histogram/test/histogram_test.cpp
Hans Dembinski 15c44e9856 fix
2018-07-22 19:05:52 +02:00

1044 lines
30 KiB
C++

// Copyright 2015-2017 Hans Dembinski
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <array>
#include <boost/core/lightweight_test.hpp>
#include <boost/histogram/dynamic_histogram.hpp>
#include <boost/histogram/literals.hpp>
#include <boost/histogram/ostream_operators.hpp>
#ifndef BOOST_HISTOGRAM_NO_SERIALIZATION
#include <boost/archive/text_iarchive.hpp>
#include <boost/archive/text_oarchive.hpp>
#include <boost/histogram/serialization.hpp>
#endif
#include <algorithm>
#include <boost/histogram/static_histogram.hpp>
#include <boost/histogram/storage/adaptive_storage.hpp>
#include <boost/histogram/storage/array_storage.hpp>
#include <boost/histogram/storage/weight_counter.hpp>
#include <boost/mp11.hpp>
#include <cstdlib>
#include <limits>
#include <numeric>
#include <sstream>
#include <tuple>
#include <utility>
#include <vector>
using namespace boost::histogram;
using namespace boost::histogram::literals; // to get _c suffix
namespace mp11 = boost::mp11;
template <typename S, typename... Axes>
auto make_histogram(static_tag, Axes&&... axes)
-> decltype(make_static_histogram_with<S>(std::forward<Axes>(axes)...)) {
return make_static_histogram_with<S>(std::forward<Axes>(axes)...);
}
template <typename S, typename... Axes>
auto make_histogram(dynamic_tag, Axes&&... axes)
-> decltype(make_dynamic_histogram_with<S>(std::forward<Axes>(axes)...)) {
return make_dynamic_histogram_with<S>(std::forward<Axes>(axes)...);
}
int expected_moved_from_dim(static_tag, int static_value) {
return static_value;
}
int expected_moved_from_dim(dynamic_tag, int) { return 0; }
template <typename Histogram>
typename Histogram::element_type sum(const Histogram& h) {
return std::accumulate(h.begin(), h.end(),
typename Histogram::element_type(0));
}
template <typename... Ts>
void pass_histogram(boost::histogram::histogram<Ts...>&) {}
template <typename Type>
void run_tests() {
// init_1
{
auto h =
make_histogram<adaptive_storage>(Type(), axis::regular<>{3, -1, 1});
BOOST_TEST_EQ(h.dim(), 1);
BOOST_TEST_EQ(h.size(), 5);
BOOST_TEST_EQ(h.axis(0_c).shape(), 5);
BOOST_TEST_EQ(h.axis().shape(), 5);
auto h2 = make_histogram<array_storage<unsigned>>(
Type(), axis::regular<>{3, -1, 1});
BOOST_TEST_EQ(h2, h);
}
// init_2
{
auto h = make_histogram<adaptive_storage>(
Type(), axis::regular<>{3, -1, 1}, axis::integer<>{-1, 2});
BOOST_TEST_EQ(h.dim(), 2);
BOOST_TEST_EQ(h.size(), 25);
BOOST_TEST_EQ(h.axis(0_c).shape(), 5);
BOOST_TEST_EQ(h.axis(1_c).shape(), 5);
auto h2 = make_histogram<array_storage<unsigned>>(
Type(), axis::regular<>{3, -1, 1}, axis::integer<>{-1, 2});
BOOST_TEST_EQ(h2, h);
}
// init_3
{
auto h = make_histogram<adaptive_storage>(
Type(), axis::regular<>{3, -1, 1}, axis::integer<>{-1, 2},
axis::circular<>{3});
BOOST_TEST_EQ(h.dim(), 3);
BOOST_TEST_EQ(h.size(), 75);
auto h2 = make_histogram<array_storage<unsigned>>(
Type(), axis::regular<>{3, -1, 1}, axis::integer<>{-1, 2},
axis::circular<>{3});
BOOST_TEST_EQ(h2, h);
}
// init_4
{
auto h = make_histogram<adaptive_storage>(
Type(), axis::regular<>{3, -1, 1}, axis::integer<>{-1, 2},
axis::circular<>{3}, axis::variable<>{-1, 0, 1});
BOOST_TEST_EQ(h.dim(), 4);
BOOST_TEST_EQ(h.size(), 300);
auto h2 = make_histogram<array_storage<unsigned>>(
Type(), axis::regular<>{3, -1, 1}, axis::integer<>{-1, 2},
axis::circular<>{3}, axis::variable<>{-1, 0, 1});
BOOST_TEST_EQ(h2, h);
}
// init_5
{
enum { A, B, C };
auto h = make_histogram<adaptive_storage>(
Type(), axis::regular<>{3, -1, 1}, axis::integer<>{-1, 2},
axis::circular<>{3}, axis::variable<>{-1, 0, 1},
axis::category<>{{A, B, C}});
BOOST_TEST_EQ(h.dim(), 5);
BOOST_TEST_EQ(h.size(), 1200);
auto h2 = make_histogram<array_storage<unsigned>>(
Type(), axis::regular<>{3, -1, 1}, axis::integer<>{-1, 2},
axis::circular<>{3}, axis::variable<>{-1, 0, 1},
axis::category<>{{A, B, C}});
BOOST_TEST_EQ(h2, h);
}
// copy_ctor
{
auto h = make_histogram<adaptive_storage>(Type(), axis::integer<>{0, 2},
axis::integer<>{0, 3});
h(0, 0);
auto h2 = decltype(h)(h);
BOOST_TEST(h2 == h);
auto h3 =
static_histogram<mp11::mp_list<axis::integer<>, axis::integer<>>,
array_storage<unsigned>>(h);
BOOST_TEST_EQ(h3, h);
}
// copy_assign
{
auto h = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 1),
axis::integer<>(0, 2));
h(0, 0);
auto h2 = decltype(h)();
BOOST_TEST_NE(h, h2);
h2 = h;
BOOST_TEST_EQ(h, h2);
// test self-assign
h2 = h2;
BOOST_TEST_EQ(h, h2);
auto h3 =
static_histogram<mp11::mp_list<axis::integer<>, axis::integer<>>,
array_storage<unsigned>>();
h3 = h;
BOOST_TEST_EQ(h, h3);
}
// move
{
auto h = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 1),
axis::integer<>(0, 2));
h(0, 0);
const auto href = h;
decltype(h) h2(std::move(h));
// static axes cannot shrink to zero
BOOST_TEST_EQ(h.dim(), expected_moved_from_dim(Type(), 2));
BOOST_TEST_EQ(sum(h).value(), 0);
BOOST_TEST_EQ(h.size(), 0);
BOOST_TEST_EQ(h2, href);
decltype(h) h3;
h3 = std::move(h2);
// static axes cannot shrink to zero
BOOST_TEST_EQ(h2.dim(), expected_moved_from_dim(Type(), 2));
BOOST_TEST_EQ(sum(h2).value(), 0);
BOOST_TEST_EQ(h2.size(), 0);
BOOST_TEST_EQ(h3, href);
}
// axis methods
{
enum { A = 3, B = 5 };
auto a = make_histogram<adaptive_storage>(
Type(), axis::regular<>(1, 1, 2, "foo"));
BOOST_TEST_EQ(a.axis().size(), 1);
BOOST_TEST_EQ(a.axis().shape(), 3);
BOOST_TEST_EQ(a.axis().index(1), 0);
BOOST_TEST_EQ(a.axis()[0].lower(), 1);
BOOST_TEST_EQ(a.axis()[0].upper(), 2);
BOOST_TEST_EQ(a.axis().label(), "foo");
a.axis().label("bar");
BOOST_TEST_EQ(a.axis().label(), "bar");
auto b = make_histogram<adaptive_storage>(Type(), axis::integer<>(1, 2));
BOOST_TEST_EQ(b.axis().size(), 1);
BOOST_TEST_EQ(b.axis().shape(), 3);
BOOST_TEST_EQ(b.axis().index(1), 0);
BOOST_TEST_EQ(b.axis()[0].lower(), 1);
BOOST_TEST_EQ(b.axis()[0].upper(), 2);
b.axis().label("foo");
BOOST_TEST_EQ(b.axis().label(), "foo");
auto c =
make_histogram<adaptive_storage>(Type(), axis::category<>({A, B}));
BOOST_TEST_EQ(c.axis().size(), 2);
BOOST_TEST_EQ(c.axis().shape(), 3);
BOOST_TEST_EQ(c.axis().index(A), 0);
BOOST_TEST_EQ(c.axis().index(B), 1);
c.axis().label("foo");
BOOST_TEST_EQ(c.axis().label(), "foo");
// need to cast here for this to work with Type == dynamic_tag, too
auto ca = static_cast<const axis::category<>&>(c.axis());
BOOST_TEST_EQ(ca[0].value(), A);
}
// equal_compare
{
auto a = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 2));
auto b = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 2),
axis::integer<>(0, 3));
BOOST_TEST(a != b);
BOOST_TEST(b != a);
auto c = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 2));
BOOST_TEST(b != c);
BOOST_TEST(c != b);
BOOST_TEST(a == c);
BOOST_TEST(c == a);
auto d =
make_histogram<adaptive_storage>(Type(), axis::regular<>(2, 0, 1));
BOOST_TEST(c != d);
BOOST_TEST(d != c);
c(0);
BOOST_TEST(a != c);
BOOST_TEST(c != a);
a(0);
BOOST_TEST(a == c);
BOOST_TEST(c == a);
a(0);
BOOST_TEST(a != c);
BOOST_TEST(c != a);
}
// d1
{
auto h = make_histogram<adaptive_storage>(Type(), axis::integer<>{0, 2});
h(0);
h(0);
h(-1);
h(10);
BOOST_TEST_EQ(h.dim(), 1);
BOOST_TEST_EQ(h.axis(0_c).size(), 2);
BOOST_TEST_EQ(h.axis(0_c).shape(), 4);
BOOST_TEST_EQ(sum(h), 4);
BOOST_TEST_EQ(h.at(-1), 1);
BOOST_TEST_EQ(h.at(0), 2);
BOOST_TEST_EQ(h.at(1), 0);
BOOST_TEST_EQ(h.at(2), 1);
}
// d1_2
{
auto h = make_histogram<adaptive_storage>(
Type(), axis::integer<>(0, 2, "", axis::uoflow::off));
h(0);
h(-0);
h(-1);
h(10);
BOOST_TEST_EQ(h.dim(), 1);
BOOST_TEST_EQ(h.axis(0_c).size(), 2);
BOOST_TEST_EQ(h.axis(0_c).shape(), 2);
BOOST_TEST_EQ(sum(h), 2);
BOOST_TEST_EQ(h.at(0), 2);
BOOST_TEST_EQ(h.at(1), 0);
}
// d1_3
{
auto h = make_histogram<adaptive_storage>(
Type(), axis::category<std::string>({"A", "B"}));
h("A");
h("B");
h("D");
h("E");
BOOST_TEST_EQ(h.dim(), 1);
BOOST_TEST_EQ(h.axis(0_c).size(), 2);
BOOST_TEST_EQ(h.axis(0_c).shape(), 3);
BOOST_TEST_EQ(sum(h), 4);
BOOST_TEST_EQ(h.at(0), 1);
BOOST_TEST_EQ(h.at(1), 1);
}
// d1w
{
auto h = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 2));
h(-1);
h(0);
h(weight(0.5), 0);
h(1);
h(weight(2), 2);
BOOST_TEST_EQ(sum(h).value(), 5.5);
BOOST_TEST_EQ(sum(h).variance(), 7.25);
BOOST_TEST_EQ(h.at(-1).value(), 1);
BOOST_TEST_EQ(h.at(0).value(), 1.5);
BOOST_TEST_EQ(h.at(1).value(), 1);
BOOST_TEST_EQ(h.at(2).value(), 2);
BOOST_TEST_EQ(h.at(-1).variance(), 1);
BOOST_TEST_EQ(h.at(0).variance(), 1.25);
BOOST_TEST_EQ(h.at(1).variance(), 1);
BOOST_TEST_EQ(h.at(2).variance(), 4);
}
// d2
{
auto h = make_histogram<adaptive_storage>(
Type(), axis::regular<>(2, -1, 1),
axis::integer<>(-1, 2, "", axis::uoflow::off));
h(-1, -1);
h(-1, 0);
h(-1, -10);
h(-10, 0);
BOOST_TEST_EQ(h.dim(), 2);
BOOST_TEST_EQ(h.axis(0_c).size(), 2);
BOOST_TEST_EQ(h.axis(0_c).shape(), 4);
BOOST_TEST_EQ(h.axis(1_c).size(), 3);
BOOST_TEST_EQ(h.axis(1_c).shape(), 3);
BOOST_TEST_EQ(sum(h), 3);
BOOST_TEST_EQ(h.at(-1, 0), 0);
BOOST_TEST_EQ(h.at(-1, 1), 1);
BOOST_TEST_EQ(h.at(-1, 2), 0);
BOOST_TEST_EQ(h.at(0, 0), 1);
BOOST_TEST_EQ(h.at(0, 1), 1);
BOOST_TEST_EQ(h.at(0, 2), 0);
BOOST_TEST_EQ(h.at(1, 0), 0);
BOOST_TEST_EQ(h.at(1, 1), 0);
BOOST_TEST_EQ(h.at(1, 2), 0);
BOOST_TEST_EQ(h.at(2, 0), 0);
BOOST_TEST_EQ(h.at(2, 1), 0);
BOOST_TEST_EQ(h.at(2, 2), 0);
}
// d2w
{
auto h = make_histogram<adaptive_storage>(
Type(), axis::regular<>(2, -1, 1),
axis::integer<>(-1, 2, "", axis::uoflow::off));
h(-1, 0); // -> 0, 1
h(weight(10), -1, -1); // -> 0, 0
h(weight(5), -1, -10); // is ignored
h(weight(7), -10, 0); // -> -1, 1
BOOST_TEST_EQ(sum(h).value(), 18);
BOOST_TEST_EQ(sum(h).variance(), 150);
BOOST_TEST_EQ(h.at(-1, 0).value(), 0);
BOOST_TEST_EQ(h.at(-1, 1).value(), 7);
BOOST_TEST_EQ(h.at(-1, 2).value(), 0);
BOOST_TEST_EQ(h.at(0, 0).value(), 10);
BOOST_TEST_EQ(h.at(0, 1).value(), 1);
BOOST_TEST_EQ(h.at(0, 2).value(), 0);
BOOST_TEST_EQ(h.at(1, 0).value(), 0);
BOOST_TEST_EQ(h.at(1, 1).value(), 0);
BOOST_TEST_EQ(h.at(1, 2).value(), 0);
BOOST_TEST_EQ(h.at(2, 0).value(), 0);
BOOST_TEST_EQ(h.at(2, 1).value(), 0);
BOOST_TEST_EQ(h.at(2, 2).value(), 0);
BOOST_TEST_EQ(h.at(-1, 0).variance(), 0);
BOOST_TEST_EQ(h.at(-1, 1).variance(), 49);
BOOST_TEST_EQ(h.at(-1, 2).variance(), 0);
BOOST_TEST_EQ(h.at(0, 0).variance(), 100);
BOOST_TEST_EQ(h.at(0, 1).variance(), 1);
BOOST_TEST_EQ(h.at(0, 2).variance(), 0);
BOOST_TEST_EQ(h.at(1, 0).variance(), 0);
BOOST_TEST_EQ(h.at(1, 1).variance(), 0);
BOOST_TEST_EQ(h.at(1, 2).variance(), 0);
BOOST_TEST_EQ(h.at(2, 0).variance(), 0);
BOOST_TEST_EQ(h.at(2, 1).variance(), 0);
BOOST_TEST_EQ(h.at(2, 2).variance(), 0);
}
// d3w
{
auto h = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 3),
axis::integer<>(0, 4),
axis::integer<>(0, 5));
for (auto i = 0; i < h.axis(0_c).size(); ++i) {
for (auto j = 0; j < h.axis(1_c).size(); ++j) {
for (auto k = 0; k < h.axis(2_c).size(); ++k) {
h(weight(i + j + k), i, j, k);
}
}
}
for (auto i = 0; i < h.axis(0_c).size(); ++i) {
for (auto j = 0; j < h.axis(1_c).size(); ++j) {
for (auto k = 0; k < h.axis(2_c).size(); ++k) {
BOOST_TEST_EQ(h.at(i, j, k).value(), i + j + k);
BOOST_TEST_EQ(h.at(i, j, k).variance(), (i + j + k) * (i + j + k));
}
}
}
}
// add_1
{
auto a = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 2));
auto b = make_histogram<array_storage<unsigned>>(Type(),
axis::integer<>(0, 2));
a(0); // 1 0
b(1); // 0 1
auto a2 = a;
a2 += b;
BOOST_TEST_EQ(a2.at(-1), 0);
BOOST_TEST_EQ(a2.at(0), 1);
BOOST_TEST_EQ(a2.at(1), 1);
BOOST_TEST_EQ(a2.at(2), 0);
auto a3 = a;
a3 += b;
BOOST_TEST_EQ(a3.at(-1), 0);
BOOST_TEST_EQ(a3.at(0), 1);
BOOST_TEST_EQ(a3.at(1), 1);
BOOST_TEST_EQ(a3.at(2), 0);
auto c = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 3));
BOOST_TEST_THROWS(c += b, std::invalid_argument);
}
// add_2
{
auto a = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 2));
auto b = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 2));
a(0);
BOOST_TEST_EQ(a.at(0).variance(), 1);
b(weight(3), 1);
BOOST_TEST_EQ(b.at(1).variance(), 9);
auto c = a;
c += b;
BOOST_TEST_EQ(c.at(-1).value(), 0);
BOOST_TEST_EQ(c.at(0).value(), 1);
BOOST_TEST_EQ(c.at(0).variance(), 1);
BOOST_TEST_EQ(c.at(1).value(), 3);
BOOST_TEST_EQ(c.at(1).variance(), 9);
BOOST_TEST_EQ(c.at(2).value(), 0);
auto d = a;
d += b;
BOOST_TEST_EQ(d.at(-1).value(), 0);
BOOST_TEST_EQ(d.at(0).value(), 1);
BOOST_TEST_EQ(d.at(0).variance(), 1);
BOOST_TEST_EQ(d.at(1).value(), 3);
BOOST_TEST_EQ(d.at(1).variance(), 9);
BOOST_TEST_EQ(d.at(2).value(), 0);
}
// add_3
{
auto a =
make_histogram<array_storage<char>>(Type(), axis::integer<>(-1, 2));
auto b = make_histogram<array_storage<unsigned>>(Type(),
axis::integer<>(-1, 2));
a(-1);
b(1);
auto c = a;
c += b;
BOOST_TEST_EQ(c.at(-1), 0);
BOOST_TEST_EQ(c.at(0), 1);
BOOST_TEST_EQ(c.at(1), 0);
BOOST_TEST_EQ(c.at(2), 1);
BOOST_TEST_EQ(c.at(3), 0);
auto d = a;
d += b;
BOOST_TEST_EQ(d.at(-1), 0);
BOOST_TEST_EQ(d.at(0), 1);
BOOST_TEST_EQ(d.at(1), 0);
BOOST_TEST_EQ(d.at(2), 1);
BOOST_TEST_EQ(d.at(3), 0);
}
// functional programming
{
auto v = std::vector<int>{0, 1, 2};
auto h = std::for_each(
v.begin(), v.end(),
make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 3)));
BOOST_TEST_EQ(h.at(0), 1);
BOOST_TEST_EQ(h.at(1), 1);
BOOST_TEST_EQ(h.at(2), 1);
BOOST_TEST_EQ(sum(h), 3);
}
// operators
{
auto a = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 3));
auto b = a;
a(0);
b(1);
auto c = a + b;
BOOST_TEST_EQ(c.at(0), 1);
BOOST_TEST_EQ(c.at(1), 1);
c += b;
BOOST_TEST_EQ(c.at(0), 1);
BOOST_TEST_EQ(c.at(1), 2);
auto d = a + b + c;
BOOST_TEST_EQ(d.at(0), 2);
BOOST_TEST_EQ(d.at(1), 3);
auto e = 3 * a;
auto f = b * 2;
BOOST_TEST_EQ(e.at(0).value(), 3);
BOOST_TEST_EQ(e.at(1).value(), 0);
BOOST_TEST_EQ(f.at(0).value(), 0);
BOOST_TEST_EQ(f.at(1).value(), 2);
auto r = a;
r += b;
r += e;
BOOST_TEST_EQ(r.at(0).value(), 4);
BOOST_TEST_EQ(r.at(1).value(), 1);
BOOST_TEST_EQ(r, a + b + 3 * a);
auto s = r / 4;
r /= 4;
BOOST_TEST_EQ(r.at(0).value(), 1);
BOOST_TEST_EQ(r.at(1).value(), 0.25);
BOOST_TEST_EQ(r, s);
}
#ifndef BOOST_HISTOGRAM_NO_SERIALIZATION
// histogram_serialization
{
enum { A, B, C };
auto a = make_histogram<adaptive_storage>(
Type(), axis::regular<>(3, -1, 1, "r"),
axis::circular<>(4, 0.0, 1.0, "p"),
axis::regular<double, axis::transform::log>(3, 1, 100, "lr"),
axis::regular<double, axis::transform::pow>(3, 1, 100, "pr",
axis::uoflow::on, 0.5),
axis::variable<>({0.1, 0.2, 0.3, 0.4, 0.5}, "v"),
axis::category<>{A, B, C}, axis::integer<>(0, 2, "i"));
a(0.5, 0.2, 20, 20, 0.25, 1, 1);
std::string buf;
{
std::ostringstream os;
boost::archive::text_oarchive oa(os);
oa << a;
buf = os.str();
}
auto b = decltype(a)();
BOOST_TEST_NE(a, b);
{
std::istringstream is(buf);
boost::archive::text_iarchive ia(is);
ia >> b;
}
BOOST_TEST_EQ(a, b);
}
#endif
// histogram_ostream
{
auto a = make_histogram<adaptive_storage>(
Type(), axis::regular<>(3, -1, 1, "r"), axis::integer<>(0, 2, "i"));
std::ostringstream os;
os << a;
BOOST_TEST_EQ(os.str(),
"histogram("
"\n regular(3, -1, 1, label='r'),"
"\n integer(0, 2, label='i'),"
"\n)");
}
// histogram_reset
{
auto h = make_histogram<adaptive_storage>(
Type(), axis::integer<>(0, 2, "", axis::uoflow::off));
h(0);
h(1);
BOOST_TEST_EQ(h.at(0), 1);
BOOST_TEST_EQ(h.at(1), 1);
BOOST_TEST_EQ(sum(h), 2);
h.reset();
BOOST_TEST_EQ(h.at(0), 0);
BOOST_TEST_EQ(h.at(1), 0);
BOOST_TEST_EQ(sum(h), 0);
}
// reduce
{
auto h1 = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 2),
axis::integer<>(0, 3));
h1(0, 0);
h1(0, 1);
h1(1, 0);
h1(1, 1);
h1(1, 2);
/*
matrix layout:
0 ->
1 1 1 0 0
| 1 1 0 0
v 0 1 0 0
0 0 0 0
0 0 0 0
*/
auto h1_0 = h1.reduce_to(0_c);
BOOST_TEST_EQ(h1_0.dim(), 1);
BOOST_TEST_EQ(sum(h1_0), 5);
BOOST_TEST_EQ(h1_0.at(0), 2);
BOOST_TEST_EQ(h1_0.at(1), 3);
BOOST_TEST_EQ(h1_0.axis()[0].lower(), 0);
BOOST_TEST_EQ(h1_0.axis()[1].lower(), 1);
BOOST_TEST(h1_0.axis() == h1.axis(0_c));
auto h1_1 = h1.reduce_to(1_c);
BOOST_TEST_EQ(h1_1.dim(), 1);
BOOST_TEST_EQ(sum(h1_1), 5);
BOOST_TEST_EQ(h1_1.at(0), 2);
BOOST_TEST_EQ(h1_1.at(1), 2);
BOOST_TEST_EQ(h1_1.at(2), 1);
BOOST_TEST(h1_1.axis() == h1.axis(1_c));
auto h2 = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 2),
axis::integer<>(0, 3),
axis::integer<>(0, 4));
h2(0, 0, 0);
h2(0, 1, 0);
h2(0, 1, 1);
h2(0, 0, 2);
h2(1, 0, 2);
auto h2_0 = h2.reduce_to(0_c);
BOOST_TEST_EQ(h2_0.dim(), 1);
BOOST_TEST_EQ(sum(h2_0), 5);
BOOST_TEST_EQ(h2_0.at(0), 4);
BOOST_TEST_EQ(h2_0.at(1), 1);
BOOST_TEST(h2_0.axis() == axis::integer<>(0, 2));
auto h2_1 = h2.reduce_to(1_c);
BOOST_TEST_EQ(h2_1.dim(), 1);
BOOST_TEST_EQ(sum(h2_1), 5);
BOOST_TEST_EQ(h2_1.at(0), 3);
BOOST_TEST_EQ(h2_1.at(1), 2);
BOOST_TEST(h2_1.axis() == axis::integer<>(0, 3));
auto h2_2 = h2.reduce_to(2_c);
BOOST_TEST_EQ(h2_2.dim(), 1);
BOOST_TEST_EQ(sum(h2_2), 5);
BOOST_TEST_EQ(h2_2.at(0), 2);
BOOST_TEST_EQ(h2_2.at(1), 1);
BOOST_TEST_EQ(h2_2.at(2), 2);
BOOST_TEST(h2_2.axis() == axis::integer<>(0, 4));
auto h2_01 = h2.reduce_to(0_c, 1_c);
BOOST_TEST_EQ(h2_01.dim(), 2);
BOOST_TEST_EQ(sum(h2_01), 5);
BOOST_TEST_EQ(h2_01.at(0, 0), 2);
BOOST_TEST_EQ(h2_01.at(0, 1), 2);
BOOST_TEST_EQ(h2_01.at(1, 0), 1);
BOOST_TEST(h2_01.axis(0_c) == axis::integer<>(0, 2));
BOOST_TEST(h2_01.axis(1_c) == axis::integer<>(0, 3));
auto h2_02 = h2.reduce_to(0_c, 2_c);
BOOST_TEST_EQ(h2_02.dim(), 2);
BOOST_TEST_EQ(sum(h2_02), 5);
BOOST_TEST_EQ(h2_02.at(0, 0), 2);
BOOST_TEST_EQ(h2_02.at(0, 1), 1);
BOOST_TEST_EQ(h2_02.at(0, 2), 1);
BOOST_TEST_EQ(h2_02.at(1, 2), 1);
BOOST_TEST(h2_02.axis(0_c) == axis::integer<>(0, 2));
BOOST_TEST(h2_02.axis(1_c) == axis::integer<>(0, 4));
auto h2_12 = h2.reduce_to(1_c, 2_c);
BOOST_TEST_EQ(h2_12.dim(), 2);
BOOST_TEST_EQ(sum(h2_12), 5);
BOOST_TEST_EQ(h2_12.at(0, 0), 1);
BOOST_TEST_EQ(h2_12.at(1, 0), 1);
BOOST_TEST_EQ(h2_12.at(1, 1), 1);
BOOST_TEST_EQ(h2_12.at(0, 2), 2);
BOOST_TEST(h2_12.axis(0_c) == axis::integer<>(0, 3));
BOOST_TEST(h2_12.axis(1_c) == axis::integer<>(0, 4));
}
// custom axis
{
struct custom_axis : public axis::integer<> {
using value_type = const char*; // type that is fed to the axis
using integer::integer; // inherit ctors of base
// the customization point
// - accept const char* and convert to int
// - then call index method of base class
int index(value_type s) const { return integer::index(std::atoi(s)); }
};
auto h = make_histogram<adaptive_storage>(Type(), custom_axis(0, 3));
h("-10");
h("0");
h("1");
h("9");
BOOST_TEST_EQ(h.dim(), 1);
BOOST_TEST_EQ(h.axis(), custom_axis(0, 3));
BOOST_TEST_EQ(h.at(0), 1);
BOOST_TEST_EQ(h.at(1), 1);
BOOST_TEST_EQ(h.at(2), 0);
}
// histogram iterator 1D
{
auto h = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 3));
const auto& a = h.axis();
h(weight(2), 0);
h(1);
h(1);
auto it = h.begin();
BOOST_TEST_EQ(it.dim(), 1);
BOOST_TEST_EQ(it.idx(), 0);
BOOST_TEST_EQ(it.bin(), a[0]);
BOOST_TEST_EQ(it->value(), 2);
BOOST_TEST_EQ(it->variance(), 4);
++it;
BOOST_TEST_EQ(it.idx(), 1);
BOOST_TEST_EQ(it.bin(), a[1]);
BOOST_TEST_EQ(*it, 2);
++it;
BOOST_TEST_EQ(it.idx(), 2);
BOOST_TEST_EQ(it.bin(), a[2]);
BOOST_TEST_EQ(*it, 0);
++it;
BOOST_TEST_EQ(it.idx(), 3);
BOOST_TEST_EQ(it.bin(), a[3]);
BOOST_TEST_EQ(*it, 0);
++it;
BOOST_TEST_EQ(it.idx(), -1);
BOOST_TEST_EQ(it.bin(), a[-1]);
BOOST_TEST_EQ(*it, 0);
++it;
BOOST_TEST(it == h.end());
}
// histogram iterator 2D
{
auto h = make_histogram<adaptive_storage>(
Type(), axis::integer<>(0, 1),
axis::integer<>(2, 4, "", axis::uoflow::off));
const auto& a0 = h.axis(0_c);
const auto& a1 = h.axis(1_c);
h(weight(2), 0, 2);
h(-1, 2);
h(1, 3);
auto it = h.begin();
BOOST_TEST_EQ(it.dim(), 2);
BOOST_TEST_EQ(it.idx(0), 0);
BOOST_TEST_EQ(it.idx(1), 0);
BOOST_TEST_EQ(it.bin(0_c), a0[0]);
BOOST_TEST_EQ(it.bin(1_c), a1[0]);
BOOST_TEST_EQ(it->value(), 2);
BOOST_TEST_EQ(it->variance(), 4);
++it;
BOOST_TEST_EQ(it.idx(0), 1);
BOOST_TEST_EQ(it.idx(1), 0);
BOOST_TEST_EQ(it.bin(0_c), a0[1]);
BOOST_TEST_EQ(it.bin(1_c), a1[0]);
BOOST_TEST_EQ(it->value(), 0);
BOOST_TEST_EQ(it->variance(), 0);
++it;
BOOST_TEST_EQ(it.idx(0), -1);
BOOST_TEST_EQ(it.idx(1), 0);
BOOST_TEST_EQ(it.bin(0_c), a0[-1]);
BOOST_TEST_EQ(it.bin(1_c), a1[0]);
BOOST_TEST_EQ(it->value(), 1);
BOOST_TEST_EQ(it->variance(), 1);
++it;
BOOST_TEST_EQ(it.idx(0), 0);
BOOST_TEST_EQ(it.idx(1), 1);
BOOST_TEST_EQ(it.bin(0_c), a0[0]);
BOOST_TEST_EQ(it.bin(1_c), a1[1]);
BOOST_TEST_EQ(it->value(), 0);
BOOST_TEST_EQ(it->variance(), 0);
++it;
BOOST_TEST_EQ(it.idx(0), 1);
BOOST_TEST_EQ(it.idx(1), 1);
BOOST_TEST_EQ(it.bin(0_c), a0[1]);
BOOST_TEST_EQ(it.bin(1_c), a1[1]);
BOOST_TEST_EQ(it->value(), 1);
BOOST_TEST_EQ(it->variance(), 1);
++it;
BOOST_TEST_EQ(it.idx(0), -1);
BOOST_TEST_EQ(it.idx(1), 1);
BOOST_TEST_EQ(it.bin(0_c), a0[-1]);
BOOST_TEST_EQ(it.bin(1_c), a1[1]);
BOOST_TEST_EQ(it->value(), 0);
BOOST_TEST_EQ(it->variance(), 0);
++it;
BOOST_TEST(it == h.end());
auto v = sum(h);
BOOST_TEST_EQ(v.value(), 4);
BOOST_TEST_EQ(v.variance(), 6);
}
// STL compatibility
{
auto h = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 3));
for (int i = 0; i < 3; ++i) h(i);
auto a = std::vector<weight_counter<double>>();
std::partial_sum(h.begin(), h.end(), std::back_inserter(a));
BOOST_TEST_EQ(a[0].value(), 1);
BOOST_TEST_EQ(a[1].value(), 2);
BOOST_TEST_EQ(a[2].value(), 3);
}
// using STL containers
{
auto h = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 2),
axis::regular<>(2, 2, 4));
// vector in
h(std::vector<int>({0, 2}));
// pair in
h(std::make_pair(1, 3.0));
// pair out
BOOST_TEST_EQ(h.at(std::make_pair(0, 0)), 1);
BOOST_TEST_EQ(h[std::make_pair(0, 0)], 1);
// tuple out
BOOST_TEST_EQ(h[std::make_tuple(1, 1)], 1);
// vector in, weights
h(weight(2), std::vector<int>({0, 2}));
// pair in, weights
h(weight(2), std::make_pair(1, 3.0));
// vector
BOOST_TEST_EQ(h.at(std::vector<int>({0, 0})).value(), 3);
BOOST_TEST_EQ(h[std::vector<int>({0, 0})].value(), 3);
// initializer_list
auto i = {1, 1};
BOOST_TEST_EQ(h.at(i).variance(), 5);
BOOST_TEST_EQ(h[i].variance(), 5);
}
// bin args out of range
{
auto h1 = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 2));
BOOST_TEST_THROWS(h1.at(-2), std::out_of_range);
BOOST_TEST_THROWS(h1.at(3), std::out_of_range);
BOOST_TEST_THROWS(h1.at(std::make_tuple(-2)), std::out_of_range);
BOOST_TEST_THROWS(h1.at(std::vector<int>({3})), std::out_of_range);
BOOST_TEST_THROWS(h1[-2], std::out_of_range);
BOOST_TEST_THROWS(h1[3], std::out_of_range);
BOOST_TEST_THROWS(h1[std::make_tuple(-2)], std::out_of_range);
BOOST_TEST_THROWS(h1[std::vector<int>({3})], std::out_of_range);
auto h2 = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 2),
axis::integer<>(0, 2));
BOOST_TEST_THROWS(h2.at(0, -2), std::out_of_range);
BOOST_TEST_THROWS(h2.at(std::make_tuple(0, -2)), std::out_of_range);
BOOST_TEST_THROWS(h2.at(std::vector<int>({0, -2})), std::out_of_range);
BOOST_TEST_THROWS(h2[std::make_tuple(0, -2)], std::out_of_range);
BOOST_TEST_THROWS(h2[std::vector<int>({0, -2})], std::out_of_range);
}
// pass histogram to function
{
auto h = make_histogram<adaptive_storage>(Type(), axis::integer<>(0, 3));
pass_histogram(h);
}
}
template <typename T1, typename T2>
void run_mixed_tests() {
// compare
{
auto a = make_histogram<adaptive_storage>(T1{}, axis::regular<>{3, 0, 3},
axis::integer<>(0, 2));
auto b = make_histogram<array_storage<int>>(
T2{}, axis::regular<>{3, 0, 3}, axis::integer<>(0, 2));
BOOST_TEST_EQ(a, b);
auto b2 = make_histogram<adaptive_storage>(T2{}, axis::integer<>{0, 3},
axis::integer<>(0, 2));
BOOST_TEST_NE(a, b2);
auto b3 = make_histogram<adaptive_storage>(T2{}, axis::regular<>(3, 0, 4),
axis::integer<>(0, 2));
BOOST_TEST_NE(a, b3);
}
// add
{
auto a = make_histogram<adaptive_storage>(T1{}, axis::integer<>{0, 2});
auto b = make_histogram<adaptive_storage>(T2{}, axis::integer<>{0, 2});
BOOST_TEST_EQ(a, b);
a(0); // 1 0
b(1); // 0 1
a += b; // 1 1
BOOST_TEST_EQ(a[0], 1);
BOOST_TEST_EQ(a[1], 1);
auto c = make_histogram<adaptive_storage>(T2{}, axis::integer<>{0, 3});
BOOST_TEST_THROWS(a += c, std::invalid_argument);
}
// copy_assign
{
auto a = make_histogram<adaptive_storage>(T1{}, axis::regular<>{3, 0, 3},
axis::integer<>(0, 2));
auto b = make_histogram<array_storage<int>>(
T2{}, axis::regular<>{3, 0, 3}, axis::integer<>(0, 2));
a(1, 1);
BOOST_TEST_NE(a, b);
b = a;
BOOST_TEST_EQ(a, b);
}
}
int main() {
// common interface
run_tests<static_tag>();
run_tests<dynamic_tag>();
// special stuff that only works with dynamic_tag
// init
{
auto v = std::vector<axis::any<axis::regular<>, axis::integer<>>>();
v.push_back(axis::regular<>(4, -1, 1));
v.push_back(axis::integer<>(1, 7));
auto h = make_dynamic_histogram(v.begin(), v.end());
BOOST_TEST_EQ(h.axis(0), v[0]);
BOOST_TEST_EQ(h.axis(1), v[1]);
auto h2 =
make_dynamic_histogram_with<array_storage<int>>(v.begin(), v.end());
BOOST_TEST_EQ(h.axis(0), v[0]);
BOOST_TEST_EQ(h.axis(1), v[1]);
}
// bad fill argument
{
auto h = make_dynamic_histogram(axis::integer<>(0, 3));
BOOST_TEST_THROWS(h(std::string()), std::invalid_argument);
}
// axis methods
{
enum { A, B };
auto c = make_dynamic_histogram(axis::category<>({A, B}));
BOOST_TEST_THROWS(c.axis().lower(0), std::runtime_error);
}
// reduce
{
auto h1 =
make_dynamic_histogram(axis::integer<>(0, 2), axis::integer<>(0, 3));
h1(0, 0);
h1(0, 1);
h1(1, 0);
h1(1, 1);
h1(1, 2);
auto h1_0 = h1.reduce_to(0);
BOOST_TEST_EQ(h1_0.dim(), 1);
BOOST_TEST_EQ(sum(h1_0), 5);
BOOST_TEST_EQ(h1_0.at(0), 2);
BOOST_TEST_EQ(h1_0.at(1), 3);
BOOST_TEST(h1_0.axis() == h1.axis(0_c));
auto h1_1 = h1.reduce_to(1);
BOOST_TEST_EQ(h1_1.dim(), 1);
BOOST_TEST_EQ(sum(h1_1), 5);
BOOST_TEST_EQ(h1_1.at(0), 2);
BOOST_TEST_EQ(h1_1.at(1), 2);
BOOST_TEST_EQ(h1_1.at(2), 1);
BOOST_TEST(h1_1.axis() == h1.axis(1_c));
}
// histogram iterator
{
auto h = make_dynamic_histogram(axis::integer<>(0, 3));
const auto& a = h.axis();
h(weight(2), 0);
h(1);
h(1);
auto it = h.begin();
BOOST_TEST_EQ(it.dim(), 1);
BOOST_TEST_EQ(it.idx(0), 0);
BOOST_TEST_EQ(it.bin(0), a[0]);
BOOST_TEST_EQ(it->value(), 2);
BOOST_TEST_EQ(it->variance(), 4);
++it;
BOOST_TEST_EQ(it.idx(0), 1);
BOOST_TEST_EQ(it.bin(0), a[1]);
BOOST_TEST_EQ(*it, 2);
++it;
BOOST_TEST_EQ(it.idx(0), 2);
BOOST_TEST_EQ(it.bin(0), a[2]);
BOOST_TEST_EQ(*it, 0);
++it;
BOOST_TEST_EQ(it.idx(0), 3);
BOOST_TEST_EQ(it.bin(0), a[3]);
BOOST_TEST_EQ(*it, 0);
++it;
BOOST_TEST_EQ(it.idx(0), -1);
BOOST_TEST_EQ(it.bin(0), a[-1]);
BOOST_TEST_EQ(*it, 0);
++it;
BOOST_TEST(it == h.end());
}
run_mixed_tests<static_tag, dynamic_tag>();
run_mixed_tests<dynamic_tag, static_tag>();
return boost::report_errors();
}