histogram/test/adaptive_storage_test.cpp
2019-01-11 00:06:25 +01:00

395 lines
8.3 KiB
C++

// Copyright 2015-2017 Hans Dembinski
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/core/lightweight_test.hpp>
#include <boost/histogram/adaptive_storage.hpp>
#include <boost/histogram/storage_adaptor.hpp>
#include <limits>
#include <memory>
#include <sstream>
#include <vector>
namespace bh = boost::histogram;
using adaptive_storage_type = bh::adaptive_storage<>;
template <typename T>
using array_storage = bh::storage_adaptor<std::vector<T>>;
using bh::weight;
template <typename T>
adaptive_storage_type prepare(std::size_t n, const T x) {
std::unique_ptr<T[]> v(new T[n]);
std::fill(v.get(), v.get() + n, static_cast<T>(0));
v.get()[0] = x;
return adaptive_storage_type(n, v.get());
}
template <typename T>
adaptive_storage_type prepare(std::size_t n) {
return adaptive_storage_type(n, static_cast<T*>(nullptr));
}
template <typename T>
void copy_impl() {
const auto b = prepare<T>(1);
auto a(b);
BOOST_TEST(a == b);
a(0);
BOOST_TEST(!(a == b));
a = b;
BOOST_TEST(a == b);
a(0);
BOOST_TEST(!(a == b));
a = b;
a = prepare<T>(2);
BOOST_TEST(!(a == b));
a = b;
BOOST_TEST(a == b);
}
template <typename T>
void equal_1_impl() {
auto a = prepare<void>(1);
auto b = prepare(1, T(0));
BOOST_TEST_EQ(a[0], 0.0);
BOOST_TEST(a == b);
b(0);
BOOST_TEST(!(a == b));
}
template <>
void equal_1_impl<void>() {
auto a = prepare<void>(1);
auto b = prepare<uint8_t>(1, 0);
auto c = prepare<uint8_t>(2, 0);
auto d = prepare<unsigned>(1);
BOOST_TEST_EQ(a[0], 0.0);
BOOST_TEST(a == b);
BOOST_TEST(b == a);
BOOST_TEST(a == d);
BOOST_TEST(d == a);
BOOST_TEST(!(a == c));
BOOST_TEST(!(c == a));
b(0);
BOOST_TEST(!(a == b));
BOOST_TEST(!(b == a));
d(0);
BOOST_TEST(!(a == d));
BOOST_TEST(!(d == a));
}
template <typename T, typename U>
void equal_2_impl() {
auto a = prepare<T>(1);
array_storage<U> b;
b.reset(1);
BOOST_TEST(a == b);
b(0);
BOOST_TEST(!(a == b));
}
template <typename T>
void increase_and_grow_impl() {
auto tmax = std::numeric_limits<T>::max();
auto s = prepare(2, tmax);
auto n = s;
auto n2 = s;
n(0);
auto x = prepare<void>(2);
x(0);
n2(0, x[0]);
double v = tmax;
++v;
BOOST_TEST_EQ(n[0], v);
BOOST_TEST_EQ(n2[0], v);
BOOST_TEST_EQ(n[1], 0.0);
BOOST_TEST_EQ(n2[1], 0.0);
}
template <>
void increase_and_grow_impl<void>() {
auto s = prepare<void>(2);
BOOST_TEST_EQ(s[0], 0);
BOOST_TEST_EQ(s[1], 0);
s(0);
BOOST_TEST_EQ(s[0], 1);
BOOST_TEST_EQ(s[1], 0);
}
template <typename T>
void convert_array_storage_impl() {
const auto aref = prepare(1, T(0));
array_storage<uint8_t> s;
s.reset(1);
s(0);
auto a = aref;
a = s;
BOOST_TEST_EQ(a[0], 1.0);
BOOST_TEST(a == s);
a(0);
BOOST_TEST(!(a == s));
adaptive_storage_type b(s);
BOOST_TEST_EQ(b[0], 1.0);
BOOST_TEST(b == s);
b(0);
BOOST_TEST(!(b == s));
auto c = aref;
c(0, s[0]);
BOOST_TEST_EQ(c[0], 1.0);
BOOST_TEST(c == s);
BOOST_TEST(s == c);
array_storage<float> t;
t.reset(1);
t(0);
while (t[0] < 1e20) t(0, t[0]);
auto d = aref;
d = t;
BOOST_TEST(d == t);
auto e = aref;
e = s;
BOOST_TEST_EQ(e[0], 1.0);
BOOST_TEST(e == s);
e(0);
BOOST_TEST(!(e == s));
adaptive_storage_type f(s);
BOOST_TEST_EQ(f[0], 1.0);
BOOST_TEST(f == s);
f(0);
BOOST_TEST(!(f == s));
auto g = aref;
g(0, s[0]);
BOOST_TEST_EQ(g[0], 1.0);
BOOST_TEST(g == s);
BOOST_TEST(s == g);
array_storage<uint8_t> u;
u.reset(2);
u(0);
auto h = aref;
BOOST_TEST(!(h == u));
h = u;
BOOST_TEST(h == u);
}
template <>
void convert_array_storage_impl<void>() {
const auto aref = prepare<void>(1);
BOOST_TEST_EQ(aref[0], 0.0);
array_storage<uint8_t> s;
s.reset(1);
s(0);
auto a = aref;
a = s;
BOOST_TEST_EQ(a[0], 1.0);
BOOST_TEST(a == s);
a(0);
BOOST_TEST(!(a == s));
auto c = aref;
c(0, s[0]);
BOOST_TEST_EQ(c[0], 1.0);
BOOST_TEST(c == s);
BOOST_TEST(s == c);
array_storage<uint8_t> t;
t.reset(2);
t(0);
auto d = aref;
BOOST_TEST(!(d == t));
}
template <typename LHS, typename RHS>
void add_impl() {
auto a = prepare<LHS>(2);
auto b = prepare<RHS>(2);
if (std::is_same<RHS, void>::value) {
a += b;
BOOST_TEST_EQ(a[0], 0);
BOOST_TEST_EQ(a[1], 0);
} else {
b(0);
b(0);
a += b;
BOOST_TEST_EQ(a[0], 2);
BOOST_TEST_EQ(a[1], 0);
}
}
template <typename LHS>
void add_impl_all_rhs() {
add_impl<LHS, void>();
add_impl<LHS, uint8_t>();
add_impl<LHS, uint16_t>();
add_impl<LHS, uint32_t>();
add_impl<LHS, uint64_t>();
add_impl<LHS, adaptive_storage_type::mp_int>();
add_impl<LHS, double>();
}
int main() {
// low-level tools
{
uint8_t c = 0;
BOOST_TEST_EQ(bh::detail::safe_increment(c), true);
BOOST_TEST_EQ(c, 1);
c = 255;
BOOST_TEST_EQ(bh::detail::safe_increment(c), false);
BOOST_TEST_EQ(c, 255);
BOOST_TEST_EQ(bh::detail::safe_assign(c, 255), true);
BOOST_TEST_EQ(bh::detail::safe_assign(c, 256), false);
BOOST_TEST_EQ(c, 255);
c = 0;
BOOST_TEST_EQ(bh::detail::safe_radd(c, 255), true);
BOOST_TEST_EQ(c, 255);
c = 1;
BOOST_TEST_EQ(bh::detail::safe_radd(c, 255), false);
BOOST_TEST_EQ(c, 1);
c = 255;
BOOST_TEST_EQ(bh::detail::safe_radd(c, 1), false);
BOOST_TEST_EQ(c, 255);
}
// empty state
{
adaptive_storage_type a;
BOOST_TEST_EQ(a.size(), 0);
}
// copy
{
copy_impl<double>();
copy_impl<void>();
copy_impl<uint8_t>();
copy_impl<uint16_t>();
copy_impl<uint32_t>();
copy_impl<uint64_t>();
copy_impl<adaptive_storage_type::mp_int>();
}
// equal_operator
{
equal_1_impl<void>();
equal_1_impl<uint8_t>();
equal_1_impl<uint16_t>();
equal_1_impl<uint32_t>();
equal_1_impl<uint64_t>();
equal_1_impl<adaptive_storage_type::mp_int>();
equal_1_impl<double>();
equal_2_impl<void, unsigned>();
equal_2_impl<uint8_t, unsigned>();
equal_2_impl<uint16_t, unsigned>();
equal_2_impl<uint32_t, unsigned>();
equal_2_impl<uint64_t, unsigned>();
equal_2_impl<adaptive_storage_type::mp_int, unsigned>();
equal_2_impl<double, unsigned>();
equal_2_impl<adaptive_storage_type::mp_int, double>();
auto a = prepare<double>(1);
auto b = prepare<adaptive_storage_type::mp_int>(1);
BOOST_TEST(a == b);
a(0);
BOOST_TEST_NOT(a == b);
}
// increase_and_grow
{
increase_and_grow_impl<void>();
increase_and_grow_impl<uint8_t>();
increase_and_grow_impl<uint16_t>();
increase_and_grow_impl<uint32_t>();
increase_and_grow_impl<uint64_t>();
// only increase for mp_int
auto a = prepare<adaptive_storage_type::mp_int>(2, 1);
BOOST_TEST_EQ(a[0], 1);
BOOST_TEST_EQ(a[1], 0);
a(0);
BOOST_TEST_EQ(a[0], 2);
BOOST_TEST_EQ(a[1], 0);
}
// add
{
add_impl_all_rhs<void>();
add_impl_all_rhs<uint8_t>();
add_impl_all_rhs<uint16_t>();
add_impl_all_rhs<uint32_t>();
add_impl_all_rhs<uint64_t>();
add_impl_all_rhs<adaptive_storage_type::mp_int>();
add_impl_all_rhs<double>();
}
// add_and_grow
{
auto a = prepare<void>(1);
a += a;
BOOST_TEST_EQ(a[0], 0);
a(0);
double x = 1;
auto b = prepare<void>(1);
b(0);
BOOST_TEST_EQ(b[0], x);
for (unsigned i = 0; i < 80; ++i) {
x += x;
a(0, a[0]);
b += b;
BOOST_TEST_EQ(a[0], x);
BOOST_TEST_EQ(b[0], x);
auto c = prepare<void>(1);
c(0, a[0]);
BOOST_TEST_EQ(c[0], x);
c(0, weight(0));
BOOST_TEST_EQ(c[0], x);
auto d = prepare<void>(1);
d(0, weight(x));
BOOST_TEST_EQ(d[0], x);
}
}
// multiply
{
auto a = prepare<void>(2);
a *= 2;
BOOST_TEST_EQ(a[0], 0);
BOOST_TEST_EQ(a[1], 0);
a(0);
a *= 3;
BOOST_TEST_EQ(a[0], 3);
BOOST_TEST_EQ(a[1], 0);
a(1, 2);
BOOST_TEST_EQ(a[0], 3);
BOOST_TEST_EQ(a[1], 2);
a *= 3;
BOOST_TEST_EQ(a[0], 9);
BOOST_TEST_EQ(a[1], 6);
}
// convert_array_storage
{
convert_array_storage_impl<void>();
convert_array_storage_impl<uint8_t>();
convert_array_storage_impl<uint16_t>();
convert_array_storage_impl<uint32_t>();
convert_array_storage_impl<uint64_t>();
convert_array_storage_impl<adaptive_storage_type::mp_int>();
convert_array_storage_impl<double>();
}
return boost::report_errors();
}