-iter-concepts.html#forward-traversal-iterators-lib-forward-traversal-iterators
|
||||
.. _`bidirectional traversal iterator`: new-iter-concepts.html#bidirectional-traversal-iterators-lib-bidirectional-traversal-iterators
|
||||
.. _`random access traversal iterator`: new-iter-concepts.html#random-access-traversal-iterators-lib-random-access-traversal-iterators
|
||||
|
||||
[endsect]
|
242
doc/quickbook/filter_iterator.qbk
Normal file
242
doc/quickbook/filter_iterator.qbk
Normal file
@ -0,0 +1,242 @@
|
||||
|
||||
[section:filter Filter Iterator]
|
||||
|
||||
The filter iterator adaptor creates a view of an iterator range in
|
||||
which some elements of the range are skipped. A predicate function
|
||||
object controls which elements are skipped. When the predicate is
|
||||
applied to an element, if it returns `true` then the element is
|
||||
retained and if it returns `false` then the element is skipped
|
||||
over. When skipping over elements, it is necessary for the filter
|
||||
adaptor to know when to stop so as to avoid going past the end of the
|
||||
underlying range. A filter iterator is therefore constructed with pair
|
||||
of iterators indicating the range of elements in the unfiltered
|
||||
sequence to be traversed.
|
||||
|
||||
[h2 Example]
|
||||
|
||||
This example uses `filter_iterator` and then
|
||||
`make_filter_iterator` to output only the positive integers from an
|
||||
array of integers. Then `make_filter_iterator` is is used to output
|
||||
the integers greater than `-2`.
|
||||
|
||||
|
||||
struct is_positive_number {
|
||||
bool operator()(int x) { return 0 < x; }
|
||||
};
|
||||
|
||||
int main()
|
||||
{
|
||||
int numbers_[] = { 0, -1, 4, -3, 5, 8, -2 };
|
||||
const int N = sizeof(numbers_)/sizeof(int);
|
||||
|
||||
typedef int* base_iterator;
|
||||
base_iterator numbers(numbers_);
|
||||
|
||||
// Example using filter_iterator
|
||||
typedef boost::filter_iterator<is_positive_number, base_iterator>
|
||||
FilterIter;
|
||||
|
||||
is_positive_number predicate;
|
||||
FilterIter filter_iter_first(predicate, numbers, numbers + N);
|
||||
FilterIter filter_iter_last(predicate, numbers + N, numbers + N);
|
||||
|
||||
std::copy(filter_iter_first, filter_iter_last, std::ostream_iterator<int>(std::cout, " "));
|
||||
std::cout << std::endl;
|
||||
|
||||
// Example using make_filter_iterator()
|
||||
std::copy(boost::make_filter_iterator<is_positive_number>(numbers, numbers + N),
|
||||
boost::make_filter_iterator<is_positive_number>(numbers + N, numbers + N),
|
||||
std::ostream_iterator<int>(std::cout, " "));
|
||||
std::cout << std::endl;
|
||||
|
||||
// Another example using make_filter_iterator()
|
||||
std::copy(
|
||||
boost::make_filter_iterator(
|
||||
std::bind2nd(std::greater<int>(), -2)
|
||||
, numbers, numbers + N)
|
||||
|
||||
, boost::make_filter_iterator(
|
||||
std::bind2nd(std::greater<int>(), -2)
|
||||
, numbers + N, numbers + N)
|
||||
|
||||
, std::ostream_iterator<int>(std::cout, " ")
|
||||
);
|
||||
|
||||
std::cout << std::endl;
|
||||
|
||||
return boost::exit_success;
|
||||
}
|
||||
|
||||
|
||||
The output is:
|
||||
|
||||
4 5 8
|
||||
4 5 8
|
||||
0 -1 4 5 8
|
||||
|
||||
|
||||
The source code for this example can be found [@../example/filter_iterator_example.cpp here].
|
||||
|
||||
[h2 Reference]
|
||||
|
||||
|
||||
[h3 Synopsis]
|
||||
|
||||
template <class Predicate, class Iterator>
|
||||
class filter_iterator
|
||||
{
|
||||
public:
|
||||
typedef iterator_traits<Iterator>::value_type value_type;
|
||||
typedef iterator_traits<Iterator>::reference reference;
|
||||
typedef iterator_traits<Iterator>::pointer pointer;
|
||||
typedef iterator_traits<Iterator>::difference_type difference_type;
|
||||
typedef /* see below */ iterator_category;
|
||||
|
||||
filter_iterator();
|
||||
filter_iterator(Predicate f, Iterator x, Iterator end = Iterator());
|
||||
filter_iterator(Iterator x, Iterator end = Iterator());
|
||||
template<class OtherIterator>
|
||||
filter_iterator(
|
||||
filter_iterator<Predicate, OtherIterator> const& t
|
||||
, typename enable_if_convertible<OtherIterator, Iterator>::type* = 0 // exposition
|
||||
);
|
||||
Predicate predicate() const;
|
||||
Iterator end() const;
|
||||
Iterator const& base() const;
|
||||
reference operator*() const;
|
||||
filter_iterator& operator++();
|
||||
private:
|
||||
Predicate m_pred; // exposition only
|
||||
Iterator m_iter; // exposition only
|
||||
Iterator m_end; // exposition only
|
||||
};
|
||||
|
||||
|
||||
If `Iterator` models Readable Lvalue Iterator and Bidirectional Traversal
|
||||
Iterator then `iterator_category` is convertible to
|
||||
`std::bidirectional_iterator_tag`.
|
||||
Otherwise, if `Iterator` models Readable Lvalue Iterator and Forward Traversal
|
||||
Iterator then `iterator_category` is convertible to
|
||||
`std::forward_iterator_tag`.
|
||||
Otherwise `iterator_category` is
|
||||
convertible to `std::input_iterator_tag`.
|
||||
|
||||
|
||||
[h3 Requirements]
|
||||
|
||||
The `Iterator` argument shall meet the requirements of Readable
|
||||
Iterator and Single Pass Iterator or it shall meet the requirements of
|
||||
Input Iterator.
|
||||
|
||||
|
||||
The `Predicate` argument must be Assignable, Copy Constructible, and
|
||||
the expression `p(x)` must be valid where `p` is an object of type
|
||||
`Predicate`, `x` is an object of type
|
||||
`iterator_traits<Iterator>::value_type`, and where the type of
|
||||
`p(x)` must be convertible to `bool`.
|
||||
|
||||
|
||||
[h3 Concepts]
|
||||
|
||||
The concepts that `filter_iterator` models are dependent on which
|
||||
concepts the `Iterator` argument models, as specified in the
|
||||
following tables.
|
||||
|
||||
[table Traversal
|
||||
[[If `Iterator` models ][then `filter_iterator` models ]]
|
||||
[[Single Pass Iterator ][Single Pass Iterator ]]
|
||||
[[Forward Traversal Iterator ][Forward Traversal Iterator ]]
|
||||
[[Bidirectional Traversal Iterator ][Bidirectional Traversal Iterator]]
|
||||
]
|
||||
|
||||
[table Access
|
||||
[[If `Iterator` models ][then `filter_iterator` models ]]
|
||||
[[Readable Iterator][Readable Iterator]]
|
||||
[[Writable Iterator][Writable Iterator]]
|
||||
[[Lvalue Iterator ][Lvalue Iterator ]]
|
||||
]
|
||||
|
||||
[table C++03
|
||||
[[If `Iterator` models ][then `filter_iterator` models ]]
|
||||
[[Readable Iterator, Single Pass Iterator ][Input Iterator ]]
|
||||
[[Readable Lvalue Iterator, Forward Traversal Iterator][Forward Iterator ]]
|
||||
[[Writable Lvalue Iterator, Forward Traversal Iterator][Mutable Forward Iterator ]]
|
||||
[[Writable Lvalue Iterator, Bidirectional Iterator ][Mutable Bidirectional Iterator]]
|
||||
]
|
||||
|
||||
`filter_iterator<P1, X>` is interoperable with `filter_iterator<P2, Y>`
|
||||
if and only if `X` is interoperable with `Y`.
|
||||
|
||||
|
||||
[h3 Operations]
|
||||
|
||||
|
||||
In addition to those operations required by the concepts that
|
||||
`filter_iterator` models, `filter_iterator` provides the following
|
||||
operations.
|
||||
|
||||
|
||||
filter_iterator();
|
||||
|
||||
[*Requires: ]`Predicate` and `Iterator` must be Default Constructible.\n
|
||||
[*Effects: ] Constructs a `filter_iterator` whose`m_pred`, `m_iter`, and `m_end`
|
||||
members are a default constructed.
|
||||
|
||||
|
||||
filter_iterator(Predicate f, Iterator x, Iterator end = Iterator());
|
||||
|
||||
[*Effects: ] Constructs a `filter_iterator` where `m_iter` is either
|
||||
the first position in the range `[x,end)` such that `f(*m_iter) == true`
|
||||
or else`m_iter == end`. The member `m_pred` is constructed from
|
||||
`f` and `m_end` from `end`.
|
||||
|
||||
|
||||
|
||||
filter_iterator(Iterator x, Iterator end = Iterator());
|
||||
|
||||
[*Requires: ] `Predicate` must be Default Constructible and
|
||||
`Predicate` is a class type (not a function pointer).\n
|
||||
[*Effects: ] Constructs a `filter_iterator` where `m_iter` is either
|
||||
the first position in the range `[x,end)` such that `m_pred(*m_iter) == true`
|
||||
or else`m_iter == end`. The member `m_pred` is default constructed.
|
||||
|
||||
|
||||
template <class OtherIterator>
|
||||
filter_iterator(
|
||||
filter_iterator<Predicate, OtherIterator> const& t
|
||||
, typename enable_if_convertible<OtherIterator, Iterator>::type* = 0 // exposition
|
||||
);`
|
||||
|
||||
[*Requires: ] `OtherIterator` is implicitly convertible to `Iterator`.\n
|
||||
[*Effects: ] Constructs a filter iterator whose members are copied from `t`.
|
||||
|
||||
|
||||
Predicate predicate() const;
|
||||
|
||||
[*Returns: ] `m_pred`
|
||||
|
||||
|
||||
Ierator end() const;
|
||||
|
||||
[*Returns: ] `m_end`
|
||||
|
||||
|
||||
Iterator const& base() const;
|
||||
|
||||
[*Returns: ] `m_iterator`
|
||||
|
||||
|
||||
reference operator*() const;
|
||||
|
||||
[*Returns: ] `*m_iter`
|
||||
|
||||
|
||||
filter_iterator& operator++();
|
||||
|
||||
[*Effects: ] Increments `m_iter` and then continues to
|
||||
increment `m_iter` until either `m_iter == m_end`
|
||||
or `m_pred(*m_iter) == true`.\n
|
||||
[*Returns: ] `*this`
|
||||
|
||||
|
||||
[endsect]
|
100
doc/quickbook/function_output_iterator.qbk
Normal file
100
doc/quickbook/function_output_iterator.qbk
Normal file
@ -0,0 +1,100 @@
|
||||
|
||||
[section:function_output Function Output Iterator]
|
||||
|
||||
The function output iterator adaptor makes it easier to create custom
|
||||
output iterators. The adaptor takes a unary function and creates a
|
||||
model of Output Iterator. Each item assigned to the output iterator is
|
||||
passed as an argument to the unary function. The motivation for this
|
||||
iterator is that creating a conforming output iterator is non-trivial,
|
||||
particularly because the proper implementation usually requires a
|
||||
proxy object.
|
||||
|
||||
[h2 Example]
|
||||
|
||||
struct string_appender
|
||||
{
|
||||
string_appender(std::string& s)
|
||||
: m_str(&s)
|
||||
{}
|
||||
|
||||
void operator()(const std::string& x) const
|
||||
{
|
||||
*m_str += x;
|
||||
}
|
||||
|
||||
std::string* m_str;
|
||||
};
|
||||
|
||||
int main(int, char*[])
|
||||
{
|
||||
std::vector<std::string> x;
|
||||
x.push_back("hello");
|
||||
x.push_back(" ");
|
||||
x.push_back("world");
|
||||
x.push_back("!");
|
||||
|
||||
std::string s = "";
|
||||
std::copy(x.begin(), x.end(),
|
||||
boost::make_function_output_iterator(string_appender(s)));
|
||||
|
||||
std::cout << s << std::endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
[h2 Reference]
|
||||
|
||||
[h3 Synopsis]
|
||||
|
||||
template <class UnaryFunction>
|
||||
class function_output_iterator {
|
||||
public:
|
||||
typedef std::output_iterator_tag iterator_category;
|
||||
typedef void value_type;
|
||||
typedef void difference_type;
|
||||
typedef void pointer;
|
||||
typedef void reference;
|
||||
|
||||
explicit function_output_iterator();
|
||||
|
||||
explicit function_output_iterator(const UnaryFunction& f);
|
||||
|
||||
/* see below */ operator*();
|
||||
function_output_iterator& operator++();
|
||||
function_output_iterator& operator++(int);
|
||||
private:
|
||||
UnaryFunction m_f; // exposition only
|
||||
};
|
||||
|
||||
[h3 Requirements]
|
||||
|
||||
`UnaryFunction` must be Assignable and Copy Constructible.
|
||||
|
||||
[h3 Concepts]
|
||||
|
||||
`function_output_iterator` is a model of the Writable and
|
||||
Incrementable Iterator concepts.
|
||||
|
||||
[h3 Operations]
|
||||
|
||||
explicit function_output_iterator(const UnaryFunction& f = UnaryFunction());
|
||||
|
||||
[*Effects: ] Constructs an instance of `function_output_iterator`
|
||||
with `m_f` constructed from `f`.
|
||||
|
||||
unspecified_type operator*();
|
||||
|
||||
[*Returns: ] An object `r` of unspecified type such that `r = t`
|
||||
is equivalent to `m_f(t)` for all `t`.
|
||||
|
||||
|
||||
function_output_iterator& operator++();
|
||||
|
||||
[*Returns: ] `*this`.
|
||||
|
||||
|
||||
function_output_iterator& operator++(int);
|
||||
|
||||
[*Returns: ] `*this`.
|
||||
|
||||
[endsect]
|
254
doc/quickbook/indirect_iterator.qbk
Normal file
254
doc/quickbook/indirect_iterator.qbk
Normal file
@ -0,0 +1,254 @@
|
||||
|
||||
[section:indirect Indirect Iterator]
|
||||
|
||||
`indirect_iterator` adapts an iterator by applying an
|
||||
*extra* dereference inside of `operator*()`. For example, this
|
||||
iterator adaptor makes it possible to view a container of pointers
|
||||
(e.g. `list<foo*>`) as if it were a container of the pointed-to type
|
||||
(e.g. `list<foo>`). `indirect_iterator` depends on two
|
||||
auxiliary traits, `pointee` and `indirect_reference`, to
|
||||
provide support for underlying iterators whose `value_type` is
|
||||
not an iterator.
|
||||
|
||||
[h2 Example]
|
||||
|
||||
This example prints an array of characters, using
|
||||
`indirect_iterator` to access the array of characters through an
|
||||
array of pointers. Next `indirect_iterator` is used with the
|
||||
`transform` algorithm to copy the characters (incremented by one) to
|
||||
another array. A constant indirect iterator is used for the source and
|
||||
a mutable indirect iterator is used for the destination. The last part
|
||||
of the example prints the original array of characters, but this time
|
||||
using the `make_indirect_iterator` helper function.
|
||||
|
||||
|
||||
char characters[] = "abcdefg";
|
||||
const int N = sizeof(characters)/sizeof(char) - 1; // -1 since characters has a null char
|
||||
char* pointers_to_chars[N]; // at the end.
|
||||
for (int i = 0; i < N; ++i)
|
||||
pointers_to_chars[i] = &characters[i];
|
||||
|
||||
// Example of using indirect_iterator
|
||||
|
||||
boost::indirect_iterator<char**, char>
|
||||
indirect_first(pointers_to_chars), indirect_last(pointers_to_chars + N);
|
||||
|
||||
std::copy(indirect_first, indirect_last, std::ostream_iterator<char>(std::cout, ","));
|
||||
std::cout << std::endl;
|
||||
|
||||
|
||||
// Example of making mutable and constant indirect iterators
|
||||
|
||||
char mutable_characters[N];
|
||||
char* pointers_to_mutable_chars[N];
|
||||
for (int j = 0; j < N; ++j)
|
||||
pointers_to_mutable_chars[j] = &mutable_characters[j];
|
||||
|
||||
boost::indirect_iterator<char* const*> mutable_indirect_first(pointers_to_mutable_chars),
|
||||
mutable_indirect_last(pointers_to_mutable_chars + N);
|
||||
boost::indirect_iterator<char* const*, char const> const_indirect_first(pointers_to_chars),
|
||||
const_indirect_last(pointers_to_chars + N);
|
||||
|
||||
std::transform(const_indirect_first, const_indirect_last,
|
||||
mutable_indirect_first, std::bind1st(std::plus<char>(), 1));
|
||||
|
||||
std::copy(mutable_indirect_first, mutable_indirect_last,
|
||||
std::ostream_iterator<char>(std::cout, ","));
|
||||
std::cout << std::endl;
|
||||
|
||||
|
||||
// Example of using make_indirect_iterator()
|
||||
|
||||
std::copy(boost::make_indirect_iterator(pointers_to_chars),
|
||||
boost::make_indirect_iterator(pointers_to_chars + N),
|
||||
std::ostream_iterator<char>(std::cout, ","));
|
||||
std::cout << std::endl;
|
||||
|
||||
|
||||
The output is:
|
||||
|
||||
a,b,c,d,e,f,g,
|
||||
b,c,d,e,f,g,h,
|
||||
a,b,c,d,e,f,g,
|
||||
|
||||
|
||||
The source code for this example can be found
|
||||
[@../example/indirect_iterator_example.cpp here].
|
||||
|
||||
|
||||
[h2 Reference]
|
||||
|
||||
[h3 Synopsis]
|
||||
|
||||
template <
|
||||
class Iterator
|
||||
, class Value = use_default
|
||||
, class CategoryOrTraversal = use_default
|
||||
, class Reference = use_default
|
||||
, class Difference = use_default
|
||||
>
|
||||
class indirect_iterator
|
||||
{
|
||||
public:
|
||||
typedef /* see below */ value_type;
|
||||
typedef /* see below */ reference;
|
||||
typedef /* see below */ pointer;
|
||||
typedef /* see below */ difference_type;
|
||||
typedef /* see below */ iterator_category;
|
||||
|
||||
indirect_iterator();
|
||||
indirect_iterator(Iterator x);
|
||||
|
||||
template <
|
||||
class Iterator2, class Value2, class Category2
|
||||
, class Reference2, class Difference2
|
||||
>
|
||||
indirect_iterator(
|
||||
indirect_iterator<
|
||||
Iterator2, Value2, Category2, Reference2, Difference2
|
||||
> const& y
|
||||
, typename enable_if_convertible<Iterator2, Iterator>::type* = 0 // exposition
|
||||
);
|
||||
|
||||
Iterator const& base() const;
|
||||
reference operator*() const;
|
||||
indirect_iterator& operator++();
|
||||
indirect_iterator& operator--();
|
||||
private:
|
||||
Iterator m_iterator; // exposition
|
||||
};
|
||||
|
||||
|
||||
The member types of `indirect_iterator` are defined according to
|
||||
the following pseudo-code, where `V` is
|
||||
`iterator_traits<Iterator>::value_type`
|
||||
|
||||
[pre
|
||||
if (Value is use_default) then
|
||||
typedef remove_const<pointee<V>::type>::type value_type;
|
||||
else
|
||||
typedef remove_const<Value>::type value_type;
|
||||
|
||||
if (Reference is use_default) then
|
||||
if (Value is use_default) then
|
||||
typedef indirect_reference<V>::type reference;
|
||||
else
|
||||
typedef Value& reference;
|
||||
else
|
||||
typedef Reference reference;
|
||||
|
||||
if (Value is use_default) then
|
||||
typedef pointee<V>::type\* pointer;
|
||||
else
|
||||
typedef Value\* pointer;
|
||||
|
||||
if (Difference is use_default)
|
||||
typedef iterator_traits<Iterator>::difference_type difference_type;
|
||||
else
|
||||
typedef Difference difference_type;
|
||||
|
||||
if (CategoryOrTraversal is use_default)
|
||||
typedef *iterator-category* (
|
||||
iterator_traversal<Iterator>::type,`reference`,`value_type`
|
||||
) iterator_category;
|
||||
else
|
||||
typedef *iterator-category* (
|
||||
CategoryOrTraversal,`reference`,`value_type`
|
||||
) iterator_category;
|
||||
]
|
||||
|
||||
|
||||
[h3 Requirements]
|
||||
|
||||
The expression `*v`, where `v` is an object of
|
||||
`iterator_traits<Iterator>::value_type`, shall be valid
|
||||
expression and convertible to `reference`. `Iterator` shall
|
||||
model the traversal concept indicated by `iterator_category`.
|
||||
`Value`, `Reference`, and `Difference` shall be chosen so
|
||||
that `value_type`, `reference`, and `difference_type` meet
|
||||
the requirements indicated by `iterator_category`.
|
||||
|
||||
[blurb Note: there are further requirements on the
|
||||
`iterator_traits<Iterator>::value_type` if the `Value`
|
||||
parameter is not `use_default`, as implied by the algorithm for
|
||||
deducing the default for the `value_type` member.]
|
||||
|
||||
[h3 Concepts]
|
||||
|
||||
In addition to the concepts indicated by `iterator_category`
|
||||
and by `iterator_traversal<indirect_iterator>::type`, a
|
||||
specialization of `indirect_iterator` models the following
|
||||
concepts, Where `v` is an object of
|
||||
`iterator_traits<Iterator>::value_type`:
|
||||
|
||||
Readable Iterator if `reference(*v)` is convertible to
|
||||
`value_type`.
|
||||
|
||||
Writable Iterator if `reference(*v) = t` is a valid
|
||||
expression (where `t` is an object of type
|
||||
`indirect_iterator::value_type`)
|
||||
|
||||
Lvalue Iterator if `reference` is a reference type.
|
||||
|
||||
`indirect_iterator<X,V1,C1,R1,D1>` is interoperable with
|
||||
`indirect_iterator<Y,V2,C2,R2,D2>` if and only if `X` is
|
||||
interoperable with `Y`.
|
||||
|
||||
[h3 Operations]
|
||||
|
||||
In addition to the operations required by the concepts described
|
||||
above, specializations of `indirect_iterator` provide the
|
||||
following operations:
|
||||
|
||||
|
||||
indirect_iterator();
|
||||
|
||||
[*Requires: ] `Iterator` must be Default Constructible.\n
|
||||
[*Effects: ] Constructs an instance of `indirect_iterator` with
|
||||
a default-constructed `m_iterator`.
|
||||
|
||||
|
||||
indirect_iterator(Iterator x);
|
||||
|
||||
[*Effects: ] Constructs an instance of `indirect_iterator` with
|
||||
`m_iterator` copy constructed from `x`.
|
||||
|
||||
|
||||
template <
|
||||
class Iterator2, class Value2, unsigned Access, class Traversal
|
||||
, class Reference2, class Difference2
|
||||
>
|
||||
indirect_iterator(
|
||||
indirect_iterator<
|
||||
Iterator2, Value2, Access, Traversal, Reference2, Difference2
|
||||
> const& y
|
||||
, typename enable_if_convertible<Iterator2, Iterator>::type* = 0 // exposition
|
||||
);
|
||||
|
||||
[*Requires: ] `Iterator2` is implicitly convertible to `Iterator`.\n
|
||||
[*Effects: ] Constructs an instance of `indirect_iterator` whose
|
||||
`m_iterator` subobject is constructed from `y.base()`.
|
||||
|
||||
|
||||
Iterator const& base() const;
|
||||
|
||||
[*Returns: ] `m_iterator`
|
||||
|
||||
|
||||
reference operator*() const;
|
||||
|
||||
[*Returns: ] `**m_iterator`
|
||||
|
||||
|
||||
indirect_iterator& operator++();
|
||||
|
||||
[*Effects: ] `++m_iterator`\n
|
||||
[*Returns: ] `*this`
|
||||
|
||||
|
||||
indirect_iterator& operator--();
|
||||
|
||||
[*Effects: ] `--m_iterator`\n
|
||||
[*Returns: ] `*this`
|
||||
|
||||
[endsect]
|
268
doc/quickbook/iterator.qbk
Normal file
268
doc/quickbook/iterator.qbk
Normal file
@ -0,0 +1,268 @@
|
||||
|
||||
[library Boost.Iterator
|
||||
[/ version 1.0.1]
|
||||
[authors [Abrahams, David], [Siek, Jeremy], [Witt, Thomas]]
|
||||
[copyright 2003 2005 David Abrahams Jeremy Siek Thomas Witt]
|
||||
[category iterator]
|
||||
[id iterator]
|
||||
[dirname iterator]
|
||||
[purpose
|
||||
]
|
||||
[license
|
||||
Distributed under the Boost Software License, Version 1.0.
|
||||
(See accompanying file LICENSE_1_0.txt or copy at
|
||||
<ulink url="http://www.boost.org/LICENSE_1_0.txt">
|
||||
http://www.boost.org/LICENSE_1_0.txt
|
||||
</ulink>)
|
||||
]
|
||||
]
|
||||
|
||||
[/ QuickBook Document version 1.0 ]
|
||||
|
||||
[/ Images ]
|
||||
|
||||
[def _note_ [$images/note.png]]
|
||||
[def _alert_ [$images/caution.png]]
|
||||
[def _detail_ [$images/note.png]]
|
||||
[def _tip_ [$images/tip.png]]
|
||||
|
||||
[/ Links ]
|
||||
|
||||
[def _iterator_ [@../../libs/iterator/doc/index.html Boost.Iterator]]
|
||||
|
||||
[section:intro Introduction]
|
||||
|
||||
[def _concepts_ [@../../more/generic_programming.html#concept concepts]]
|
||||
|
||||
The Boost Iterator Library contains two parts. The first
|
||||
is a system of _concepts_ which extend the C++ standard
|
||||
iterator requirements. The second is a framework of
|
||||
components for building iterators based on these
|
||||
extended concepts and includes several useful iterator
|
||||
adaptors. The extended iterator concepts have been
|
||||
carefully designed so that old-style iterators
|
||||
can fit in the new concepts and so that new-style
|
||||
iterators will be compatible with old-style algorithms,
|
||||
though algorithms may need to be updated if they want to
|
||||
take full advantage of the new-style iterator
|
||||
capabilities. Several components of this library have
|
||||
been accepted into the C++ standard technical report.
|
||||
The components of the Boost Iterator Library replace the
|
||||
older Boost Iterator Adaptor Library.
|
||||
|
||||
|
||||
[h2 New-Style Iterators]
|
||||
|
||||
[def _N1185_ [@http://www.gotw.ca/publications/N1185.pdf N1185]]
|
||||
[def _N1211_ [@http://www.gotw.ca/publications/N1211.pdf N1211]]
|
||||
[def _GOTW_50_ [@http://www.gotw.ca/gotw/050.htm Guru of the Week]]
|
||||
|
||||
The iterator categories defined in C++98 are extremely limiting
|
||||
because they bind together two orthogonal concepts: traversal and
|
||||
element access. For example, because a random access iterator is
|
||||
required to return a reference (and not a proxy) when dereferenced,
|
||||
it is impossible to capture the capabilities of
|
||||
`vector<bool>::iterator` using the C++98 categories. This is the
|
||||
infamous "`vector<bool>` is not a container, and its iterators
|
||||
aren't random access iterators", debacle about which Herb Sutter
|
||||
wrote two papers for the standards comittee (_N1185_ and _N1211_),
|
||||
and a _GOTW_50_. New-style iterators go well beyond
|
||||
patching up `vector<bool>`, though: there are lots of other
|
||||
iterators already in use which can't be adequately represented by
|
||||
the existing concepts. For details about the new iterator
|
||||
concepts, see our [@./new-iter-concepts.html Standard Proposal for New-Style Iterators].
|
||||
|
||||
[h2 Iterator Facade and Adaptor]
|
||||
|
||||
[def _facade_ [@./iterator_facade.html facade]]
|
||||
[def _adaptor_ [@./iterator_adaptor.html adaptor]]
|
||||
|
||||
Writing standard-conforming iterators is tricky, but the need comes
|
||||
up often. In order to ease the implementation of new iterators,
|
||||
the Boost.Iterator library provides the _facade_ class template,
|
||||
which implements many useful defaults and compile-time checks
|
||||
designed to help the iterator author ensure that his iterator is
|
||||
correct.
|
||||
|
||||
It is also common to define a new iterator that is similar to some
|
||||
underlying iterator or iterator-like type, but that modifies some
|
||||
aspect of the underlying type's behavior. For that purpose, the
|
||||
library supplies the _adaptor_ class template, which is specially
|
||||
designed to take advantage of as much of the underlying type's
|
||||
behavior as possible.
|
||||
|
||||
Both _facade_ and _adaptor_ as well as many of the `specialized
|
||||
adaptors`_ mentioned below have been proposed for standardization
|
||||
([@./facade-and-adaptor.html Standard Proposal For Iterator Facade and Adaptor]).
|
||||
|
||||
[h2 Specialized Adaptors]
|
||||
|
||||
The iterator library supplies a useful suite of standard-conforming
|
||||
iterator templates based on the Boost [link
|
||||
intro.iterator_facade_and_adaptor iterator facade and adaptor]
|
||||
templates.
|
||||
|
||||
[def _counting_ [@./counting_iterator.html `counting_iterator`]]
|
||||
[def _filter_ [@./filter_iterator.html `filter_iterator`]]
|
||||
[def _function_ [@./function_output_iterator.html `function_output_iterator`]]
|
||||
[def _indirect_ [@./indirect_iterator.html `indirect_iterator`]]
|
||||
[def _permutation_ [@./permutation_iterator.html `permutation_iterator`]]
|
||||
[def _reverse_ [@./reverse_iterator.html `reverse_iterator`]]
|
||||
[def _shared_ [@./shared_container_iterator.html `shared_container_iterator`]]
|
||||
[def _transform_ [@./transform_iterator.html `transform_iterator`]]
|
||||
[def _zip_ [@./zip_iterator.html `zip_iterator`]]
|
||||
|
||||
[def _shared_ptr_ [@../../smart_ptr/shared_ptr.htm `shared_ptr`]]
|
||||
|
||||
* _counting_: an iterator over a sequence of consecutive values.
|
||||
Implements a "lazy sequence"
|
||||
|
||||
* _filter_: an iterator over the subset of elements of some
|
||||
sequence which satisfy a given predicate
|
||||
|
||||
* _function_: an output iterator wrapping a unary function
|
||||
object; each time an element is written into the dereferenced
|
||||
iterator, it is passed as a parameter to the function object.
|
||||
|
||||
* _indirect_: an iterator over the objects *pointed-to* by the
|
||||
elements of some sequence.
|
||||
|
||||
* _permutation_: an iterator over the elements of some random-access
|
||||
sequence, rearranged according to some sequence of integer indices.
|
||||
|
||||
* _reverse_: an iterator which traverses the elements of some
|
||||
bidirectional sequence in reverse. Corrects many of the
|
||||
shortcomings of C++98's ``std::reverse_iterator``.
|
||||
|
||||
* _shared_: an iterator over elements of a container whose
|
||||
lifetime is maintained by a _shared_ptr_ stored in the iterator.
|
||||
|
||||
* _transform_: an iterator over elements which are the result of
|
||||
applying some functional transformation to the elements of an
|
||||
underlying sequence. This component also replaces the old
|
||||
``projection_iterator_adaptor``.
|
||||
|
||||
* _zip_: an iterator over tuples of the elements at corresponding
|
||||
positions of heterogeneous underlying iterators.
|
||||
|
||||
[h2 Iterator Utilities]
|
||||
|
||||
[h3 Traits]
|
||||
|
||||
[def _pointee_ [@./pointee.html `pointee.hpp`]]
|
||||
[def _iterator_traits_ [@./iterator_traits.html `iterator_traits.hpp`]]
|
||||
[def _interoperable_ [@./interoperable.html `interoperable.hpp`]]
|
||||
[def _MPL_ [@../../mpl/doc/index.html [*MPL]]]
|
||||
|
||||
* _pointee_: Provides the capability to deduce the referent types
|
||||
of pointers, smart pointers and iterators in generic code. Used
|
||||
in _indirect_.
|
||||
|
||||
* _iterator_traits_: Provides _MPL_ compatible metafunctions which
|
||||
retrieve an iterator's traits. Also corrects for the deficiencies
|
||||
of broken implementations of `std::iterator_traits`.
|
||||
|
||||
[\ * |interoperable|_ (PDF__): Provides an _MPL_ compatible metafunction for
|
||||
testing iterator interoperability
|
||||
]
|
||||
|
||||
[h3 Testing and Concept Checking]
|
||||
|
||||
[def _iterator_concepts_ [@./iterator_concepts.html `iterator_concepts.hpp`]]
|
||||
[def _iterator_archetypes_ [@./iterator_archetypes.html `iterator_archetypes.hpp`]]
|
||||
|
||||
* _iterator_concepts_: Concept checking classes for the new iterator concepts.
|
||||
|
||||
* _iterator_archetypes_: Concept archetype classes for the new iterators concepts.
|
||||
|
||||
[endsect]
|
||||
|
||||
[include concepts.qbk]
|
||||
|
||||
[section:generic Generic Iterators]
|
||||
|
||||
[include facade.qbk]
|
||||
|
||||
[include adaptor.qbk]
|
||||
|
||||
[endsect]
|
||||
|
||||
[include specialized_adaptors.qbk]
|
||||
|
||||
[section:utilities Utilities]
|
||||
|
||||
[include archetypes.qbk]
|
||||
|
||||
[include concept_checking.qbk]
|
||||
|
||||
[include traits.qbk]
|
||||
|
||||
[include utilities.qbk]
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:upgrading Upgrading from the old Boost Iterator Adaptor Library]
|
||||
|
||||
[def _type_generator_ [@../../more/generic_programming.html#type_generator type generator]]
|
||||
|
||||
If you have been using the old Boost Iterator Adaptor library to
|
||||
implement iterators, you probably wrote a `Policies` class which
|
||||
captures the core operations of your iterator. In the new library
|
||||
design, you'll move those same core operations into the body of the
|
||||
iterator class itself. If you were writing a family of iterators,
|
||||
you probably wrote a _type_generator_ to build the
|
||||
`iterator_adaptor` specialization you needed; in the new library
|
||||
design you don't need a type generator (though may want to keep it
|
||||
around as a compatibility aid for older code) because, due to the
|
||||
use of the Curiously Recurring Template Pattern (CRTP) [Cop95]_,
|
||||
you can now define the iterator class yourself and acquire
|
||||
functionality through inheritance from `iterator_facade` or
|
||||
`iterator_adaptor`. As a result, you also get much finer control
|
||||
over how your iterator works: you can add additional constructors,
|
||||
or even override the iterator functionality provided by the
|
||||
library.
|
||||
|
||||
|
||||
If you're looking for the old `projection_iterator` component,
|
||||
its functionality has been merged into _transform_iterator_: as
|
||||
long as the function object's `result_type` (or the `Reference`
|
||||
template argument, if explicitly specified) is a true reference
|
||||
type, _transform_iterator_ will behave like
|
||||
`projection_iterator` used to.
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:history History]
|
||||
|
||||
In 2000 Dave Abrahams was writing an iterator for a container of
|
||||
pointers, which would access the pointed-to elements when
|
||||
dereferenced. Naturally, being a library writer, he decided to
|
||||
generalize the idea and the Boost Iterator Adaptor library was born.
|
||||
Dave was inspired by some writings of Andrei Alexandrescu and chose a
|
||||
policy based design (though he probably didn't capture Andrei's idea
|
||||
very well - there was only one policy class for all the iterator's
|
||||
orthogonal properties). Soon Jeremy Siek realized he would need the
|
||||
library and they worked together to produce a "Boostified" version,
|
||||
which was reviewed and accepted into the library. They wrote a paper
|
||||
and made several important revisions of the code.
|
||||
|
||||
Eventually, several shortcomings of the older library began to make
|
||||
the need for a rewrite apparent. Dave and Jeremy started working
|
||||
at the Santa Cruz C++ committee meeting in 2002, and had quickly
|
||||
generated a working prototype. At the urging of Mat Marcus, they
|
||||
decided to use the GenVoca/CRTP pattern approach, and moved the
|
||||
policies into the iterator class itself. Thomas Witt expressed
|
||||
interest and became the voice of strict compile-time checking for
|
||||
the project, adding uses of the SFINAE technique to eliminate false
|
||||
converting constructors and operators from the overload set. He
|
||||
also recognized the need for a separate `iterator_facade`, and
|
||||
factored it out of `iterator_adaptor`. Finally, after a
|
||||
near-complete rewrite of the prototype, they came up with the
|
||||
library you see today.
|
||||
|
||||
[:\[Coplien, 1995\] Coplien, J., Curiously Recurring Template
|
||||
Patterns, C++ Report, February 1995, pp. 24-27.]
|
||||
|
||||
[endsect]
|
||||
|
||||
|
207
doc/quickbook/permutation_iterator.qbk
Normal file
207
doc/quickbook/permutation_iterator.qbk
Normal file
@ -0,0 +1,207 @@
|
||||
|
||||
[section:permutation Permutation Iterator]
|
||||
|
||||
The permutation iterator adaptor provides a permuted view of a given
|
||||
range. That is, the view includes every element of the given range but
|
||||
in a potentially different order. The adaptor takes two arguments:
|
||||
|
||||
* an iterator to the range V on which the permutation
|
||||
will be applied
|
||||
* the reindexing scheme that defines how the
|
||||
elements of V will be permuted.
|
||||
|
||||
Note that the permutation iterator is not limited to strict
|
||||
permutations of the given range V. The distance between begin and end
|
||||
of the reindexing iterators is allowed to be smaller compared to the
|
||||
size of the range V, in which case the permutation iterator only
|
||||
provides a permutation of a subrange of V. The indexes neither need
|
||||
to be unique. In this same context, it must be noted that the past the
|
||||
end permutation iterator is completely defined by means of the
|
||||
past-the-end iterator to the indices.
|
||||
|
||||
[h2 Example]
|
||||
|
||||
using namespace boost;
|
||||
int i = 0;
|
||||
|
||||
typedef std::vector< int > element_range_type;
|
||||
typedef std::list< int > index_type;
|
||||
|
||||
static const int element_range_size = 10;
|
||||
static const int index_size = 4;
|
||||
|
||||
element_range_type elements( element_range_size );
|
||||
for(element_range_type::iterator el_it = elements.begin() ; el_it != elements.end() ; ++el_it)
|
||||
*el_it = std::distance(elements.begin(), el_it);
|
||||
|
||||
index_type indices( index_size );
|
||||
for(index_type::iterator i_it = indices.begin() ; i_it != indices.end() ; ++i_it )
|
||||
*i_it = element_range_size - index_size + std::distance(indices.begin(), i_it);
|
||||
std::reverse( indices.begin(), indices.end() );
|
||||
|
||||
typedef permutation_iterator< element_range_type::iterator, index_type::iterator > permutation_type;
|
||||
permutation_type begin = make_permutation_iterator( elements.begin(), indices.begin() );
|
||||
permutation_type it = begin;
|
||||
permutation_type end = make_permutation_iterator( elements.begin(), indices.end() );
|
||||
|
||||
std::cout << "The original range is : ";
|
||||
std::copy( elements.begin(), elements.end(), std::ostream_iterator< int >( std::cout, " " ) );
|
||||
std::cout << "\n";
|
||||
|
||||
std::cout << "The reindexing scheme is : ";
|
||||
std::copy( indices.begin(), indices.end(), std::ostream_iterator< int >( std::cout, " " ) );
|
||||
std::cout << "\n";
|
||||
|
||||
std::cout << "The permutated range is : ";
|
||||
std::copy( begin, end, std::ostream_iterator< int >( std::cout, " " ) );
|
||||
std::cout << "\n";
|
||||
|
||||
std::cout << "Elements at even indices in the permutation : ";
|
||||
it = begin;
|
||||
for(i = 0; i < index_size / 2 ; ++i, it+=2 ) std::cout << *it << " ";
|
||||
std::cout << "\n";
|
||||
|
||||
std::cout << "Permutation backwards : ";
|
||||
it = begin + (index_size);
|
||||
assert( it != begin );
|
||||
for( ; it-- != begin ; ) std::cout << *it << " ";
|
||||
std::cout << "\n";
|
||||
|
||||
std::cout << "Iterate backward with stride 2 : ";
|
||||
it = begin + (index_size - 1);
|
||||
for(i = 0 ; i < index_size / 2 ; ++i, it-=2 ) std::cout << *it << " ";
|
||||
std::cout << "\n";
|
||||
|
||||
|
||||
The output is:
|
||||
|
||||
The original range is : 0 1 2 3 4 5 6 7 8 9
|
||||
The reindexing scheme is : 9 8 7 6
|
||||
The permutated range is : 9 8 7 6
|
||||
Elements at even indices in the permutation : 9 7
|
||||
Permutation backwards : 6 7 8 9
|
||||
Iterate backward with stride 2 : 6 8
|
||||
|
||||
|
||||
The source code for this example can be found
|
||||
[@../example/permutation_iter_example.cpp here].
|
||||
|
||||
[h2 Reference]
|
||||
|
||||
[h3 Synopsis]
|
||||
|
||||
template< class ElementIterator
|
||||
, class IndexIterator
|
||||
, class ValueT = use_default
|
||||
, class CategoryT = use_default
|
||||
, class ReferenceT = use_default
|
||||
, class DifferenceT = use_default >
|
||||
class permutation_iterator
|
||||
{
|
||||
public:
|
||||
permutation_iterator();
|
||||
explicit permutation_iterator(ElementIterator x, IndexIterator y);
|
||||
|
||||
template< class OEIter, class OIIter, class V, class C, class R, class D >
|
||||
permutation_iterator(
|
||||
permutation_iterator<OEIter, OIIter, V, C, R, D> const& r
|
||||
, typename enable_if_convertible<OEIter, ElementIterator>::type* = 0
|
||||
, typename enable_if_convertible<OIIter, IndexIterator>::type* = 0
|
||||
);
|
||||
reference operator*() const;
|
||||
permutation_iterator& operator++();
|
||||
ElementIterator const& base() const;
|
||||
private:
|
||||
ElementIterator m_elt; // exposition only
|
||||
IndexIterator m_order; // exposition only
|
||||
};
|
||||
|
||||
template <class ElementIterator, class IndexIterator>
|
||||
permutation_iterator<ElementIterator, IndexIterator>
|
||||
make_permutation_iterator( ElementIterator e, IndexIterator i);
|
||||
|
||||
|
||||
[h3 Requirements]
|
||||
|
||||
`ElementIterator` shall model Random Access Traversal Iterator.
|
||||
`IndexIterator` shall model Readable Iterator. The value type of
|
||||
the `IndexIterator` must be convertible to the difference type of
|
||||
`ElementIterator`.
|
||||
|
||||
[h3 Concepts]
|
||||
|
||||
`permutation_iterator` models the same iterator traversal concepts
|
||||
as `IndexIterator` and the same iterator access concepts as
|
||||
`ElementIterator`.
|
||||
|
||||
If `IndexIterator` models Single Pass Iterator and
|
||||
`ElementIterator` models Readable Iterator then
|
||||
`permutation_iterator` models Input Iterator.
|
||||
|
||||
If `IndexIterator` models Forward Traversal Iterator and
|
||||
`ElementIterator` models Readable Lvalue Iterator then
|
||||
`permutation_iterator` models Forward Iterator.
|
||||
|
||||
If `IndexIterator` models Bidirectional Traversal Iterator and
|
||||
`ElementIterator` models Readable Lvalue Iterator then
|
||||
`permutation_iterator` models Bidirectional Iterator.
|
||||
|
||||
If `IndexIterator` models Random Access Traversal Iterator and
|
||||
`ElementIterator` models Readable Lvalue Iterator then
|
||||
`permutation_iterator` models Random Access Iterator.
|
||||
|
||||
`permutation_iterator<E1, X, V1, C2, R1, D1>` is interoperable
|
||||
with `permutation_iterator<E2, Y, V2, C2, R2, D2>` if and only if
|
||||
`X` is interoperable with `Y` and `E1` is convertible
|
||||
to `E2`.
|
||||
|
||||
[h3 Operations]
|
||||
|
||||
In addition to those operations required by the concepts that
|
||||
`permutation_iterator` models, `permutation_iterator` provides the
|
||||
following operations.
|
||||
|
||||
permutation_iterator();
|
||||
|
||||
[*Effects: ] Default constructs `m_elt` and `m_order`.
|
||||
|
||||
|
||||
explicit permutation_iterator(ElementIterator x, IndexIterator y);
|
||||
|
||||
[*Effects: ] Constructs `m_elt` from `x` and `m_order` from `y`.
|
||||
|
||||
|
||||
template< class OEIter, class OIIter, class V, class C, class R, class D >
|
||||
permutation_iterator(
|
||||
permutation_iterator<OEIter, OIIter, V, C, R, D> const& r
|
||||
, typename enable_if_convertible<OEIter, ElementIterator>::type* = 0
|
||||
, typename enable_if_convertible<OIIter, IndexIterator>::type* = 0
|
||||
);
|
||||
|
||||
[*Effects: ] Constructs `m_elt` from `r.m_elt` and
|
||||
`m_order` from `y.m_order`.
|
||||
|
||||
|
||||
reference operator*() const;
|
||||
|
||||
[*Returns: ] `*(m_elt + *m_order)`
|
||||
|
||||
|
||||
permutation_iterator& operator++();
|
||||
|
||||
[*Effects: ] `++m_order`\n
|
||||
[*Returns: ] `*this`
|
||||
|
||||
|
||||
ElementIterator const& base() const;
|
||||
|
||||
[*Returns: ] `m_order`
|
||||
|
||||
|
||||
template <class ElementIterator, class IndexIterator>
|
||||
permutation_iterator<ElementIterator, IndexIterator>
|
||||
make_permutation_iterator(ElementIterator e, IndexIterator i);
|
||||
|
||||
[*Returns: ] `permutation_iterator<ElementIterator, IndexIterator>(e, i)`
|
||||
|
||||
[endsect]
|
160
doc/quickbook/reverse_iterator.qbk
Normal file
160
doc/quickbook/reverse_iterator.qbk
Normal file
@ -0,0 +1,160 @@
|
||||
|
||||
[section:reverse Reverse Iterator]
|
||||
|
||||
The reverse iterator adaptor iterates through the adapted iterator
|
||||
range in the opposite direction.
|
||||
|
||||
[h2 Example]
|
||||
|
||||
The following example prints an array of characters in reverse order
|
||||
using `reverse_iterator`.
|
||||
|
||||
|
||||
char letters_[] = "hello world!";
|
||||
const int N = sizeof(letters_)/sizeof(char) - 1;
|
||||
typedef char* base_iterator;
|
||||
base_iterator letters(letters_);
|
||||
std::cout << "original sequence of letters:\t\t\t" << letters_ << std::endl;
|
||||
|
||||
boost::reverse_iterator<base_iterator>
|
||||
reverse_letters_first(letters + N),
|
||||
reverse_letters_last(letters);
|
||||
|
||||
std::cout << "sequence in reverse order:\t\t\t";
|
||||
std::copy(reverse_letters_first, reverse_letters_last,
|
||||
std::ostream_iterator<char>(std::cout));
|
||||
std::cout << std::endl;
|
||||
|
||||
std::cout << "sequence in double-reversed (normal) order:\t";
|
||||
std::copy(boost::make_reverse_iterator(reverse_letters_last),
|
||||
boost::make_reverse_iterator(reverse_letters_first),
|
||||
std::ostream_iterator<char>(std::cout));
|
||||
std::cout << std::endl;
|
||||
|
||||
|
||||
|
||||
The output is:
|
||||
|
||||
original sequence of letters: hello world!
|
||||
sequence in reverse order: !dlrow olleh
|
||||
sequence in double-reversed (normal) order: hello world!
|
||||
|
||||
|
||||
The source code for this example can be found
|
||||
[@../example/reverse_iterator_example.cpp here].
|
||||
|
||||
[h2 Reference]
|
||||
|
||||
[h3 Synopsis]
|
||||
|
||||
template <class Iterator>
|
||||
class reverse_iterator
|
||||
{
|
||||
public:
|
||||
typedef iterator_traits<Iterator>::value_type value_type;
|
||||
typedef iterator_traits<Iterator>::reference reference;
|
||||
typedef iterator_traits<Iterator>::pointer pointer;
|
||||
typedef iterator_traits<Iterator>::difference_type difference_type;
|
||||
typedef /* see below */ iterator_category;
|
||||
|
||||
reverse_iterator() {}
|
||||
explicit reverse_iterator(Iterator x) ;
|
||||
|
||||
template<class OtherIterator>
|
||||
reverse_iterator(
|
||||
reverse_iterator<OtherIterator> const& r
|
||||
, typename enable_if_convertible<OtherIterator, Iterator>::type* = 0 // exposition
|
||||
);
|
||||
Iterator const& base() const;
|
||||
reference operator*() const;
|
||||
reverse_iterator& operator++();
|
||||
reverse_iterator& operator--();
|
||||
private:
|
||||
Iterator m_iterator; // exposition
|
||||
};
|
||||
|
||||
|
||||
If `Iterator` models Random Access Traversal Iterator and Readable
|
||||
Lvalue Iterator, then `iterator_category` is convertible to
|
||||
`random_access_iterator_tag`. Otherwise, if
|
||||
`Iterator` models Bidirectional Traversal Iterator and Readable
|
||||
Lvalue Iterator, then `iterator_category` is convertible to
|
||||
`bidirectional_iterator_tag`. Otherwise, `iterator_category` is
|
||||
convertible to `input_iterator_tag`.
|
||||
|
||||
[h3 Requirements]
|
||||
|
||||
`Iterator` must be a model of Bidirectional Traversal Iterator. The
|
||||
type `iterator_traits<Iterator>::reference` must be the type of
|
||||
`*i`, where `i` is an object of type `Iterator`.
|
||||
|
||||
[h3 Concepts]
|
||||
|
||||
A specialization of `reverse_iterator` models the same iterator
|
||||
traversal and iterator access concepts modeled by its `Iterator`
|
||||
argument. In addition, it may model old iterator concepts
|
||||
specified in the following table:
|
||||
|
||||
[table Categories
|
||||
[[If `I` models ][then `reverse_iterator<I>` models]]
|
||||
[[Readable Lvalue Iterator, Bidirectional Traversal Iterator][Bidirectional Iterator]]
|
||||
[[Writable Lvalue Iterator, Bidirectional Traversal Iterator][Mutable Bidirectional Iterator]]
|
||||
[[Readable Lvalue Iterator, Random Access Traversal Iterator][Random Access Iterator]]
|
||||
[[Writable Lvalue Iterator, Random Access Traversal Iterator][Mutable Random Access Iterator]]
|
||||
]
|
||||
|
||||
`reverse_iterator<X>` is interoperable with
|
||||
`reverse_iterator<Y>` if and only if `X` is interoperable with
|
||||
`Y`.
|
||||
|
||||
[h3 Operations]
|
||||
|
||||
In addition to the operations required by the concepts modeled by
|
||||
`reverse_iterator`, `reverse_iterator` provides the following
|
||||
operations.
|
||||
|
||||
reverse_iterator();
|
||||
|
||||
[*Requires: ] `Iterator` must be Default Constructible.\n
|
||||
[*Effects: ] Constructs an instance of `reverse_iterator` with `m_iterator`
|
||||
default constructed.
|
||||
|
||||
explicit reverse_iterator(Iterator x);
|
||||
|
||||
[*Effects: ] Constructs an instance of `reverse_iterator` with
|
||||
`m_iterator` copy constructed from `x`.
|
||||
|
||||
|
||||
template<class OtherIterator>
|
||||
reverse_iterator(
|
||||
reverse_iterator<OtherIterator> const& r
|
||||
, typename enable_if_convertible<OtherIterator, Iterator>::type* = 0 // exposition
|
||||
);
|
||||
|
||||
[*Requires: ] `OtherIterator` is implicitly convertible to `Iterator`.\n
|
||||
[*Effects: ] Constructs instance of `reverse_iterator` whose
|
||||
`m_iterator` subobject is constructed from `y.base()`.
|
||||
|
||||
|
||||
|
||||
Iterator const& base() const;
|
||||
|
||||
[*Returns: ] `m_iterator`
|
||||
|
||||
|
||||
reference operator*() const;
|
||||
|
||||
[*Effects: ] Iterator tmp = m_iterator; return *--tmp;
|
||||
|
||||
|
||||
reverse_iterator& operator++();
|
||||
|
||||
[*Effects: ] `--m_iterator`\n
|
||||
[*Returns: ] `*this`
|
||||
|
||||
reverse_iterator& operator--();
|
||||
|
||||
[*Effects: ] `++m_iterator`\n
|
||||
[*Returns: ] `*this`
|
||||
|
||||
[endsect]
|
248
doc/quickbook/shared_container_iterator.qbk
Normal file
248
doc/quickbook/shared_container_iterator.qbk
Normal file
@ -0,0 +1,248 @@
|
||||
|
||||
[section:shared_container Shared Container Iterator]
|
||||
|
||||
Defined in header [@../../../boost/shared_container_iterator.hpp `boost/shared_container_iterator.hpp`].
|
||||
|
||||
The purpose of the shared container iterator is to attach the lifetime
|
||||
of a container to the lifetime of its iterators. In other words, the
|
||||
container will not be deleted until after all its iterators are
|
||||
destroyed. The shared container iterator is typically used to
|
||||
implement functions that return iterators over a range of objects that
|
||||
only need to exist for the lifetime of the iterators. By returning a
|
||||
pair of shared iterators from a function, the callee can return a
|
||||
heap-allocated range of objects whose lifetime is automatically
|
||||
managed.
|
||||
|
||||
The shared container iterator augments an iterator over a shared
|
||||
container. It maintains a reference count on the shared container. If
|
||||
only shared container iterators hold references to the container, the
|
||||
container's lifetime will end when the last shared container iterator
|
||||
over it is destroyed. In any case, the shared container is guaranteed
|
||||
to persist beyond the lifetime of all the iterators. In all other
|
||||
ways, the shared container iterator behaves the same as its base
|
||||
iterator.
|
||||
|
||||
[h2 Synopsis]
|
||||
|
||||
namespace boost {
|
||||
template <typename Container>
|
||||
class shared_container_iterator;
|
||||
|
||||
template <typename Container>
|
||||
shared_container_iterator<Container>
|
||||
make_shared_container_iterator(typename Container::iterator base,
|
||||
boost::shared_ptr<Container> const& container);
|
||||
|
||||
std::pair<
|
||||
typename shared_container_iterator<Container>,
|
||||
typename shared_container_iterator<Container>
|
||||
>
|
||||
make_shared_container_range(boost::shared_ptr<Container> const& container);
|
||||
}
|
||||
|
||||
[section:shared_container_type The Shared Container Iterator Type]
|
||||
|
||||
template <typename Container> class shared_container_iterator;
|
||||
|
||||
The class template `shared_container_iterator` is the shared container
|
||||
iterator type. The `Container` template type argument must model the
|
||||
[@http://www.sgi.com/tech/stl/Container.html Container] concept.
|
||||
|
||||
[h2 Example]
|
||||
|
||||
The following example illustrates how to create an iterator that
|
||||
regulates the lifetime of a reference counted `std::vector`. Though the
|
||||
original shared pointer `ints` ceases to exist after `set_range()`
|
||||
returns, the `shared_counter_iterator` objects maintain references to
|
||||
the underlying vector and thereby extend the container's lifetime.
|
||||
|
||||
[@../../../libs/utility/shared_iterator_example1.cpp `shared_iterator_example1.cpp`]:
|
||||
|
||||
#include "shared_container_iterator.hpp"
|
||||
#include "boost/shared_ptr.hpp"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
typedef boost::shared_container_iterator< std::vector<int> > iterator;
|
||||
|
||||
|
||||
void set_range(iterator& i, iterator& end) {
|
||||
|
||||
boost::shared_ptr< std::vector<int> > ints(new std::vector<int>());
|
||||
|
||||
ints->push_back(0);
|
||||
ints->push_back(1);
|
||||
ints->push_back(2);
|
||||
ints->push_back(3);
|
||||
ints->push_back(4);
|
||||
ints->push_back(5);
|
||||
|
||||
i = iterator(ints->begin(),ints);
|
||||
end = iterator(ints->end(),ints);
|
||||
}
|
||||
|
||||
|
||||
int main() {
|
||||
|
||||
iterator i,end;
|
||||
|
||||
set_range(i,end);
|
||||
|
||||
std::copy(i,end,std::ostream_iterator<int>(std::cout,","));
|
||||
std::cout.put('\n');
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
The output from this part is:
|
||||
|
||||
0,1,2,3,4,5,
|
||||
|
||||
[table Template Parameters
|
||||
[[Parameter][Description]]
|
||||
[[Container][The type of the container that we wish to iterate over. It must be a model of the Container concept.]]
|
||||
]
|
||||
|
||||
[h2 Concepts]
|
||||
|
||||
The `shared_container_iterator` type models the same iterator concept
|
||||
as the base iterator (`Container::iterator`).
|
||||
|
||||
[h2 Operations]
|
||||
|
||||
The `shared_container_iterator` type implements the member functions
|
||||
and operators required of the
|
||||
[@http://www.sgi.com/tech/stl/RandomAccessIterator.html Random Access
|
||||
Iterator] concept, though only operations defined for the base
|
||||
iterator will be valid. In addition it has the following constructor:
|
||||
|
||||
shared_container_iterator(Container::iterator const& it,
|
||||
boost::shared_ptr<Container> const& container)
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:shared_container_object_generator The Shared Container Iterator Object Generator]
|
||||
|
||||
template <typename Container>
|
||||
shared_container_iterator<Container>
|
||||
make_shared_container_iterator(Container::iterator base,
|
||||
boost::shared_ptr<Container> const& container)
|
||||
|
||||
This function provides an alternative to directly constructing a
|
||||
`shared_container_iterator`. Using the object generator, a
|
||||
`shared_container_iterator` can be created and passed to a function without
|
||||
explicitly specifying its type.
|
||||
|
||||
[h2 Example]
|
||||
|
||||
This example, similar to the previous,
|
||||
uses `make_shared_container_iterator()` to create the iterators.
|
||||
|
||||
[@../../../libs/utility/shared_iterator_example2.cpp `shared_iterator_example2.cpp`]:
|
||||
|
||||
#include "shared_container_iterator.hpp"
|
||||
#include "boost/shared_ptr.hpp"
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
|
||||
template <typename Iterator>
|
||||
void print_range_nl (Iterator begin, Iterator end) {
|
||||
typedef typename std::iterator_traits<Iterator>::value_type val;
|
||||
std::copy(begin,end,std::ostream_iterator<val>(std::cout,","));
|
||||
std::cout.put('\n');
|
||||
}
|
||||
|
||||
|
||||
int main() {
|
||||
|
||||
typedef boost::shared_ptr< std::vector<int> > ints_t;
|
||||
{
|
||||
ints_t ints(new std::vector<int>());
|
||||
|
||||
ints->push_back(0);
|
||||
ints->push_back(1);
|
||||
ints->push_back(2);
|
||||
ints->push_back(3);
|
||||
ints->push_back(4);
|
||||
ints->push_back(5);
|
||||
|
||||
print_range_nl(boost::make_shared_container_iterator(ints->begin(),ints),
|
||||
boost::make_shared_container_iterator(ints->end(),ints));
|
||||
}
|
||||
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Observe that the `shared_container_iterator` type is never explicitly
|
||||
named. The output from this example is the same as the previous.
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:shared_container_generator The Shared Container Iterator Range Generator]
|
||||
|
||||
template <typename Container>
|
||||
std::pair<
|
||||
shared_container_iterator<Container>,
|
||||
shared_container_iterator<Container>
|
||||
>
|
||||
make_shared_container_range(boost::shared_ptr<Container> const& container);
|
||||
Class shared_container_iterator is meant primarily to return, using iterators, a range of values that we can guarantee will be alive as long as the iterators are. This is a convenience function to do just that. It is equivalent to
|
||||
std::make_pair(make_shared_container_iterator(container->begin(),container),
|
||||
make_shared_container_iterator(container->end(),container));
|
||||
|
||||
[h2 Example]
|
||||
|
||||
In the following example, a range of values is returned as a pair of shared_container_iterator objects.
|
||||
|
||||
[@../../../libs/utility/shared_iterator_example3.cpp `shared_iterator_example3.cpp`]:
|
||||
|
||||
#include "shared_container_iterator.hpp"
|
||||
#include "boost/shared_ptr.hpp"
|
||||
#include "boost/tuple/tuple.hpp" // for boost::tie
|
||||
#include <algorithm> // for std::copy
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
|
||||
typedef boost::shared_container_iterator< std::vector<int> > iterator;
|
||||
|
||||
std::pair<iterator,iterator>
|
||||
return_range() {
|
||||
boost::shared_ptr< std::vector<int> > range(new std::vector<int>());
|
||||
range->push_back(0);
|
||||
range->push_back(1);
|
||||
range->push_back(2);
|
||||
range->push_back(3);
|
||||
range->push_back(4);
|
||||
range->push_back(5);
|
||||
return boost::make_shared_container_range(range);
|
||||
}
|
||||
|
||||
|
||||
int main() {
|
||||
|
||||
|
||||
iterator i,end;
|
||||
|
||||
boost::tie(i,end) = return_range();
|
||||
|
||||
std::copy(i,end,std::ostream_iterator<int>(std::cout,","));
|
||||
std::cout.put('\n');
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Though the range object only lives for the duration of the
|
||||
`return_range` call, the reference counted `std::vector` will live
|
||||
until `i` and `end` are both destroyed. The output from this example is
|
||||
the same as the previous two.
|
||||
|
||||
[endsect]
|
||||
|
||||
[endsect]
|
22
doc/quickbook/specialized_adaptors.qbk
Normal file
22
doc/quickbook/specialized_adaptors.qbk
Normal file
@ -0,0 +1,22 @@
|
||||
|
||||
[section:specialized Specialized Adaptors]
|
||||
|
||||
[include ./counting_iterator.qbk]
|
||||
|
||||
[include ./filter_iterator.qbk]
|
||||
|
||||
[include ./function_output_iterator.qbk]
|
||||
|
||||
[include ./indirect_iterator.qbk]
|
||||
|
||||
[include ./permutation_iterator.qbk]
|
||||
|
||||
[include ./reverse_iterator.qbk]
|
||||
|
||||
[include ./shared_container_iterator.qbk]
|
||||
|
||||
[include ./transform_iterator.qbk]
|
||||
|
||||
[include ./zip_iterator.qbk]
|
||||
|
||||
[endsect]
|
72
doc/quickbook/traits.qbk
Normal file
72
doc/quickbook/traits.qbk
Normal file
@ -0,0 +1,72 @@
|
||||
|
||||
[section:traits Iterator Traits]
|
||||
|
||||
`std::iterator_traits` provides access to five associated types
|
||||
of any iterator: its `value_type`, `reference`, `pointer`,
|
||||
`iterator_category`, and `difference_type`. Unfortunately,
|
||||
such a "multi-valued" traits template can be difficult to use in a
|
||||
metaprogramming context. `<boost/iterator/iterator_traits.hpp>`
|
||||
provides access to these types using a standard metafunctions_.
|
||||
|
||||
[h2 Synopsis]
|
||||
|
||||
Header `<boost/iterator/iterator_traits.hpp>`:
|
||||
|
||||
template <class Iterator>
|
||||
struct iterator_value
|
||||
{
|
||||
typedef typename
|
||||
std::iterator_traits<Iterator>::value_type
|
||||
type;
|
||||
};
|
||||
|
||||
template <class Iterator>
|
||||
struct iterator_reference
|
||||
{
|
||||
typedef typename
|
||||
std::iterator_traits<Iterator>::reference
|
||||
type;
|
||||
};
|
||||
|
||||
template <class Iterator>
|
||||
struct iterator_pointer
|
||||
{
|
||||
typedef typename
|
||||
std::iterator_traits<Iterator>::pointer
|
||||
type;
|
||||
};
|
||||
|
||||
template <class Iterator>
|
||||
struct iterator_difference
|
||||
{
|
||||
typedef typename
|
||||
detail::iterator_traits<Iterator>::difference_type
|
||||
type;
|
||||
};
|
||||
|
||||
template <class Iterator>
|
||||
struct iterator_category
|
||||
{
|
||||
typedef typename
|
||||
detail::iterator_traits<Iterator>::iterator_category
|
||||
type;
|
||||
};
|
||||
|
||||
[h2 Broken Compiler Notes]
|
||||
|
||||
Because of workarounds in Boost, you may find that these
|
||||
[@../../mpl/doc/index.html#metafunctions metafunctions] actually work better than the facilities provided by
|
||||
your compiler's standard library.
|
||||
|
||||
On compilers that don't support partial specialization, such as
|
||||
Microsoft Visual C++ 6.0 or 7.0, you may need to manually invoke
|
||||
[@../../type_traits/index.html#transformations BOOST_BROKEN_COMPILER_TYPE_TRAITS_SPECIALIZATION] on the
|
||||
`value_type` of pointers that are passed to these metafunctions.
|
||||
|
||||
Because of bugs in the implementation of GCC-2.9x, the name of
|
||||
`iterator_category` is changed to `iterator_category_` on that
|
||||
compiler. A macro, `BOOST_ITERATOR_CATEGORY`, that expands to
|
||||
either `iterator_category` or `iterator_category_`, as
|
||||
appropriate to the platform, is provided for portability.
|
||||
|
||||
[endsect]
|
216
doc/quickbook/transform_iterator.qbk
Normal file
216
doc/quickbook/transform_iterator.qbk
Normal file
@ -0,0 +1,216 @@
|
||||
|
||||
[section:transform Transform Iterator]
|
||||
|
||||
The transform iterator adapts an iterator by modifying the
|
||||
`operator*` to apply a function object to the result of
|
||||
dereferencing the iterator and returning the result.
|
||||
|
||||
|
||||
[h2 Example]
|
||||
|
||||
|
||||
This is a simple example of using the transform_iterators class to
|
||||
generate iterators that multiply (or add to) the value returned by
|
||||
dereferencing the iterator. It would be cooler to use lambda library
|
||||
in this example.
|
||||
|
||||
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
|
||||
const int N = sizeof(x)/sizeof(int);
|
||||
|
||||
typedef boost::binder1st< std::multiplies<int> > Function;
|
||||
typedef boost::transform_iterator<Function, int*> doubling_iterator;
|
||||
|
||||
doubling_iterator i(x, boost::bind1st(std::multiplies<int>(), 2)),
|
||||
i_end(x + N, boost::bind1st(std::multiplies<int>(), 2));
|
||||
|
||||
std::cout << "multiplying the array by 2:" << std::endl;
|
||||
while (i != i_end)
|
||||
std::cout << *i++ << " ";
|
||||
std::cout << std::endl;
|
||||
|
||||
std::cout << "adding 4 to each element in the array:" << std::endl;
|
||||
std::copy(boost::make_transform_iterator(x, boost::bind1st(std::plus<int>(), 4)),
|
||||
boost::make_transform_iterator(x + N, boost::bind1st(std::plus<int>(), 4)),
|
||||
std::ostream_iterator<int>(std::cout, " "));
|
||||
std::cout << std::endl;
|
||||
|
||||
|
||||
The output is:
|
||||
|
||||
multiplying the array by 2:
|
||||
2 4 6 8 10 12 14 16
|
||||
adding 4 to each element in the array:
|
||||
5 6 7 8 9 10 11 12
|
||||
|
||||
|
||||
The source code for this example can be found
|
||||
[@../example/transform_iterator_example.cpp here].
|
||||
|
||||
[h2 Reference]
|
||||
|
||||
|
||||
[h3 Synopsis]
|
||||
|
||||
template <class UnaryFunction,
|
||||
class Iterator,
|
||||
class Reference = use_default,
|
||||
class Value = use_default>
|
||||
class transform_iterator
|
||||
{
|
||||
public:
|
||||
typedef /* see below */ value_type;
|
||||
typedef /* see below */ reference;
|
||||
typedef /* see below */ pointer;
|
||||
typedef iterator_traits<Iterator>::difference_type difference_type;
|
||||
typedef /* see below */ iterator_category;
|
||||
|
||||
transform_iterator();
|
||||
transform_iterator(Iterator const& x, UnaryFunction f);
|
||||
|
||||
template<class F2, class I2, class R2, class V2>
|
||||
transform_iterator(
|
||||
transform_iterator<F2, I2, R2, V2> const& t
|
||||
, typename enable_if_convertible<I2, Iterator>::type* = 0 // exposition only
|
||||
, typename enable_if_convertible<F2, UnaryFunction>::type* = 0 // exposition only
|
||||
);
|
||||
UnaryFunction functor() const;
|
||||
Iterator const& base() const;
|
||||
reference operator*() const;
|
||||
transform_iterator& operator++();
|
||||
transform_iterator& operator--();
|
||||
private:
|
||||
Iterator m_iterator; // exposition only
|
||||
UnaryFunction m_f; // exposition only
|
||||
};
|
||||
|
||||
|
||||
If `Reference` is `use_default` then the `reference` member of
|
||||
`transform_iterator` is\n
|
||||
`result_of<UnaryFunction(iterator_traits<Iterator>::reference)>::type`.
|
||||
Otherwise, `reference` is `Reference`.
|
||||
|
||||
|
||||
If `Value` is `use_default` then the `value_type` member is
|
||||
`remove_cv<remove_reference<reference> >::type`. Otherwise,
|
||||
`value_type` is `Value`.
|
||||
|
||||
|
||||
If `Iterator` models Readable Lvalue Iterator and if `Iterator`
|
||||
models Random Access Traversal Iterator, then `iterator_category` is
|
||||
convertible to `random_access_iterator_tag`. Otherwise, if
|
||||
`Iterator` models Bidirectional Traversal Iterator, then
|
||||
`iterator_category` is convertible to
|
||||
`bidirectional_iterator_tag`. Otherwise `iterator_category` is
|
||||
convertible to `forward_iterator_tag`. If `Iterator` does not
|
||||
model Readable Lvalue Iterator then `iterator_category` is
|
||||
convertible to `input_iterator_tag`.
|
||||
|
||||
|
||||
[h3 Requirements]
|
||||
|
||||
|
||||
The type `UnaryFunction` must be Assignable, Copy Constructible, and
|
||||
the expression `f(*i)` must be valid where `f` is an object of
|
||||
type `UnaryFunction`, `i` is an object of type `Iterator`, and
|
||||
where the type of `f(*i)` must be
|
||||
`result_of<UnaryFunction(iterator_traits<Iterator>::reference)>::type`.
|
||||
|
||||
|
||||
The argument `Iterator` shall model Readable Iterator.
|
||||
|
||||
|
||||
[h3 Concepts]
|
||||
|
||||
|
||||
The resulting `transform_iterator` models the most refined of the
|
||||
following that is also modeled by `Iterator`.
|
||||
|
||||
|
||||
* Writable Lvalue Iterator if `transform_iterator::reference` is a non-const reference.
|
||||
|
||||
* Readable Lvalue Iterator if `transform_iterator::reference` is a const reference.
|
||||
|
||||
* Readable Iterator otherwise.
|
||||
|
||||
|
||||
The `transform_iterator` models the most refined standard traversal
|
||||
concept that is modeled by the `Iterator` argument.
|
||||
|
||||
|
||||
If `transform_iterator` is a model of Readable Lvalue Iterator then
|
||||
it models the following original iterator concepts depending on what
|
||||
the `Iterator` argument models.
|
||||
|
||||
|
||||
[table Category
|
||||
[[If `Iterator` models][then `transform_iterator` models]]
|
||||
[[Single Pass Iterator][Input Iterator]]
|
||||
[[Forward Traversal Iterator][Forward Iterator]]
|
||||
[[Bidirectional Traversal Iterator][Bidirectional Iterator]]
|
||||
[[Random Access Traversal Iterator][Random Access Iterator]]
|
||||
]
|
||||
|
||||
If `transform_iterator` models Writable Lvalue Iterator then it is a
|
||||
mutable iterator (as defined in the old iterator requirements).
|
||||
|
||||
|
||||
`transform_iterator<F1, X, R1, V1>` is interoperable with
|
||||
`transform_iterator<F2, Y, R2, V2>` if and only if `X` is
|
||||
interoperable with `Y`.
|
||||
|
||||
[h3 Operations]
|
||||
|
||||
In addition to the operations required by the [link transform.concepts concepts] modeled by
|
||||
`transform_iterator`, `transform_iterator` provides the following
|
||||
operations:
|
||||
|
||||
transform_iterator();
|
||||
|
||||
[*Returns: ] An instance of `transform_iterator` with `m_f`
|
||||
and `m_iterator` default constructed.
|
||||
|
||||
transform_iterator(Iterator const& x, UnaryFunction f);
|
||||
|
||||
[*Returns: ] An instance of `transform_iterator` with `m_f`
|
||||
initialized to `f` and `m_iterator` initialized to `x`.
|
||||
|
||||
template<class F2, class I2, class R2, class V2>
|
||||
transform_iterator(
|
||||
transform_iterator<F2, I2, R2, V2> const& t
|
||||
, typename enable_if_convertible<I2, Iterator>::type* = 0 // exposition only
|
||||
, typename enable_if_convertible<F2, UnaryFunction>::type* = 0 // exposition only
|
||||
);
|
||||
|
||||
[*Returns: ] An instance of `transform_iterator` with `m_f`
|
||||
initialized to `t.functor()` and `m_iterator` initialized to
|
||||
`t.base()`.\n
|
||||
[*Requires: ] `OtherIterator` is implicitly convertible to `Iterator`.
|
||||
|
||||
|
||||
UnaryFunction functor() const;
|
||||
|
||||
[*Returns: ] `m_f`
|
||||
|
||||
|
||||
Iterator const& base() const;
|
||||
|
||||
[*Returns: ] `m_iterator`
|
||||
|
||||
|
||||
reference operator*() const;
|
||||
|
||||
[*Returns: ] `m_f(*m_iterator)`
|
||||
|
||||
|
||||
transform_iterator& operator++();
|
||||
|
||||
[*Effects: ] `++m_iterator`\n
|
||||
[*Returns: ] `*this`
|
||||
|
||||
|
||||
transform_iterator& operator--();
|
||||
|
||||
[*Effects: ] `--m_iterator`\n
|
||||
[*Returns: ] `*this`
|
||||
|
||||
[endsect]
|
224
doc/quickbook/utilities.qbk
Normal file
224
doc/quickbook/utilities.qbk
Normal file
@ -0,0 +1,224 @@
|
||||
|
||||
[section:utilities Iterator Utilities]
|
||||
|
||||
[section:utilities_traits Traits]
|
||||
|
||||
[h2 Overview]
|
||||
|
||||
Have you ever wanted to write a generic function that can operate
|
||||
on any kind of dereferenceable object? If you have, you've
|
||||
probably run into the problem of how to determine the type that the
|
||||
object "points at":
|
||||
|
||||
template <class Dereferenceable>
|
||||
void f(Dereferenceable p)
|
||||
{
|
||||
*what-goes-here?* value = \*p;
|
||||
...
|
||||
}
|
||||
|
||||
|
||||
[h2 `pointee`]
|
||||
|
||||
It turns out to be impossible to come up with a fully-general
|
||||
algorithm to do determine *what-goes-here* directly, but it is
|
||||
possible to require that `pointee<Dereferenceable>::type` is
|
||||
correct. Naturally, `pointee` has the same difficulty: it can't
|
||||
determine the appropriate `::type` reliably for all
|
||||
`Dereferenceable`\ s, but it makes very good guesses (it works
|
||||
for all pointers, standard and boost smart pointers, and
|
||||
iterators), and when it guesses wrongly, it can be specialized as
|
||||
necessary:
|
||||
|
||||
namespace boost
|
||||
{
|
||||
template <class T>
|
||||
struct pointee<third_party_lib::smart_pointer<T> >
|
||||
{
|
||||
typedef T type;
|
||||
};
|
||||
}
|
||||
|
||||
[h2 `indirect_reference`]
|
||||
|
||||
`indirect_reference<T>::type` is rather more specialized than
|
||||
`pointee`, and is meant to be used to forward the result of
|
||||
dereferencing an object of its argument type. Most dereferenceable
|
||||
types just return a reference to their pointee, but some return
|
||||
proxy references or return the pointee by value. When that
|
||||
information is needed, call on `indirect_reference`.
|
||||
|
||||
Both of these templates are essential to the correct functioning of
|
||||
[link indirecct `indirect_iterator`].
|
||||
|
||||
[h2 Reference]
|
||||
|
||||
[h3 `pointeee`]
|
||||
|
||||
template <class Dereferenceable>
|
||||
struct pointee
|
||||
{
|
||||
typedef /* see below */ type;
|
||||
};
|
||||
|
||||
[*Requires:] For an object `x` of type `Dereferenceable`, `*x`
|
||||
is well-formed. If `++x` is ill-formed it shall neither be
|
||||
ambiguous nor shall it violate access control, and
|
||||
`Dereferenceable::element_type` shall be an accessible type.
|
||||
Otherwise `iterator_traits<Dereferenceable>::value_type` shall
|
||||
be well formed. \[Note: These requirements need not apply to
|
||||
explicit or partial specializations of `pointee`\]
|
||||
|
||||
`type` is determined according to the following algorithm, where
|
||||
`x` is an object of type `Dereferenceable`:
|
||||
|
||||
if ( ++x is ill-formed )
|
||||
{
|
||||
return `Dereferenceable::element_type`
|
||||
}
|
||||
else if (`*x` is a mutable reference to
|
||||
std::iterator_traits<Dereferenceable>::value_type)
|
||||
{
|
||||
return iterator_traits<Dereferenceable>::value_type
|
||||
}
|
||||
else
|
||||
{
|
||||
return iterator_traits<Dereferenceable>::value_type const
|
||||
}
|
||||
|
||||
[h3 `indirect_reference`]
|
||||
|
||||
template <class Dereferenceable>
|
||||
struct indirect_reference
|
||||
{
|
||||
typedef /* see below */ type;
|
||||
};
|
||||
|
||||
[*Requires:] For an object `x` of type `Dereferenceable`, `*x`
|
||||
is well-formed. If `++x` is ill-formed it shall neither be
|
||||
ambiguous nor shall it violate access control, and
|
||||
`pointee<Dereferenceable>::type&` shall be well-formed.
|
||||
Otherwise `iterator_traits<Dereferenceable>::reference` shall
|
||||
be well formed. \[Note: These requirements need not apply to
|
||||
explicit or partial specializations of `indirect_reference`\]
|
||||
|
||||
`type` is determined according to the following algorithm, where
|
||||
`x` is an object of type `Dereferenceable`:
|
||||
|
||||
if ( ++x is ill-formed )
|
||||
return `pointee<Dereferenceable>::type&`
|
||||
else
|
||||
std::iterator_traits<Dereferenceable>::reference
|
||||
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:utilities_testing Testing and Concept Checking]
|
||||
|
||||
The iterator concept checking classes provide a mechanism for a
|
||||
template to report better error messages when a user instantiates
|
||||
the template with a type that does not meet the requirements of the
|
||||
template.
|
||||
|
||||
For an introduction to using concept checking classes, see
|
||||
the documentation for the
|
||||
[@../../concept_check/index.html `boost::concept_check`] library.
|
||||
|
||||
|
||||
[h2 Reference]
|
||||
|
||||
[h3 Iterator Access Concepts]
|
||||
|
||||
* |Readable|_
|
||||
* |Writable|_
|
||||
* |Swappable|_
|
||||
* |Lvalue|_
|
||||
|
||||
[/ .. |Readable| replace:: *Readable Iterator* ]
|
||||
[/ .. _Readable: ReadableIterator.html ]
|
||||
[/ ]
|
||||
[/ .. |Writable| replace:: *Writable Iterator* ]
|
||||
[/ .. _Writable: WritableIterator.html ]
|
||||
[/ ]
|
||||
[/ .. |Swappable| replace:: *Swappable Iterator* ]
|
||||
[/ .. _Swappable: SwappableIterator.html ]
|
||||
[/ ]
|
||||
[/ .. |Lvalue| replace:: *Lvalue Iterator* ]
|
||||
[/ .. _Lvalue: LvalueIterator.html ]
|
||||
|
||||
|
||||
Iterator Traversal Concepts
|
||||
...........................
|
||||
|
||||
* |Incrementable|_
|
||||
* |SinglePass|_
|
||||
* |Forward|_
|
||||
* |Bidir|_
|
||||
* |Random|_
|
||||
|
||||
|
||||
[/ .. |Incrementable| replace:: *Incrementable Iterator* ]
|
||||
[/ .. _Incrementable: IncrementableIterator.html ]
|
||||
[/ ]
|
||||
[/ .. |SinglePass| replace:: *Single Pass Iterator* ]
|
||||
[/ .. _SinglePass: SinglePassIterator.html ]
|
||||
[/ ]
|
||||
[/ .. |Forward| replace:: *Forward Traversal* ]
|
||||
[/ .. _Forward: ForwardTraversal.html ]
|
||||
[/ ]
|
||||
[/ .. |Bidir| replace:: *Bidirectional Traversal* ]
|
||||
[/ .. _Bidir: BidirectionalTraversal.html ]
|
||||
[/ ]
|
||||
[/ .. |Random| replace:: *Random Access Traversal* ]
|
||||
[/ .. _Random: RandomAccessTraversal.html ]
|
||||
|
||||
|
||||
|
||||
[h3 `iterator_concepts.hpp` Synopsis]
|
||||
|
||||
namespace boost_concepts {
|
||||
|
||||
// Iterator Access Concepts
|
||||
|
||||
template <typename Iterator>
|
||||
class ReadableIteratorConcept;
|
||||
|
||||
template <
|
||||
typename Iterator
|
||||
, typename ValueType = std::iterator_traits<Iterator>::value_type
|
||||
>
|
||||
class WritableIteratorConcept;
|
||||
|
||||
template <typename Iterator>
|
||||
class SwappableIteratorConcept;
|
||||
|
||||
template <typename Iterator>
|
||||
class LvalueIteratorConcept;
|
||||
|
||||
// Iterator Traversal Concepts
|
||||
|
||||
template <typename Iterator>
|
||||
class IncrementableIteratorConcept;
|
||||
|
||||
template <typename Iterator>
|
||||
class SinglePassIteratorConcept;
|
||||
|
||||
template <typename Iterator>
|
||||
class ForwardTraversalConcept;
|
||||
|
||||
template <typename Iterator>
|
||||
class BidirectionalTraversalConcept;
|
||||
|
||||
template <typename Iterator>
|
||||
class RandomAccessTraversalConcept;
|
||||
|
||||
// Interoperability
|
||||
|
||||
template <typename Iterator, typename ConstIterator>
|
||||
class InteroperableIteratorConcept;
|
||||
|
||||
}
|
||||
|
||||
[endsect]
|
||||
|
||||
[endsect]
|
256
doc/quickbook/zip_iterator.qbk
Normal file
256
doc/quickbook/zip_iterator.qbk
Normal file
@ -0,0 +1,256 @@
|
||||
|
||||
[section:zip Zip Iterator]
|
||||
|
||||
The zip iterator provides the ability to parallel-iterate
|
||||
over several controlled sequences simultaneously. A zip
|
||||
iterator is constructed from a tuple of iterators. Moving
|
||||
the zip iterator moves all the iterators in parallel.
|
||||
Dereferencing the zip iterator returns a tuple that contains
|
||||
the results of dereferencing the individual iterators.
|
||||
|
||||
[section:zip_example Example]
|
||||
|
||||
There are two main types of applications of the `zip_iterator`. The first
|
||||
one concerns runtime efficiency: If one has several controlled sequences
|
||||
of the same length that must be somehow processed, e.g., with the
|
||||
`for_each` algorithm, then it is more efficient to perform just
|
||||
one parallel-iteration rather than several individual iterations. For an
|
||||
example, assume that `vect_of_doubles` and `vect_of_ints`
|
||||
are two vectors of equal length containing doubles and ints, respectively,
|
||||
and consider the following two iterations:
|
||||
|
||||
std::vector<double>::const_iterator beg1 = vect_of_doubles.begin();
|
||||
std::vector<double>::const_iterator end1 = vect_of_doubles.end();
|
||||
std::vector<int>::const_iterator beg2 = vect_of_ints.begin();
|
||||
std::vector<int>::const_iterator end2 = vect_of_ints.end();
|
||||
|
||||
std::for_each(beg1, end1, func_0());
|
||||
std::for_each(beg2, end2, func_1());
|
||||
|
||||
These two iterations can now be replaced with a single one as follows:
|
||||
|
||||
|
||||
std::for_each(
|
||||
boost::make_zip_iterator(
|
||||
boost::make_tuple(beg1, beg2)
|
||||
),
|
||||
boost::make_zip_iterator(
|
||||
boost::make_tuple(end1, end2)
|
||||
),
|
||||
zip_func()
|
||||
);
|
||||
|
||||
A non-generic implementation of `zip_func` could look as follows:
|
||||
|
||||
|
||||
struct zip_func :
|
||||
public std::unary_function<const boost::tuple<const double&, const int&>&, void>
|
||||
{
|
||||
void operator()(const boost::tuple<const double&, const int&>& t) const
|
||||
{
|
||||
m_f0(t.get<0>());
|
||||
m_f1(t.get<1>());
|
||||
}
|
||||
|
||||
private:
|
||||
func_0 m_f0;
|
||||
func_1 m_f1;
|
||||
};
|
||||
|
||||
The second important application of the `zip_iterator` is as a building block
|
||||
to make combining iterators. A combining iterator is an iterator
|
||||
that parallel-iterates over several controlled sequences and, upon
|
||||
dereferencing, returns the result of applying a functor to the values of the
|
||||
sequences at the respective positions. This can now be achieved by using the
|
||||
`zip_iterator` in conjunction with the `transform_iterator`.
|
||||
|
||||
Suppose, for example, that you have two vectors of doubles, say
|
||||
`vect_1` and `vect_2`, and you need to expose to a client
|
||||
a controlled sequence containing the products of the elements of
|
||||
`vect_1` and `vect_2`. Rather than placing these products
|
||||
in a third vector, you can use a combining iterator that calculates the
|
||||
products on the fly. Let us assume that `tuple_multiplies` is a
|
||||
functor that works like `std::multiplies`, except that it takes
|
||||
its two arguments packaged in a tuple. Then the two iterators
|
||||
`it_begin` and `it_end` defined below delimit a controlled
|
||||
sequence containing the products of the elements of `vect_1` and
|
||||
`vect_2`:
|
||||
|
||||
typedef boost::tuple<
|
||||
std::vector<double>::const_iterator,
|
||||
std::vector<double>::const_iterator
|
||||
> the_iterator_tuple;
|
||||
|
||||
typedef boost::zip_iterator<
|
||||
the_iterator_tuple
|
||||
> the_zip_iterator;
|
||||
|
||||
typedef boost::transform_iterator<
|
||||
tuple_multiplies<double>,
|
||||
the_zip_iterator
|
||||
> the_transform_iterator;
|
||||
|
||||
the_transform_iterator it_begin(
|
||||
the_zip_iterator(
|
||||
the_iterator_tuple(
|
||||
vect_1.begin(),
|
||||
vect_2.begin()
|
||||
)
|
||||
),
|
||||
tuple_multiplies<double>()
|
||||
);
|
||||
|
||||
the_transform_iterator it_end(
|
||||
the_zip_iterator(
|
||||
the_iterator_tuple(
|
||||
vect_1.end(),
|
||||
vect_2.end()
|
||||
)
|
||||
),
|
||||
tuple_multiplies<double>()
|
||||
);
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:zip_reference Reference]
|
||||
|
||||
[h2 Synopsis]
|
||||
|
||||
template<typename IteratorTuple>
|
||||
class zip_iterator
|
||||
{
|
||||
|
||||
public:
|
||||
typedef /* see below */ reference;
|
||||
typedef reference value_type;
|
||||
typedef value_type* pointer;
|
||||
typedef /* see below */ difference_type;
|
||||
typedef /* see below */ iterator_category;
|
||||
|
||||
zip_iterator();
|
||||
zip_iterator(IteratorTuple iterator_tuple);
|
||||
|
||||
template<typename OtherIteratorTuple>
|
||||
zip_iterator(
|
||||
const zip_iterator<OtherIteratorTuple>& other
|
||||
, typename enable_if_convertible<
|
||||
OtherIteratorTuple
|
||||
, IteratorTuple>::type* = 0 // exposition only
|
||||
);
|
||||
|
||||
const IteratorTuple& get_iterator_tuple() const;
|
||||
|
||||
private:
|
||||
IteratorTuple m_iterator_tuple; // exposition only
|
||||
};
|
||||
|
||||
template<typename IteratorTuple>
|
||||
zip_iterator<IteratorTuple>
|
||||
make_zip_iterator(IteratorTuple t);
|
||||
|
||||
The `reference` member of `zip_iterator` is the type of the tuple
|
||||
made of the reference types of the iterator types in the `IteratorTuple`
|
||||
argument.
|
||||
|
||||
The `difference_type` member of `zip_iterator` is the `difference_type`
|
||||
of the first of the iterator types in the `IteratorTuple` argument.
|
||||
|
||||
The `iterator_category` member of `zip_iterator` is convertible to the
|
||||
minimum of the traversal categories of the iterator types in the `IteratorTuple`
|
||||
argument. For example, if the `zip_iterator` holds only vector
|
||||
iterators, then `iterator_category` is convertible to
|
||||
`boost::random_access_traversal_tag`. If you add a list iterator, then
|
||||
`iterator_category` will be convertible to `boost::bidirectional_traversal_tag`,
|
||||
but no longer to `boost::random_access_traversal_tag`.
|
||||
|
||||
[h2 Requirements]
|
||||
|
||||
All iterator types in the argument `IteratorTuple` shall model Readable Iterator.
|
||||
|
||||
[h2 Concepts]
|
||||
|
||||
The resulting `zip_iterator` models Readable Iterator.
|
||||
|
||||
The fact that the `zip_iterator` models only Readable Iterator does not
|
||||
prevent you from modifying the values that the individual iterators point
|
||||
to. The tuple returned by the `zip_iterator`'s `operator*` is a tuple
|
||||
constructed from the reference types of the individual iterators, not
|
||||
their value types. For example, if `zip_it` is a `zip_iterator` whose
|
||||
first member iterator is an `std::vector<double>::iterator`, then the
|
||||
following line will modify the value which the first member iterator of
|
||||
`zip_it` currently points to:
|
||||
|
||||
zip_it->get<0>() = 42.0;
|
||||
|
||||
|
||||
Consider the set of standard traversal concepts obtained by taking
|
||||
the most refined standard traversal concept modeled by each individual
|
||||
iterator type in the `IteratorTuple` argument.The `zip_iterator`
|
||||
models the least refined standard traversal concept in this set.
|
||||
|
||||
`zip_iterator<IteratorTuple1>` is interoperable with
|
||||
`zip_iterator<IteratorTuple2>` if and only if `IteratorTuple1`
|
||||
is interoperable with `IteratorTuple2`.
|
||||
|
||||
[h2 Operations]
|
||||
|
||||
In addition to the operations required by the concepts modeled by
|
||||
`zip_iterator`, `zip_iterator` provides the following
|
||||
operations.
|
||||
|
||||
zip_iterator();
|
||||
|
||||
[*Returns:] An instance of `zip_iterator` with `m_iterator_tuple`
|
||||
default constructed.
|
||||
|
||||
|
||||
zip_iterator(IteratorTuple iterator_tuple);
|
||||
|
||||
[*Returns:] An instance of `zip_iterator` with `m_iterator_tuple`
|
||||
initialized to `iterator_tuple`.
|
||||
|
||||
|
||||
template<typename OtherIteratorTuple>
|
||||
zip_iterator(
|
||||
const zip_iterator<OtherIteratorTuple>& other
|
||||
, typename enable_if_convertible<
|
||||
OtherIteratorTuple
|
||||
, IteratorTuple>::type* = 0 // exposition only
|
||||
);
|
||||
|
||||
[*Returns:] An instance of `zip_iterator` that is a copy of `other`.\n
|
||||
[*Requires:] `OtherIteratorTuple` is implicitly convertible to `IteratorTuple`.
|
||||
|
||||
|
||||
const IteratorTuple& get_iterator_tuple() const;
|
||||
|
||||
[*Returns:] `m_iterator_tuple`
|
||||
|
||||
|
||||
reference operator*() const;
|
||||
|
||||
[*Returns:] A tuple consisting of the results of dereferencing all iterators in
|
||||
`m_iterator_tuple`.
|
||||
|
||||
|
||||
zip_iterator& operator++();
|
||||
|
||||
[*Effects:] Increments each iterator in `m_iterator_tuple`.\n
|
||||
[*Returns:] `*this`
|
||||
|
||||
|
||||
zip_iterator& operator--();
|
||||
|
||||
[*Effects:] Decrements each iterator in `m_iterator_tuple`.\n
|
||||
[*Returns:] `*this`
|
||||
|
||||
template<typename IteratorTuple>
|
||||
zip_iterator<IteratorTuple>
|
||||
make_zip_iterator(IteratorTuple t);
|
||||
|
||||
[*Returns:] An instance of `zip_iterator<IteratorTuple>` with `m_iterator_tuple`
|
||||
initialized to `t`.
|
||||
|
||||
[endsect]
|
||||
|
||||
[endsect]
|
Loading…
x
Reference in New Issue
Block a user