///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Olaf Krzikalla 2004-2006. // (C) Copyright Ion Gaztanaga 2006-2009. // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #include #include #include #include "itestvalue.hpp" #include "smart_ptr.hpp" #include "common_functors.hpp" #include #include #include #include "test_macros.hpp" #include "test_container.hpp" namespace boost { namespace intrusive { namespace test { #if !defined (BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif struct is_unordered > { static const bool value = true; }; }}} using namespace boost::intrusive; struct my_tag; template struct hooks { typedef unordered_set_base_hook > base_hook_type; typedef unordered_set_base_hook < link_mode , void_pointer , tag , store_hash > auto_base_hook_type; typedef unordered_set_member_hook < void_pointer , optimize_multikey > member_hook_type; typedef unordered_set_member_hook < link_mode, void_pointer , store_hash , optimize_multikey > auto_member_hook_type; }; static const std::size_t BucketSize = 8; template struct test_unordered_set { typedef typename ValueTraits::value_type value_type; static void test_all(std::vector& values); static void test_sort(std::vector& values); static void test_insert(std::vector& values); static void test_swap(std::vector& values); static void test_rehash(std::vector& values, detail::true_); static void test_rehash(std::vector& values, detail::false_); static void test_find(std::vector& values); static void test_impl(); static void test_clone(std::vector& values); }; template void test_unordered_set:: test_all(std::vector& values) { typedef typename ValueTraits::value_type value_type; typedef unordered_set , constant_time_size , cache_begin , compare_hash , incremental > unordered_set_type; typedef typename unordered_set_type::bucket_traits bucket_traits; { typename unordered_set_type::bucket_type buckets [BucketSize]; unordered_set_type testset(bucket_traits(buckets, BucketSize)); testset.insert(values.begin(), values.end()); test::test_container(testset); testset.clear(); testset.insert(values.begin(), values.end()); test::test_common_unordered_and_associative_container(testset, values); testset.clear(); testset.insert(values.begin(), values.end()); test::test_unordered_associative_container(testset, values); testset.clear(); testset.insert(values.begin(), values.end()); test::test_unique_container(testset, values); } test_sort(values); test_insert(values); test_swap(values); test_rehash(values, detail::bool_()); test_find(values); test_impl(); test_clone(values); } //test case due to an error in tree implementation: template void test_unordered_set::test_impl() { typedef typename ValueTraits::value_type value_type; typedef unordered_set , constant_time_size , cache_begin , compare_hash , incremental > unordered_set_type; typedef typename unordered_set_type::bucket_traits bucket_traits; std::vector values (5); for (int i = 0; i < 5; ++i) values[i].value_ = i; typename unordered_set_type::bucket_type buckets [BucketSize]; unordered_set_type testset(bucket_traits(buckets, BucketSize)); for (int i = 0; i < 5; ++i) testset.insert (values[i]); testset.erase (testset.iterator_to (values[0])); testset.erase (testset.iterator_to (values[1])); testset.insert (values[1]); testset.erase (testset.iterator_to (values[2])); testset.erase (testset.iterator_to (values[3])); } //test: constructor, iterator, clear, reverse_iterator, front, back, size: template void test_unordered_set:: test_sort(std::vector& values) { typedef typename ValueTraits::value_type value_type; typedef unordered_set , constant_time_size , cache_begin , compare_hash , incremental > unordered_set_type; typedef typename unordered_set_type::bucket_traits bucket_traits; typename unordered_set_type::bucket_type buckets [BucketSize]; unordered_set_type testset1(values.begin(), values.end(), bucket_traits(buckets, BucketSize)); BOOST_TEST (5 == std::distance(testset1.begin(), testset1.end())); if(Incremental){ { int init_values [] = { 4, 5, 1, 2, 3 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } } else{ { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } } testset1.clear(); BOOST_TEST (testset1.empty()); } //test: insert, const_iterator, const_reverse_iterator, erase, iterator_to: template void test_unordered_set:: test_insert(std::vector& values) { typedef typename ValueTraits::value_type value_type; typedef unordered_set , constant_time_size , cache_begin , compare_hash , incremental > unordered_set_type; typedef typename unordered_set_type::bucket_traits bucket_traits; typename unordered_set_type::bucket_type buckets [BucketSize]; unordered_set_type testset(bucket_traits(buckets, BucketSize)); testset.insert(&values[0] + 2, &values[0] + 5); const unordered_set_type& const_testset = testset; if(Incremental) { { int init_values [] = { 4, 5, 1 }; TEST_INTRUSIVE_SEQUENCE( init_values, const_testset.begin() ); } typename unordered_set_type::iterator i = testset.begin(); BOOST_TEST (i->value_ == 4); i = testset.insert(values[0]).first; BOOST_TEST (&*i == &values[0]); i = testset.iterator_to (values[2]); BOOST_TEST (&*i == &values[2]); testset.erase (i); { int init_values [] = { 5, 1, 3 }; TEST_INTRUSIVE_SEQUENCE( init_values, const_testset.begin() ); } } else{ { int init_values [] = { 1, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, const_testset.begin() ); } typename unordered_set_type::iterator i = testset.begin(); BOOST_TEST (i->value_ == 1); i = testset.insert(values[0]).first; BOOST_TEST (&*i == &values[0]); i = testset.iterator_to (values[2]); BOOST_TEST (&*i == &values[2]); testset.erase (i); { int init_values [] = { 1, 3, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, const_testset.begin() ); } } } //test: insert (seq-version), swap, erase (seq-version), size: template void test_unordered_set:: test_swap(std::vector& values) { typedef typename ValueTraits::value_type value_type; typedef unordered_set , constant_time_size , cache_begin , compare_hash , incremental > unordered_set_type; typedef typename unordered_set_type::bucket_traits bucket_traits; typename unordered_set_type::bucket_type buckets1 [BucketSize]; typename unordered_set_type::bucket_type buckets2 [BucketSize]; unordered_set_type testset1(&values[0], &values[0] + 2, bucket_traits(buckets1, BucketSize)); unordered_set_type testset2(bucket_traits(buckets2, BucketSize)); testset2.insert (&values[0] + 2, &values[0] + 6); testset1.swap (testset2); if(Incremental){ { int init_values [] = { 4, 5, 1, 2 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } { int init_values [] = { 2, 3 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset2.begin() ); } testset1.erase (testset1.iterator_to(values[4]), testset1.end()); BOOST_TEST (testset1.size() == 1); BOOST_TEST (&*testset1.begin() == &values[2]); } else{ { int init_values [] = { 1, 2, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } { int init_values [] = { 2, 3 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset2.begin() ); } testset1.erase (testset1.iterator_to(values[5]), testset1.end()); BOOST_TEST (testset1.size() == 1); BOOST_TEST (&*testset1.begin() == &values[3]); } } //test: rehash: template void test_unordered_set:: test_rehash(std::vector& values, detail::true_) { typedef typename ValueTraits::value_type value_type; typedef unordered_set , constant_time_size , cache_begin , compare_hash , incremental > unordered_set_type; typedef typename unordered_set_type::bucket_traits bucket_traits; //Build a uset typename unordered_set_type::bucket_type buckets1 [BucketSize]; typename unordered_set_type::bucket_type buckets2 [BucketSize*2]; unordered_set_type testset1(&values[0], &values[0] + 6, bucket_traits(buckets1, BucketSize)); //Test current state BOOST_TEST(testset1.split_count() == BucketSize/2); { int init_values [] = { 4, 5, 1, 2, 3 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //Incremental rehash step BOOST_TEST (testset1.incremental_rehash() == true); BOOST_TEST(testset1.split_count() == (BucketSize/2+1)); { int init_values [] = { 5, 1, 2, 3, 4 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //Rest of incremental rehashes should lead to the same sequence for(std::size_t split_bucket = testset1.split_count(); split_bucket != BucketSize; ++split_bucket){ BOOST_TEST (testset1.incremental_rehash() == true); BOOST_TEST(testset1.split_count() == (split_bucket+1)); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } } //This incremental rehash should fail because we've reached the end of the bucket array BOOST_TEST(testset1.incremental_rehash() == false); BOOST_TEST(testset1.split_count() == BucketSize); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } // //Try incremental hashing specifying a new bucket traits pointing to the same array // //This incremental rehash should fail because the new size is not twice the original BOOST_TEST(testset1.incremental_rehash(bucket_traits(buckets1, BucketSize)) == false); BOOST_TEST(testset1.split_count() == BucketSize); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //This incremental rehash should success because the new size is twice the original //and split_count is the same as the old bucket count BOOST_TEST(testset1.incremental_rehash(bucket_traits(buckets1, BucketSize*2)) == true); BOOST_TEST(testset1.split_count() == BucketSize); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //This incremental rehash should also success because the new size is half the original //and split_count is the same as the new bucket count BOOST_TEST(testset1.incremental_rehash(bucket_traits(buckets1, BucketSize)) == true); BOOST_TEST(testset1.split_count() == BucketSize); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } // //Try incremental hashing specifying a new bucket traits pointing to the same array // //This incremental rehash should fail because the new size is not twice the original BOOST_TEST(testset1.incremental_rehash(bucket_traits(buckets2, BucketSize)) == false); BOOST_TEST(testset1.split_count() == BucketSize); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //This incremental rehash should success because the new size is twice the original //and split_count is the same as the old bucket count BOOST_TEST(testset1.incremental_rehash(bucket_traits(buckets2, BucketSize*2)) == true); BOOST_TEST(testset1.split_count() == BucketSize); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //This incremental rehash should also success because the new size is half the original //and split_count is the same as the new bucket count BOOST_TEST(testset1.incremental_rehash(bucket_traits(buckets1, BucketSize)) == true); BOOST_TEST(testset1.split_count() == BucketSize); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //Full shrink rehash testset1.rehash(bucket_traits(buckets1, 4)); BOOST_TEST (testset1.size() == values.size()-1); BOOST_TEST (testset1.incremental_rehash() == false); { int init_values [] = { 4, 5, 1, 2, 3 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //Full shrink rehash again testset1.rehash(bucket_traits(buckets1, 2)); BOOST_TEST (testset1.size() == values.size()-1); BOOST_TEST (testset1.incremental_rehash() == false); { int init_values [] = { 2, 4, 3, 5, 1 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //Full growing rehash testset1.rehash(bucket_traits(buckets1, BucketSize)); BOOST_TEST (testset1.size() == values.size()-1); BOOST_TEST (testset1.incremental_rehash() == false); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //Incremental rehash shrinking //First incremental rehashes should lead to the same sequence for(std::size_t split_bucket = testset1.split_count(); split_bucket > 6; --split_bucket){ BOOST_TEST (testset1.incremental_rehash(false) == true); BOOST_TEST(testset1.split_count() == (split_bucket-1)); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } } //Incremental rehash step BOOST_TEST (testset1.incremental_rehash(false) == true); BOOST_TEST(testset1.split_count() == (BucketSize/2+1)); { int init_values [] = { 5, 1, 2, 3, 4 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //Incremental rehash step 2 BOOST_TEST (testset1.incremental_rehash(false) == true); BOOST_TEST(testset1.split_count() == (BucketSize/2)); { int init_values [] = { 4, 5, 1, 2, 3 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //This incremental rehash should fail because we've reached the half of the bucket array BOOST_TEST(testset1.incremental_rehash(false) == false); BOOST_TEST(testset1.split_count() == BucketSize/2); { int init_values [] = { 4, 5, 1, 2, 3 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } } //test: rehash: template void test_unordered_set:: test_rehash(std::vector& values, detail::false_) { typedef typename ValueTraits::value_type value_type; typedef unordered_set , constant_time_size , cache_begin , compare_hash , incremental > unordered_set_type; typedef typename unordered_set_type::bucket_traits bucket_traits; typename unordered_set_type::bucket_type buckets1 [BucketSize]; typename unordered_set_type::bucket_type buckets2 [2]; typename unordered_set_type::bucket_type buckets3 [BucketSize*2]; unordered_set_type testset1(&values[0], &values[0] + 6, bucket_traits(buckets1, BucketSize)); BOOST_TEST (testset1.size() == values.size()-1); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } testset1.rehash(bucket_traits(buckets2, 2)); BOOST_TEST (testset1.size() == values.size()-1); { int init_values [] = { 4, 2, 5, 3, 1 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } testset1.rehash(bucket_traits(buckets3, BucketSize*2)); BOOST_TEST (testset1.size() == values.size()-1); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //Now rehash reducing the buckets testset1.rehash(bucket_traits(buckets3, 2)); BOOST_TEST (testset1.size() == values.size()-1); { int init_values [] = { 4, 2, 5, 3, 1 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } //Now rehash increasing the buckets testset1.rehash(bucket_traits(buckets3, BucketSize*2)); BOOST_TEST (testset1.size() == values.size()-1); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); } } //test: find, equal_range (lower_bound, upper_bound): template void test_unordered_set:: test_find(std::vector& values) { typedef typename ValueTraits::value_type value_type; typedef unordered_set , constant_time_size , cache_begin , compare_hash , incremental > unordered_set_type; typedef typename unordered_set_type::bucket_traits bucket_traits; typename unordered_set_type::bucket_type buckets [BucketSize]; unordered_set_type testset (values.begin(), values.end(), bucket_traits(buckets, BucketSize)); typedef typename unordered_set_type::iterator iterator; value_type cmp_val; cmp_val.value_ = 2; iterator i = testset.find (cmp_val); BOOST_TEST (i->value_ == 2); BOOST_TEST ((++i)->value_ != 2); std::pair range = testset.equal_range (cmp_val); BOOST_TEST (range.first->value_ == 2); BOOST_TEST (range.second->value_ == 3); BOOST_TEST (std::distance (range.first, range.second) == 1); cmp_val.value_ = 7; BOOST_TEST (testset.find (cmp_val) == testset.end()); } template void test_unordered_set ::test_clone(std::vector& values) { typedef typename ValueTraits::value_type value_type; typedef unordered_set , constant_time_size , cache_begin , compare_hash , incremental > unordered_set_type; typedef typename unordered_set_type::bucket_traits bucket_traits; { //Test with equal bucket arrays typename unordered_set_type::bucket_type buckets1 [BucketSize]; typename unordered_set_type::bucket_type buckets2 [BucketSize]; unordered_set_type testset1 (values.begin(), values.end(), bucket_traits(buckets1, BucketSize)); unordered_set_type testset2 (bucket_traits(buckets2, BucketSize)); testset2.clone_from(testset1, test::new_cloner(), test::delete_disposer()); //Ordering is not guarantee in the cloning so insert data in a set and test std::set src(testset1.begin(), testset1.end()); std::set dst(testset2.begin(), testset2.end()); BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin())); testset2.clear_and_dispose(test::delete_disposer()); BOOST_TEST (testset2.empty()); } { //Test with bigger source bucket arrays typename unordered_set_type::bucket_type buckets1 [BucketSize*2]; typename unordered_set_type::bucket_type buckets2 [BucketSize]; unordered_set_type testset1 (values.begin(), values.end(), bucket_traits(buckets1, BucketSize*2)); unordered_set_type testset2 (bucket_traits(buckets2, BucketSize)); testset2.clone_from(testset1, test::new_cloner(), test::delete_disposer()); //Ordering is not guaranteed in the cloning so insert data in a set and test std::set src(testset1.begin(), testset1.end()); std::set dst(testset2.begin(), testset2.end()); BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin())); testset2.clear_and_dispose(test::delete_disposer()); BOOST_TEST (testset2.empty()); } { //Test with smaller source bucket arrays typename unordered_set_type::bucket_type buckets1 [BucketSize]; typename unordered_set_type::bucket_type buckets2 [BucketSize*2]; unordered_set_type testset1 (values.begin(), values.end(), bucket_traits(buckets1, BucketSize)); unordered_set_type testset2 (bucket_traits(buckets2, BucketSize*2)); testset2.clone_from(testset1, test::new_cloner(), test::delete_disposer()); //Ordering is not guarantee in the cloning so insert data in a set and test std::set src(testset1.begin(), testset1.end()); std::set dst(testset2.begin(), testset2.end()); BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin())); testset2.clear_and_dispose(test::delete_disposer()); BOOST_TEST (testset2.empty()); } } template class test_main_template { public: int operator()() { typedef testvalue , constant_time_size> value_type; static const int random_init[6] = { 3, 2, 4, 1, 5, 2 }; std::vector , constant_time_size> > data (6); for (int i = 0; i < 6; ++i) data[i].value_ = random_init[i]; test_unordered_set < typename detail::get_base_value_traits < value_type , typename hooks::base_hook_type >::type , true , false , incremental >::test_all(data); test_unordered_set < typename detail::get_member_value_traits < value_type , member_hook< value_type , typename hooks::member_hook_type , &value_type::node_ > >::type , false , false , incremental >::test_all(data); return 0; } }; template class test_main_template { public: int operator()() { typedef testvalue , false> value_type; static const int random_init[6] = { 3, 2, 4, 1, 5, 2 }; std::vector , false> > data (6); for (int i = 0; i < 6; ++i) data[i].value_ = random_init[i]; test_unordered_set < typename detail::get_base_value_traits < value_type , typename hooks::base_hook_type >::type , true , false , incremental >::test_all(data); test_unordered_set < typename detail::get_member_value_traits < value_type , member_hook< value_type , typename hooks::member_hook_type , &value_type::node_ > >::type , false , false , incremental >::test_all(data); test_unordered_set < typename detail::get_base_value_traits < value_type , typename hooks::auto_base_hook_type >::type , false , true , incremental >::test_all(data); test_unordered_set < typename detail::get_member_value_traits < value_type , member_hook< value_type , typename hooks::auto_member_hook_type , &value_type::auto_node_ > >::type , false , true , incremental >::test_all(data); return 0; } }; int main( int, char* [] ) { test_main_template()(); test_main_template, false, true>()(); test_main_template()(); test_main_template, true, true>()(); test_main_template()(); test_main_template, false, false>()(); test_main_template()(); test_main_template, true, false>()(); return boost::report_errors(); } #include