Removed direct usage of MPL from zip_iterator.hpp.

MPL is still used through Boost.Fusion, but that is a matter of
optimizing Boost.Fusion now.
This commit is contained in:
Andrey Semashev 2025-02-05 03:29:14 +03:00
parent dc57bcf319
commit aadd90df45

View File

@ -6,21 +6,18 @@
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ZIP_ITERATOR_TMB_07_13_2003_HPP_
# define BOOST_ZIP_ITERATOR_TMB_07_13_2003_HPP_
#define BOOST_ZIP_ITERATOR_TMB_07_13_2003_HPP_
#include <utility> // for std::pair
#include <boost/iterator/iterator_traits.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/iterator/enable_if_convertible.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/iterator/minimum_category.hpp>
#include <utility> // for std::pair
#include <boost/mpl/at.hpp>
#include <boost/mpl/fold.hpp>
#include <boost/mpl/transform.hpp>
#include <boost/mpl/placeholders.hpp>
#include <boost/iterator/min_category.hpp>
#include <boost/mp11/list.hpp>
#include <boost/mp11/utility.hpp>
#include <boost/fusion/adapted/boost_tuple.hpp> // for backward compatibility
#include <boost/fusion/algorithm/iteration/for_each.hpp>
#include <boost/fusion/algorithm/transformation/transform.hpp>
@ -30,245 +27,276 @@
#include <boost/fusion/support/tag_of_fwd.hpp>
namespace boost {
// Forward declarations for Boost.Tuple support
namespace tuples {
struct null_type;
template< class, class >
struct cons;
} // namespace tuples
// Forward declarations for Boost.Fusion support
namespace fusion {
struct void_;
} // namespace fusion
namespace iterators {
// Zip iterator forward declaration for zip_iterator_base
template<typename IteratorTuple>
class zip_iterator;
// Zip iterator forward declaration for zip_iterator_base
template< typename IteratorTuple >
class zip_iterator;
namespace detail
{
namespace detail {
// Functors to be used with tuple algorithms
//
template<typename DiffType>
class advance_iterator
// Functors to be used with tuple algorithms
//
template< typename DiffType >
class advance_iterator
{
public:
advance_iterator(DiffType step) :
m_step(step)
{}
template< typename Iterator >
void operator()(Iterator& it) const { it += m_step; }
private:
DiffType m_step;
};
struct increment_iterator
{
template< typename Iterator >
void operator()(Iterator& it) const { ++it; }
};
struct decrement_iterator
{
template< typename Iterator >
void operator()(Iterator& it) const { --it; }
};
struct dereference_iterator
{
template< typename >
struct result;
template< typename This, typename Iterator >
struct result< This(Iterator) >
{
public:
advance_iterator(DiffType step) : m_step(step) {}
template<typename Iterator>
void operator()(Iterator& it) const
{ it += m_step; }
private:
DiffType m_step;
};
//
struct increment_iterator
{
template<typename Iterator>
void operator()(Iterator& it) const
{ ++it; }
};
//
struct decrement_iterator
{
template<typename Iterator>
void operator()(Iterator& it) const
{ --it; }
};
//
struct dereference_iterator
{
template<typename>
struct result;
template<typename This, typename Iterator>
struct result<This(Iterator)>
{
typedef typename
std::remove_cv<typename std::remove_reference<Iterator>::type>::type
iterator;
typedef typename iterator_reference<iterator>::type type;
};
template<typename Iterator>
typename result<dereference_iterator(Iterator)>::type
operator()(Iterator const& it) const
{ return *it; }
using type = iterator_reference_t<
typename std::remove_cv< typename std::remove_reference< Iterator >::type >::type
>;
};
// Metafunction to obtain the type of the tuple whose element types
// are the reference types of an iterator tuple.
//
template<typename IteratorTuple>
struct tuple_of_references
: mpl::transform<
IteratorTuple,
iterator_reference<mpl::_1>
>
template< typename Iterator >
typename result< dereference_iterator(Iterator) >::type operator()(Iterator const& it) const
{
};
return *it;
}
};
// Specialization for std::pair
template<typename Iterator1, typename Iterator2>
struct tuple_of_references<std::pair<Iterator1, Iterator2> >
// The trait checks if the type is a trailing "null" type used to indicate unused template parameters in non-variadic types
template< typename T >
struct is_trailing_null_type : std::false_type {};
template< typename T >
struct is_trailing_null_type< const T > : is_trailing_null_type< T > {};
template< >
struct is_trailing_null_type< tuples::null_type > : std::true_type {};
template< >
struct is_trailing_null_type< fusion::void_ > : std::true_type {};
// The trait checks if the tail is either an empty type list or begins with a "null" type, which indicates that the rest
// of the types in the tail are unused
template< typename... Tail >
struct is_tail_empty;
template< >
struct is_tail_empty< > : std::true_type {};
template< typename Front, typename... Tail >
struct is_tail_empty< Front, Tail... > : detail::is_trailing_null_type< Front > {};
// Metafunction to obtain the type of the tuple whose element types
// are the reference types of an iterator tuple.
template< typename IteratorTuple >
struct tuple_of_references;
template< typename IteratorTuple >
using tuple_of_references_t = typename tuple_of_references< IteratorTuple >::type;
template< template< typename... > class Tuple, typename... Iterators >
struct tuple_of_references< Tuple< Iterators... > >
{
// Note: non-variadic Boost.Tuple and Boost.Fusion need special handling
// to avoid instantiating iterator traits on the trailing "null" types.
// If not that, we could simply do
// mp11::mp_transform< iterator_reference_t, IteratorTuple >.
using type = Tuple<
mp11::mp_eval_if<
detail::is_trailing_null_type< Iterators >,
Iterators,
iterator_reference_t, Iterators
>...
>;
};
template< typename Front, typename Tail >
struct tuple_of_references< tuples::cons< Front, Tail > >
{
using type = tuples::cons<
iterator_reference_t< Front >,
mp11::mp_eval_if<
detail::is_trailing_null_type< Tail >,
Tail,
detail::tuple_of_references_t, Tail
>
>;
};
// Metafunction to obtain the minimal traversal tag in a list
// of iterators.
template< typename IteratorList >
struct minimum_traversal_category_in_iterator_list;
template< typename IteratorList >
using minimum_traversal_category_in_iterator_list_t = typename minimum_traversal_category_in_iterator_list< IteratorList >::type;
template< typename FrontTraversal, typename Tail >
using minimum_traversal_category_in_tail_t = min_category_t<
FrontTraversal,
minimum_traversal_category_in_iterator_list_t< Tail >
>;
template< template< typename... > class List, typename Front, typename... Tail >
struct minimum_traversal_category_in_iterator_list< List< Front, Tail... > >
{
using front_traversal = pure_iterator_traversal_t< Front >;
// Note: non-variadic Boost.Tuple and Boost.Fusion need special handling
// to avoid instantiating iterator traits on the trailing "null" types.
// Note 2: we rename the List to mp_list in the process of iteration to
// avoid specifying one template parameter to std::pair, if List is std::pair.
using type = mp11::mp_eval_if<
detail::is_tail_empty< Tail... >,
front_traversal,
minimum_traversal_category_in_tail_t,
front_traversal,
mp11::mp_list< Tail... >
>;
};
template< typename Front, typename Tail >
struct minimum_traversal_category_in_iterator_list< tuples::cons< Front, Tail > >
{
using front_traversal = pure_iterator_traversal_t< Front >;
using type = mp11::mp_eval_if<
detail::is_trailing_null_type< Tail >,
front_traversal,
minimum_traversal_category_in_tail_t,
front_traversal,
Tail
>;
};
///////////////////////////////////////////////////////////////////
//
// Class zip_iterator_base
//
// Builds and exposes the iterator facade type from which the zip
// iterator will be derived.
//
template< typename IteratorTuple >
struct zip_iterator_base
{
private:
// Reference type is the type of the tuple obtained from the
// iterators' reference types.
using reference = detail::tuple_of_references_t< IteratorTuple >;
// Value type is the same as reference type.
using value_type = reference;
// Difference type is the first iterator's difference type
using difference_type = iterator_difference_t< mp11::mp_front< IteratorTuple > >;
// Traversal catetgory is the minimum traversal category in the
// iterator tuple.
using traversal_category = detail::minimum_traversal_category_in_iterator_list_t< IteratorTuple >;
public:
// The iterator facade type from which the zip iterator will
// be derived.
using type = iterator_facade<
zip_iterator< IteratorTuple >,
value_type,
traversal_category,
reference,
difference_type
>;
};
template< typename Reference >
struct converter
{
template< typename Seq >
static Reference call(Seq seq)
{
typedef std::pair<
typename iterator_reference<Iterator1>::type
, typename iterator_reference<Iterator2>::type
> type;
};
using tag = typename fusion::traits::tag_of< Reference >::type;
return fusion::convert< tag >(seq);
}
};
// Metafunction to obtain the minimal traversal tag in a tuple
// of iterators.
//
template<typename IteratorTuple>
struct minimum_traversal_category_in_iterator_tuple
template< typename Reference1, typename Reference2 >
struct converter< std::pair< Reference1, Reference2 > >
{
using reference = std::pair< Reference1, Reference2 >;
template< typename Seq >
static reference call(Seq seq)
{
typedef typename mpl::transform<
IteratorTuple
, pure_traversal_tag<iterator_traversal<> >
>::type tuple_of_traversal_tags;
return reference(fusion::at_c< 0 >(seq), fusion::at_c< 1 >(seq));
}
};
typedef typename mpl::fold<
tuple_of_traversal_tags
, random_access_traversal_tag
, minimum_category<>
>::type type;
};
} // namespace detail
template<typename Iterator1, typename Iterator2>
struct minimum_traversal_category_in_iterator_tuple<std::pair<Iterator1, Iterator2> >
{
typedef typename pure_traversal_tag<
typename iterator_traversal<Iterator1>::type
>::type iterator1_traversal;
typedef typename pure_traversal_tag<
typename iterator_traversal<Iterator2>::type
>::type iterator2_traversal;
/////////////////////////////////////////////////////////////////////
//
// zip_iterator class definition
//
template< typename IteratorTuple >
class zip_iterator :
public detail::zip_iterator_base< IteratorTuple >::type
{
// Typedef super_t as our base class.
using super_t = typename detail::zip_iterator_base< IteratorTuple >::type;
typedef typename minimum_category<
iterator1_traversal
, typename minimum_category<
iterator2_traversal
, random_access_traversal_tag
>::type
>::type type;
};
///////////////////////////////////////////////////////////////////
//
// Class zip_iterator_base
//
// Builds and exposes the iterator facade type from which the zip
// iterator will be derived.
//
template<typename IteratorTuple>
struct zip_iterator_base
{
private:
// Reference type is the type of the tuple obtained from the
// iterators' reference types.
typedef typename
detail::tuple_of_references<IteratorTuple>::type reference;
// Value type is the same as reference type.
typedef reference value_type;
// Difference type is the first iterator's difference type
typedef typename iterator_difference<
typename mpl::at_c<IteratorTuple, 0>::type
>::type difference_type;
// Traversal catetgory is the minimum traversal category in the
// iterator tuple.
typedef typename
detail::minimum_traversal_category_in_iterator_tuple<
IteratorTuple
>::type traversal_category;
public:
// The iterator facade type from which the zip iterator will
// be derived.
typedef iterator_facade<
zip_iterator<IteratorTuple>,
value_type,
traversal_category,
reference,
difference_type
> type;
};
template <>
struct zip_iterator_base<int>
{
typedef int type;
};
template <typename reference>
struct converter
{
template <typename Seq>
static reference call(Seq seq)
{
typedef typename fusion::traits::tag_of<reference>::type tag;
return fusion::convert<tag>(seq);
}
};
template <typename Reference1, typename Reference2>
struct converter<std::pair<Reference1, Reference2> >
{
typedef std::pair<Reference1, Reference2> reference;
template <typename Seq>
static reference call(Seq seq)
{
return reference(
fusion::at_c<0>(seq)
, fusion::at_c<1>(seq));
}
};
}
/////////////////////////////////////////////////////////////////////
//
// zip_iterator class definition
//
template<typename IteratorTuple>
class zip_iterator :
public detail::zip_iterator_base<IteratorTuple>::type
{
// Typedef super_t as our base class.
typedef typename
detail::zip_iterator_base<IteratorTuple>::type super_t;
// iterator_core_access is the iterator's best friend.
friend class iterator_core_access;
public:
// iterator_core_access is the iterator's best friend.
friend class iterator_core_access;
public:
// Construction
// ============
// Default constructor
zip_iterator() { }
zip_iterator() = default;
// Constructor from iterator tuple
zip_iterator(IteratorTuple iterator_tuple)
: m_iterator_tuple(iterator_tuple)
{ }
zip_iterator(IteratorTuple iterator_tuple) :
m_iterator_tuple(iterator_tuple)
{}
// Copy constructor
template<typename OtherIteratorTuple>
zip_iterator(
const zip_iterator<OtherIteratorTuple>& other,
typename enable_if_convertible<
OtherIteratorTuple,
IteratorTuple
>::type* = 0
) : m_iterator_tuple(other.get_iterator_tuple())
template< typename OtherIteratorTuple, typename = enable_if_convertible_t< OtherIteratorTuple, IteratorTuple > >
zip_iterator(zip_iterator< OtherIteratorTuple > const& other) :
m_iterator_tuple(other.get_iterator_tuple())
{}
// Get method for the iterator tuple.
const IteratorTuple& get_iterator_tuple() const
{ return m_iterator_tuple; }
private:
IteratorTuple const& get_iterator_tuple() const { return m_iterator_tuple; }
private:
// Implementation of Iterator Operations
// =====================================
@ -276,11 +304,9 @@ namespace iterators {
// iterators in the iterator tuple.
typename super_t::reference dereference() const
{
typedef typename super_t::reference reference;
typedef detail::converter<reference> gen;
return gen::call(fusion::transform(
get_iterator_tuple(),
detail::dereference_iterator()));
using reference = typename super_t::reference;
using gen = detail::converter< reference >;
return gen::call(fusion::transform(get_iterator_tuple(), detail::dereference_iterator()));
}
// Two zip iterators are equal if all iterators in the iterator
@ -293,64 +319,55 @@ namespace iterators {
// under several compilers. No point in bringing in a bunch
// of #ifdefs here.
//
template<typename OtherIteratorTuple>
bool equal(const zip_iterator<OtherIteratorTuple>& other) const
template< typename OtherIteratorTuple >
bool equal(zip_iterator< OtherIteratorTuple > const& other) const
{
return fusion::equal_to(
get_iterator_tuple(),
other.get_iterator_tuple());
return fusion::equal_to(get_iterator_tuple(), other.get_iterator_tuple());
}
// Advancing a zip iterator means to advance all iterators in the
// iterator tuple.
void advance(typename super_t::difference_type n)
{
fusion::for_each(
m_iterator_tuple,
detail::advance_iterator<BOOST_DEDUCED_TYPENAME super_t::difference_type>(n));
fusion::for_each(m_iterator_tuple, detail::advance_iterator< typename super_t::difference_type >(n));
}
// Incrementing a zip iterator means to increment all iterators in
// the iterator tuple.
void increment()
{
fusion::for_each(
m_iterator_tuple,
detail::increment_iterator());
fusion::for_each(m_iterator_tuple, detail::increment_iterator());
}
// Decrementing a zip iterator means to decrement all iterators in
// the iterator tuple.
void decrement()
{
fusion::for_each(
m_iterator_tuple,
detail::decrement_iterator());
fusion::for_each(m_iterator_tuple, detail::decrement_iterator());
}
// Distance is calculated using the first iterator in the tuple.
template<typename OtherIteratorTuple>
typename super_t::difference_type distance_to(
const zip_iterator<OtherIteratorTuple>& other
) const
template< typename OtherIteratorTuple >
typename super_t::difference_type distance_to(zip_iterator< OtherIteratorTuple > const& other) const
{
return fusion::at_c<0>(other.get_iterator_tuple()) -
fusion::at_c<0>(this->get_iterator_tuple());
return fusion::at_c< 0 >(other.get_iterator_tuple()) - fusion::at_c< 0 >(this->get_iterator_tuple());
}
private:
// Data Members
// ============
// The iterator tuple.
IteratorTuple m_iterator_tuple;
};
};
// Make function for zip iterator
//
template<typename IteratorTuple>
inline zip_iterator<IteratorTuple>
make_zip_iterator(IteratorTuple t)
{ return zip_iterator<IteratorTuple>(t); }
// Make function for zip iterator
//
template< typename IteratorTuple >
inline zip_iterator< IteratorTuple > make_zip_iterator(IteratorTuple t)
{
return zip_iterator< IteratorTuple >(t);
}
} // namespace iterators