histogram/test/histogram_test.cpp
2019-06-08 16:28:56 +02:00

600 lines
18 KiB
C++

// Copyright 2015-2018 Hans Dembinski
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/core/lightweight_test.hpp>
#include <boost/histogram/accumulators.hpp>
#include <boost/histogram/accumulators/ostream.hpp>
#include <boost/histogram/algorithm/sum.hpp>
#include <boost/histogram/axis.hpp>
#include <boost/histogram/axis/ostream.hpp>
#include <boost/histogram/histogram.hpp>
#include <boost/histogram/literals.hpp>
#include <boost/histogram/make_histogram.hpp>
#include <boost/histogram/ostream.hpp>
#include <sstream>
#include <stdexcept>
#include <tuple>
#include <utility>
#include <vector>
#include "is_close.hpp"
#include "throw_exception.hpp"
#include "utility_allocator.hpp"
#include "utility_axis.hpp"
#include "utility_histogram.hpp"
#include "std_ostream.hpp"
using namespace boost::histogram;
using namespace boost::histogram::literals; // to get _c suffix
template <typename A, typename S>
void pass_histogram(boost::histogram::histogram<A, S>& h) {
BOOST_TEST_EQ(h.at(0), 0);
BOOST_TEST_EQ(h.at(1), 1);
BOOST_TEST_EQ(h.at(2), 0);
BOOST_TEST_EQ(h.axis(0_c), axis::integer<>(0, 3));
}
template <typename Tag>
void run_tests() {
// init_1
{
auto h = make(Tag(), axis::regular<>{3, -1, 1});
BOOST_TEST_EQ(h.rank(), 1);
BOOST_TEST_EQ(h.size(), 5);
BOOST_TEST_EQ(h.axis(0_c).size(), 3);
BOOST_TEST_EQ(h.axis().size(), 3);
auto h2 = make_s(Tag(), std::vector<unsigned>(), axis::regular<>{3, -1, 1});
BOOST_TEST_EQ(h2, h);
}
// init_2
{
auto h = make(Tag(), axis::regular<>{3, -1, 1}, axis::integer<>{-1, 3});
BOOST_TEST_EQ(h.rank(), 2);
BOOST_TEST_EQ(h.size(), 30);
BOOST_TEST_EQ(h.axis(0_c).size(), 3);
BOOST_TEST_EQ(h.axis(1_c).size(), 4);
auto h2 = make_s(Tag(), std::vector<unsigned>(), axis::regular<>{3, -1, 1},
axis::integer<>{-1, 3});
BOOST_TEST_EQ(h2, h);
}
// init_3
{
auto h = make(Tag(), axis::regular<>{3, -1, 1}, axis::integer<>{-1, 2},
axis::circular<>{2, 0, 360});
BOOST_TEST_EQ(h.rank(), 3);
BOOST_TEST_EQ(h.size(), 5 * 5 * 3);
auto h2 = make_s(Tag(), std::vector<unsigned>(), axis::regular<>{3, -1, 1},
axis::integer<>{-1, 2}, axis::circular<>{2, 0, 360});
BOOST_TEST_EQ(h2, h);
}
// init_4
{
auto h = make(Tag(), axis::regular<>{3, -1, 1}, axis::integer<>{-1, 2},
axis::circular<>{2, 0, 360}, axis::variable<>{-1, 0, 1});
BOOST_TEST_EQ(h.rank(), 4);
BOOST_TEST_EQ(h.size(), 5 * 5 * 3 * 4);
auto h2 = make_s(Tag(), std::vector<unsigned>(), axis::regular<>{3, -1, 1},
axis::integer<>{-1, 2}, axis::circular<>{2, 0, 360},
axis::variable<>{-1, 0, 1});
BOOST_TEST_EQ(h2, h);
}
// init_5
{
auto h = make(Tag(), axis::regular<>{3, -1, 1}, axis::integer<>{-1, 2},
axis::circular<>{2, 0, 360}, axis::variable<>{-1, 0, 1},
axis::category<>{{3, 1, 2}});
BOOST_TEST_EQ(h.rank(), 5);
BOOST_TEST_EQ(h.size(), 5 * 5 * 3 * 4 * 4);
auto h2 = make_s(Tag(), std::vector<unsigned>(), axis::regular<>{3, -1, 1},
axis::integer<>{-1, 2}, axis::circular<>{2, 0, 360},
axis::variable<>{-1, 0, 1}, axis::category<>{{3, 1, 2}});
BOOST_TEST_EQ(h2, h);
}
// copy_ctor
{
auto h = make(Tag(), axis::integer<>{0, 2}, axis::integer<>{0, 3});
h(0, 0);
auto h2 = decltype(h)(h);
BOOST_TEST_EQ(h2, h);
auto h3 =
histogram<std::tuple<axis::integer<>, axis::integer<>>, dense_storage<double>>(h);
BOOST_TEST_EQ(h3, h);
}
// copy_assign
{
auto h = make(Tag(), axis::integer<>(0, 1), axis::integer<>(0, 2));
h(0, 0);
auto h2 = decltype(h)();
BOOST_TEST_NE(h, h2);
h2 = h;
BOOST_TEST_EQ(h, h2);
auto h3 =
histogram<std::tuple<axis::integer<>, axis::integer<>>, dense_storage<double>>();
h3 = h;
BOOST_TEST_EQ(h, h3);
}
// move
{
auto h = make(Tag(), axis::integer<>(0, 1), axis::integer<>(0, 2));
h(0, 0);
const auto href = h;
decltype(h) h2(std::move(h));
BOOST_TEST_EQ(algorithm::sum(h), 0);
BOOST_TEST_EQ(h.size(), 0);
BOOST_TEST_EQ(h2, href);
decltype(h) h3;
h3 = std::move(h2);
BOOST_TEST_EQ(algorithm::sum(h2), 0);
BOOST_TEST_EQ(h2.size(), 0);
BOOST_TEST_EQ(h3, href);
}
// axis methods
{
auto a = make(Tag(), axis::regular<>(1, 1, 2, "foo"));
BOOST_TEST_EQ(a.axis().size(), 1);
BOOST_TEST_EQ(a.axis().bin(0).lower(), 1);
BOOST_TEST_EQ(a.axis().bin(0).upper(), 2);
BOOST_TEST_EQ(a.axis().metadata(), "foo");
unsafe_access::axis(a, 0).metadata() = "bar";
BOOST_TEST_EQ(a.axis().metadata(), "bar");
auto b = make(Tag(), axis::regular<>(1, 1, 2, "foo"), axis::integer<>(1, 3));
// check static access
BOOST_TEST_EQ(b.axis(0_c).size(), 1);
BOOST_TEST_EQ(b.axis(0_c).bin(0).lower(), 1);
BOOST_TEST_EQ(b.axis(0_c).bin(0).upper(), 2);
BOOST_TEST_EQ(b.axis(1_c).size(), 2);
BOOST_TEST_EQ(b.axis(1_c).bin(0), 1);
BOOST_TEST_EQ(b.axis(1_c).bin(1), 2);
unsafe_access::axis(b, 1_c).metadata() = "bar";
BOOST_TEST_EQ(b.axis(0_c).metadata(), "foo");
BOOST_TEST_EQ(b.axis(1_c).metadata(), "bar");
// check dynamic access
BOOST_TEST_EQ(b.axis(0).size(), 1);
BOOST_TEST_EQ(b.axis(0).bin(0).lower(), 1);
BOOST_TEST_EQ(b.axis(0).bin(0).upper(), 2);
BOOST_TEST_EQ(b.axis(1).size(), 2);
BOOST_TEST_EQ(b.axis(1).bin(0), 1);
BOOST_TEST_EQ(b.axis(1).bin(1), 2);
BOOST_TEST_EQ(b.axis(0).metadata(), "foo");
BOOST_TEST_EQ(b.axis(1).metadata(), "bar");
unsafe_access::axis(b, 0).metadata() = "baz";
BOOST_TEST_EQ(b.axis(0).metadata(), "baz");
enum class C { A = 3, B = 5 };
auto c = make(Tag(), axis::category<C>({C::A, C::B}));
BOOST_TEST_EQ(c.axis().size(), 2);
unsafe_access::axis(c, 0).metadata() = "foo";
BOOST_TEST_EQ(c.axis().metadata(), "foo");
// need to cast here for this to work with Tag == dynamic_tag, too
auto ca = axis::get<axis::category<C>>(c.axis());
BOOST_TEST(ca.bin(0) == C::A);
}
// equal_compare
{
auto a = make(Tag(), axis::integer<>(0, 2));
auto b = make(Tag(), axis::integer<>(0, 2), axis::integer<>(0, 3));
BOOST_TEST(a != b);
BOOST_TEST(b != a);
auto c = make(Tag(), axis::integer<>(0, 2));
BOOST_TEST(b != c);
BOOST_TEST(c != b);
BOOST_TEST(a == c);
BOOST_TEST(c == a);
auto d = make(Tag(), axis::regular<>(2, 0, 1));
BOOST_TEST(c != d);
BOOST_TEST(d != c);
c(0);
BOOST_TEST(a != c);
BOOST_TEST(c != a);
a(0);
BOOST_TEST(a == c);
BOOST_TEST(c == a);
a(0);
BOOST_TEST(a != c);
BOOST_TEST(c != a);
}
// d1
{
auto h = make_s(Tag(), std::vector<unsigned>(),
axis::integer<double, axis::null_type>{0, 2});
h(0);
auto i = h(0);
BOOST_TEST(i == h.begin() + 1); // +1 because of underflow
i = h(-1);
BOOST_TEST(i == h.begin()); // underflow
i = h(10);
BOOST_TEST(i == h.end() - 1); // overflow
BOOST_TEST_EQ(h.rank(), 1);
BOOST_TEST_EQ(h.axis().size(), 2);
BOOST_TEST_EQ(algorithm::sum(h), 4);
BOOST_TEST_EQ(h.at(-1), 1);
BOOST_TEST_EQ(h.at(0), 2);
BOOST_TEST_EQ(h.at(1), 0);
BOOST_TEST_EQ(h.at(2), 1);
}
// d1_2
{
auto h = make(Tag(), axis::integer<int, axis::null_type, axis::option::none_t>(0, 2));
h(0);
auto i = h(-0);
BOOST_TEST(i == h.begin());
i = h(-1);
BOOST_TEST(i == h.end());
i = h(10);
BOOST_TEST(i == h.end());
BOOST_TEST_EQ(h.rank(), 1);
BOOST_TEST_EQ(h.axis().size(), 2);
BOOST_TEST_EQ(algorithm::sum(h), 2);
BOOST_TEST_EQ(h.at(0), 2);
BOOST_TEST_EQ(h.at(1), 0);
}
// d1_3
{
auto h = make(Tag(), axis::category<std::string>({"A", "B"}));
h("A");
h("B");
h("D");
h("E");
BOOST_TEST_EQ(h.rank(), 1);
BOOST_TEST_EQ(h.axis().size(), 2);
BOOST_TEST_EQ(algorithm::sum(h), 4);
BOOST_TEST_EQ(h.at(0), 1);
BOOST_TEST_EQ(h.at(1), 1);
BOOST_TEST_EQ(h.at(2), 2); // overflow bin
}
// d1 weight
{
auto h =
make_s(Tag(), std::vector<accumulators::weighted_sum<>>(), axis::integer<>(0, 2));
h(-1);
h(0);
h(weight(0.5), 0);
h(1);
h(weight(2), 2);
BOOST_TEST_EQ(algorithm::sum(h).value(), 5.5);
BOOST_TEST_EQ(algorithm::sum(h).variance(), 7.25);
BOOST_TEST_EQ(h[-1].value(), 1);
BOOST_TEST_EQ(h[-1].variance(), 1);
BOOST_TEST_EQ(h[0].value(), 1.5);
BOOST_TEST_EQ(h[0].variance(), 1.25);
BOOST_TEST_EQ(h[1].value(), 1);
BOOST_TEST_EQ(h[1].variance(), 1);
BOOST_TEST_EQ(h[2].value(), 2);
BOOST_TEST_EQ(h[2].variance(), 4);
}
// d1 mean
{
auto h =
make_s(Tag(), std::vector<accumulators::mean<double>>(), axis::integer<>(0, 2));
h(0, sample(1));
h(0, sample(2));
h(0, sample(3));
h(sample(4), 1);
h(sample(5), 1);
h(sample(6), 1);
BOOST_TEST_EQ(h[0].count(), 3);
BOOST_TEST_EQ(h[0].value(), 2);
BOOST_TEST_EQ(h[0].variance(), 1);
BOOST_TEST_EQ(h[1].count(), 3);
BOOST_TEST_EQ(h[1].value(), 5);
BOOST_TEST_EQ(h[1].variance(), 1);
}
// d1 weighted mean
{
auto h = make_s(Tag(), std::vector<accumulators::weighted_mean<double>>(),
axis::integer<>(0, 2));
h(0, sample(1));
h(sample(1), 0);
h(0, weight(2), sample(3));
h(0, sample(5), weight(2));
h(weight(2), 1, sample(1));
h(sample(2), 1, weight(2));
h(weight(2), sample(3), 1);
h(sample(4), weight(2), 1);
BOOST_TEST_EQ(h[0].sum_of_weights(), 6);
BOOST_TEST_EQ(h[0].value(), 3);
BOOST_TEST_EQ(h[1].sum_of_weights(), 8);
BOOST_TEST_EQ(h[1].value(), 2.5);
}
// d2
{
auto h = make(Tag(), axis::regular<>(2, -1, 1),
axis::integer<int, axis::null_type, axis::option::none_t>(-1, 2));
h(-1, -1);
h(-1, 0);
h(-1, -10);
h(-10, 0);
BOOST_TEST_EQ(h.rank(), 2);
BOOST_TEST_EQ(h.axis(0_c).size(), 2);
BOOST_TEST_EQ(h.axis(1_c).size(), 3);
BOOST_TEST_EQ(algorithm::sum(h), 3);
BOOST_TEST_EQ(h.at(-1, 0), 0);
BOOST_TEST_EQ(h.at(-1, 1), 1);
BOOST_TEST_EQ(h.at(-1, 2), 0);
BOOST_TEST_EQ(h.at(0, 0), 1);
BOOST_TEST_EQ(h.at(0, 1), 1);
BOOST_TEST_EQ(h.at(0, 2), 0);
BOOST_TEST_EQ(h.at(1, 0), 0);
BOOST_TEST_EQ(h.at(1, 1), 0);
BOOST_TEST_EQ(h.at(1, 2), 0);
BOOST_TEST_EQ(h.at(2, 0), 0);
BOOST_TEST_EQ(h.at(2, 1), 0);
BOOST_TEST_EQ(h.at(2, 2), 0);
}
// d2w
{
auto h = make_s(Tag(), std::vector<accumulators::weighted_sum<>>(),
axis::regular<>(2, -1, 1),
axis::integer<int, axis::null_type, axis::option::none_t>(-1, 2));
h(-1, 0); // -> 0, 1
h(weight(10), -1, -1); // -> 0, 0
h(weight(5), -1, -10); // is ignored
h(weight(7), -10, 0); // -> -1, 1
BOOST_TEST_EQ(algorithm::sum(h).value(), 18);
BOOST_TEST_EQ(algorithm::sum(h).variance(), 150);
BOOST_TEST_EQ(h.at(-1, 0).value(), 0);
BOOST_TEST_EQ(h.at(-1, 1).value(), 7);
BOOST_TEST_EQ(h.at(-1, 2).value(), 0);
BOOST_TEST_EQ(h.at(0, 0).value(), 10);
BOOST_TEST_EQ(h.at(0, 1).value(), 1);
BOOST_TEST_EQ(h.at(0, 2).value(), 0);
BOOST_TEST_EQ(h.at(1, 0).value(), 0);
BOOST_TEST_EQ(h.at(1, 1).value(), 0);
BOOST_TEST_EQ(h.at(1, 2).value(), 0);
BOOST_TEST_EQ(h.at(2, 0).value(), 0);
BOOST_TEST_EQ(h.at(2, 1).value(), 0);
BOOST_TEST_EQ(h.at(2, 2).value(), 0);
BOOST_TEST_EQ(h.at(-1, 0).variance(), 0);
BOOST_TEST_EQ(h.at(-1, 1).variance(), 49);
BOOST_TEST_EQ(h.at(-1, 2).variance(), 0);
BOOST_TEST_EQ(h.at(0, 0).variance(), 100);
BOOST_TEST_EQ(h.at(0, 1).variance(), 1);
BOOST_TEST_EQ(h.at(0, 2).variance(), 0);
BOOST_TEST_EQ(h.at(1, 0).variance(), 0);
BOOST_TEST_EQ(h.at(1, 1).variance(), 0);
BOOST_TEST_EQ(h.at(1, 2).variance(), 0);
BOOST_TEST_EQ(h.at(2, 0).variance(), 0);
BOOST_TEST_EQ(h.at(2, 1).variance(), 0);
BOOST_TEST_EQ(h.at(2, 2).variance(), 0);
}
// d3w
{
auto h = make_s(Tag(), std::vector<accumulators::weighted_sum<>>(),
axis::integer<>(0, 3), axis::integer<>(0, 4), axis::integer<>(0, 5));
for (auto i = 0; i < h.axis(0_c).size(); ++i) {
for (auto j = 0; j < h.axis(1_c).size(); ++j) {
for (auto k = 0; k < h.axis(2_c).size(); ++k) { h(i, j, k, weight(i + j + k)); }
}
}
for (auto i = 0; i < h.axis(0_c).size(); ++i) {
for (auto j = 0; j < h.axis(1_c).size(); ++j) {
for (auto k = 0; k < h.axis(2_c).size(); ++k) {
BOOST_TEST_EQ(h.at(i, j, k).value(), i + j + k);
BOOST_TEST_EQ(h.at(i, j, k).variance(), (i + j + k) * (i + j + k));
}
}
}
}
// STL support
{
auto v = std::vector<int>{0, 1, 2};
auto h = std::for_each(v.begin(), v.end(), make(Tag(), axis::integer<>(0, 3)));
BOOST_TEST_EQ(h.at(0), 1);
BOOST_TEST_EQ(h.at(1), 1);
BOOST_TEST_EQ(h.at(2), 1);
BOOST_TEST_EQ(algorithm::sum(h), 3);
auto a = std::vector<double>();
// walks over all bins, including underflow and overflow
std::partial_sum(h.begin(), h.end(), std::back_inserter(a));
BOOST_TEST_EQ(a.size(), 5);
BOOST_TEST_EQ(a[0], 0);
BOOST_TEST_EQ(a[1], 1);
BOOST_TEST_EQ(a[2], 2);
BOOST_TEST_EQ(a[3], 3);
BOOST_TEST_EQ(a[4], 3);
}
// histogram_reset
{
auto h = make(Tag(), axis::integer<int, axis::null_type, axis::option::none_t>(0, 2));
h(0);
h(1);
BOOST_TEST_EQ(h.at(0), 1);
BOOST_TEST_EQ(h.at(1), 1);
BOOST_TEST_EQ(algorithm::sum(h), 2);
h.reset();
BOOST_TEST_EQ(h.at(0), 0);
BOOST_TEST_EQ(h.at(1), 0);
BOOST_TEST_EQ(algorithm::sum(h), 0);
}
// custom axes
{
struct modified_axis : public axis::integer<> {
using integer::integer; // inherit ctors of base
// customization point: convert argument and call base class
auto index(const char* s) const { return integer::index(std::atoi(s)); }
};
struct minimal {
auto index(int x) const { return static_cast<axis::index_type>(x % 2); }
auto size() const { return axis::index_type{2}; }
};
struct axis2d {
auto index(const std::tuple<double, double>& x) const {
return axis::index_type{std::get<0>(x) == 1 && std::get<1>(x) == 2};
}
auto size() const { return axis::index_type{2}; }
};
auto h = make(Tag(), modified_axis(0, 3), minimal(), axis2d());
h("0", 1, std::make_tuple(1.0, 2.0));
h("1", 2, std::make_tuple(2.0, 1.0));
BOOST_TEST_EQ(h.rank(), 3);
BOOST_TEST_EQ(h.at(0, 0, 0), 0);
BOOST_TEST_EQ(h.at(0, 1, 1), 1);
BOOST_TEST_EQ(h.at(1, 0, 0), 1);
}
// using containers or input and output
{
auto h = make_s(Tag(), std::vector<accumulators::weighted_sum<>>(),
axis::integer<>(0, 2), axis::regular<>(2, 2, 4));
// tuple in
h(std::make_tuple(0, 2.0));
h(std::make_tuple(1, 3.0));
auto i00 = std::make_tuple(0, 0);
auto i11 = std::make_tuple(1, 1);
// tuple out
BOOST_TEST_EQ(h.at(i00).value(), 1);
BOOST_TEST_EQ(h[i00].value(), 1);
BOOST_TEST_EQ(h[i11].value(), 1);
// iterable out
int j11[] = {1, 1};
BOOST_TEST_EQ(h.at(j11), 1);
BOOST_TEST_EQ(h[j11], 1);
#ifndef BOOST_NO_EXCEPTIONS
int j111[] = {1, 1, 1};
BOOST_TEST_THROWS((void)h.at(j111), std::invalid_argument);
int j13[] = {1, 3};
BOOST_TEST_THROWS((void)h.at(j13), std::out_of_range);
#endif
// tuple with weight
h(std::make_tuple(weight(2), 0, 2.0));
h(std::make_tuple(1, 3.0, weight(2)));
BOOST_TEST_EQ(h.at(i00).value(), 3);
BOOST_TEST_EQ(h[i00].value(), 3);
BOOST_TEST_EQ(h.at(i11).variance(), 5);
BOOST_TEST_EQ(h[i11].variance(), 5);
// test special case of 1-dimensional histogram, which should unpack
// 1-dimensional tuple normally, but forward larger tuples to the axis
auto h1 = make(Tag(), axis::integer<>(0, 2));
h1(std::make_tuple(0)); // as if one had passed 0 directly
BOOST_TEST_EQ(h1.at(std::make_tuple(0)), 1); // as if one had passed 0 directly
struct axis2d {
auto index(std::tuple<int, int> x) const {
return axis::index_type{std::get<0>(x) == 1 && std::get<1>(x) == 2};
}
auto size() const { return axis::index_type{2}; }
};
auto h2 = make(Tag(), axis2d());
h2(std::make_tuple(1, 2)); // ok, forwards 2d tuple to axis
BOOST_TEST_EQ(h2.at(0), 0); // ok, bin access is still 1d
BOOST_TEST_EQ(h2[std::make_tuple(1)], 1);
// passing two arguments directly also works
h2(1, 2);
// also works with weights
h2(1, 2, weight(2));
h2(std::make_tuple(weight(3), 1, 2));
BOOST_TEST_EQ(h2.at(1), 7);
}
// bad bin access
{
auto h = make(Tag(), axis::integer<>(0, 1), axis::integer<>(0, 1));
BOOST_TEST_THROWS(h.at(0, 2), std::out_of_range);
BOOST_TEST_THROWS(h.at(std::make_tuple(2, 0)), std::out_of_range);
}
// pass histogram to function
{
auto h = make(Tag(), axis::integer<>(0, 3));
h(1);
pass_histogram(h);
}
// allocator support
{
tracing_allocator_db db;
{
tracing_allocator<char> a(db);
auto h = make_s(Tag(), std::vector<int, tracing_allocator<int>>(a),
axis::integer<>(0, 1000));
h(0);
}
// int allocation for std::vector
BOOST_TEST_EQ(db.at<int>().first, 0);
BOOST_TEST_EQ(db.at<int>().second, 1002);
if (Tag()) { // axis::variant allocation, only for dynamic histogram
using T = axis::variant<axis::integer<>>;
BOOST_TEST_EQ(db.at<T>().first, 0);
// may be zero if vector uses small-vector-optimisation
BOOST_TEST_LE(db.at<T>().second, 1);
}
}
}
int main() {
run_tests<static_tag>();
run_tests<dynamic_tag>();
return boost::report_errors();
}