Hans Dembinski 016532f011
Histogram fill method (#54)
huge refactor, various speed improvements, potential for further improvements and parallelization
2019-08-19 23:55:43 +02:00

607 lines
23 KiB
C++

// Copyright 2015-2018 Hans Dembinski
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HISTOGRAM_HISTOGRAM_HPP
#define BOOST_HISTOGRAM_HISTOGRAM_HPP
#include <boost/histogram/detail/at.hpp>
#include <boost/histogram/detail/axes.hpp>
#include <boost/histogram/detail/common_type.hpp>
#include <boost/histogram/detail/compressed_pair.hpp>
#include <boost/histogram/detail/fill.hpp>
#include <boost/histogram/detail/fill_n.hpp>
#include <boost/histogram/detail/non_member_container_access.hpp>
#include <boost/histogram/detail/noop_mutex.hpp>
#include <boost/histogram/detail/static_if.hpp>
#include <boost/histogram/fwd.hpp>
#include <boost/histogram/storage_adaptor.hpp>
#include <boost/histogram/unsafe_access.hpp>
#include <boost/mp11/list.hpp>
#include <boost/throw_exception.hpp>
#include <mutex>
#include <stdexcept>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
namespace boost {
namespace histogram {
/** Central class of the histogram library.
Histogram uses the call operator to insert data, like the
[Boost.Accumulators](https://www.boost.org/doc/libs/develop/doc/html/accumulators.html).
Use factory functions (see
[make_histogram.hpp](histogram/reference.html#header.boost.histogram.make_histogram_hpp)
and
[make_profile.hpp](histogram/reference.html#header.boost.histogram.make_profile_hpp)) to
conveniently create histograms rather than calling the ctors directly.
Use the [indexed](boost/histogram/indexed.html) range generator to iterate over filled
histograms, which is convenient and faster than hand-written loops for multi-dimensional
histograms.
@tparam Axes std::tuple of axis types OR std::vector of an axis type or axis::variant
@tparam Storage class that implements the storage interface
*/
template <class Axes, class Storage>
class histogram {
public:
static_assert(mp11::mp_size<Axes>::value > 0, "at least one axis required");
static_assert(std::is_same<std::decay_t<Storage>, Storage>::value,
"Storage may not be a reference or const or volatile");
public:
using axes_type = Axes;
using storage_type = Storage;
using value_type = typename storage_type::value_type;
// typedefs for boost::range_iterator
using iterator = typename storage_type::iterator;
using const_iterator = typename storage_type::const_iterator;
histogram() = default;
histogram(const histogram& rhs)
: axes_(rhs.axes_), storage_and_mutex_(rhs.storage_and_mutex_.first()) {}
histogram(histogram&& rhs)
: axes_(std::move(rhs.axes_))
, storage_and_mutex_(std::move(rhs.storage_and_mutex_.first())) {}
histogram& operator=(histogram&& rhs) {
if (this != &rhs) {
axes_ = std::move(rhs.axes_);
storage_and_mutex_.first() = std::move(rhs.storage_and_mutex_.first());
}
return *this;
}
histogram& operator=(const histogram& rhs) {
if (this != &rhs) {
axes_ = rhs.axes_;
storage_and_mutex_.first() = rhs.storage_and_mutex_.first();
}
return *this;
}
template <class A, class S>
explicit histogram(histogram<A, S>&& rhs)
: storage_and_mutex_(std::move(unsafe_access::storage(rhs))) {
detail::axes_assign(axes_, std::move(unsafe_access::axes(rhs)));
}
template <class A, class S>
explicit histogram(const histogram<A, S>& rhs)
: storage_and_mutex_(unsafe_access::storage(rhs)) {
detail::axes_assign(axes_, unsafe_access::axes(rhs));
}
template <class A, class S>
histogram& operator=(histogram<A, S>&& rhs) {
detail::axes_assign(axes_, std::move(unsafe_access::axes(rhs)));
storage_and_mutex_.first() = std::move(unsafe_access::storage(rhs));
return *this;
}
template <class A, class S>
histogram& operator=(const histogram<A, S>& rhs) {
detail::axes_assign(axes_, unsafe_access::axes(rhs));
storage_and_mutex_.first() = unsafe_access::storage(rhs);
return *this;
}
template <class A, class S>
histogram(A&& a, S&& s)
: axes_(std::forward<A>(a)), storage_and_mutex_(std::forward<S>(s)) {
storage_and_mutex_.first().reset(detail::bincount(axes_));
}
template <class A, class = detail::requires_axes<A>>
explicit histogram(A&& a) : histogram(std::forward<A>(a), storage_type()) {}
/// Number of axes (dimensions).
constexpr unsigned rank() const noexcept { return detail::axes_rank(axes_); }
/// Total number of bins (including underflow/overflow).
std::size_t size() const noexcept { return storage_and_mutex_.first().size(); }
/// Reset all bins to default initialized values.
void reset() { storage_and_mutex_.first().reset(size()); }
/// Get N-th axis using a compile-time number.
/// This version is more efficient than the one accepting a run-time number.
template <unsigned N = 0>
decltype(auto) axis(std::integral_constant<unsigned, N> = {}) const {
detail::axis_index_is_valid(axes_, N);
return detail::axis_get<N>(axes_);
}
/// Get N-th axis with run-time number.
/// Prefer the version that accepts a compile-time number, if you can use it.
decltype(auto) axis(unsigned i) const {
detail::axis_index_is_valid(axes_, i);
return detail::axis_get(axes_, i);
}
/// Apply unary functor/function to each axis.
template <class Unary>
auto for_each_axis(Unary&& unary) const {
return detail::for_each_axis(axes_, std::forward<Unary>(unary));
}
/** Fill histogram with values, an optional weight, and/or a sample.
Arguments are passed in order to the axis objects. Passing an argument type that is
not convertible to the value type accepted by the axis or passing the wrong number
of arguments causes a throw of `std::invalid_argument`.
__Optional weight__
An optional weight can be passed as the first or last argument
with the [weight](boost/histogram/weight.html) helper function. Compilation fails if
the storage elements do not support weights.
__Samples__
If the storage elements accept samples, pass them with the sample helper function
in addition to the axis arguments, which can be the first or last argument. The
[sample](boost/histogram/sample.html) helper function can pass one or more arguments
to the storage element. If samples and weights are used together, they can be passed
in any order at the beginning or end of the argument list.
__Axis with multiple arguments__
If the histogram contains an axis which accepts a `std::tuple` of arguments, the
arguments for that axis need to passed as a `std::tuple`, for example,
`std::make_tuple(1.2, 2.3)`. If the histogram contains only this axis and no other,
the arguments can be passed directly.
*/
template <class... Args>
iterator operator()(const Args&... args) {
return operator()(std::forward_as_tuple(args...));
}
/// Fill histogram with values, an optional weight, and/or a sample from a `std::tuple`.
template <class... Ts>
iterator operator()(const std::tuple<Ts...>& args) {
std::lock_guard<mutex_type> guard{storage_and_mutex_.second()};
return detail::fill(storage_and_mutex_.first(), axes_, args);
}
/** Fill histogram with several values at once.
In general, the argument must be an iterable with the same length as the rank of the
histogram. The elements of the iterable may be either identical sub-iterables over
values or a variant. The variant may hold sub-iterables over values or single values.
All sub-iterables must have the same length.
Values in sub-iterables are passed to the corresponding histogram axis. A single
value is treated as if a sub-iterable was passed that is filled with copies of this
value.
If the histogram has only one axis, a sub-iterable may be passed directly in place of
the main iterable.
@param args iterable as explained in the long description.
*/
template <class Iterable, class = detail::requires_iterable<Iterable>>
void fill(const Iterable& args) {
std::lock_guard<mutex_type> guard{storage_and_mutex_.second()};
detail::fill_n(storage_and_mutex_.first(), axes_, detail::data(args),
detail::size(args));
}
/** Fill histogram with several values and weights at once.
@param weights single weight or an iterable of weights.
@param args iterable of values.
*/
template <class Iterable, class T, class = detail::requires_iterable<Iterable>>
void fill(const weight_type<T>& weights, const Iterable& args) {
std::lock_guard<mutex_type> guard{storage_and_mutex_.second()};
detail::fill_n(storage_and_mutex_.first(), axes_, detail::data(args),
detail::size(args), weights);
}
/** Fill histogram with several values and weights at once.
@param args iterable of values.
@param weights single weight or an iterable of weights.
*/
template <class Iterable, class T, class = detail::requires_iterable<Iterable>>
void fill(const Iterable& args, const weight_type<T>& weights) {
std::lock_guard<mutex_type> guard{storage_and_mutex_.second()};
detail::fill_n(storage_and_mutex_.first(), axes_, detail::data(args),
detail::size(args), weights);
}
/** Fill histogram with several values and samples at once.
@param samples single sample or an iterable of samples.
@param args iterable of values.
*/
template <class Iterable, class T, class = detail::requires_iterable<Iterable>>
void fill(const sample_type<T>& samples, const Iterable& args) {
std::lock_guard<mutex_type> guard{storage_and_mutex_.second()};
detail::fill_n(storage_and_mutex_.first(), axes_, detail::data(args),
detail::size(args), samples);
}
/** Fill histogram with several values and samples at once.
@param args iterable of values.
@param samples single sample or an iterable of samples.
*/
template <class Iterable, class T, class = detail::requires_iterable<Iterable>>
void fill(const Iterable& args, const sample_type<T>& samples) {
std::lock_guard<mutex_type> guard{storage_and_mutex_.second()};
detail::fill_n(storage_and_mutex_.first(), axes_, detail::data(args),
detail::size(args), samples);
}
template <class Iterable, class T, class U, class = detail::requires_iterable<Iterable>>
void fill(const sample_type<T>& samples, const weight_type<U>& weights,
const Iterable& args) {
std::lock_guard<mutex_type> guard{storage_and_mutex_.second()};
detail::fill_n(storage_and_mutex_.first(), axes_, detail::data(args),
detail::size(args), weights, samples);
}
template <class Iterable, class T, class U, class = detail::requires_iterable<Iterable>>
void fill(const weight_type<T>& weights, const sample_type<U>& samples,
const Iterable& args) {
std::lock_guard<mutex_type> guard{storage_and_mutex_.second()};
detail::fill_n(storage_and_mutex_.first(), axes_, detail::data(args),
detail::size(args), weights, samples);
}
template <class Iterable, class T, class U, class = detail::requires_iterable<Iterable>>
void fill(const Iterable& args, const sample_type<T>& samples,
const weight_type<U>& weights) {
std::lock_guard<mutex_type> guard{storage_and_mutex_.second()};
detail::fill_n(storage_and_mutex_.first(), axes_, detail::data(args),
detail::size(args), weights, samples);
}
template <class Iterable, class T, class U, class = detail::requires_iterable<Iterable>>
void fill(const Iterable& args, const weight_type<T>& weights,
const sample_type<U>& samples) {
std::lock_guard<mutex_type> guard{storage_and_mutex_.second()};
detail::fill_n(storage_and_mutex_.first(), axes_, detail::data(args),
detail::size(args), weights, samples);
}
/** Access cell value at integral indices.
You can pass indices as individual arguments, as a std::tuple of integers, or as an
interable range of integers. Passing the wrong number of arguments causes a throw of
std::invalid_argument. Passing an index which is out of bounds causes a throw of
std::out_of_range.
@param i index of first axis.
@param is indices of second, third, ... axes.
@returns reference to cell value.
*/
template <class... Indices>
decltype(auto) at(axis::index_type i, Indices... is) {
return at(std::forward_as_tuple(i, is...));
}
/// Access cell value at integral indices (read-only).
template <class... Indices>
decltype(auto) at(axis::index_type i, Indices... is) const {
return at(std::forward_as_tuple(i, is...));
}
/// Access cell value at integral indices stored in `std::tuple`.
template <class... Indices>
decltype(auto) at(const std::tuple<Indices...>& is) {
if (rank() != sizeof...(Indices))
BOOST_THROW_EXCEPTION(
std::invalid_argument("number of arguments != histogram rank"));
const auto idx = detail::at(axes_, is);
if (!idx.valid())
BOOST_THROW_EXCEPTION(std::out_of_range("at least one index out of bounds"));
return storage_and_mutex_.first()[*idx];
}
/// Access cell value at integral indices stored in `std::tuple` (read-only).
template <typename... Indices>
decltype(auto) at(const std::tuple<Indices...>& is) const {
if (rank() != sizeof...(Indices))
BOOST_THROW_EXCEPTION(
std::invalid_argument("number of arguments != histogram rank"));
const auto idx = detail::at(axes_, is);
if (!idx.valid())
BOOST_THROW_EXCEPTION(std::out_of_range("at least one index out of bounds"));
return storage_and_mutex_.first()[*idx];
}
/// Access cell value at integral indices stored in iterable.
template <class Iterable, class = detail::requires_iterable<Iterable>>
decltype(auto) at(const Iterable& is) {
if (rank() != detail::axes_rank(is))
BOOST_THROW_EXCEPTION(
std::invalid_argument("number of arguments != histogram rank"));
const auto idx = detail::at(axes_, is);
if (!idx.valid())
BOOST_THROW_EXCEPTION(std::out_of_range("at least one index out of bounds"));
return storage_and_mutex_.first()[*idx];
}
/// Access cell value at integral indices stored in iterable (read-only).
template <class Iterable, class = detail::requires_iterable<Iterable>>
decltype(auto) at(const Iterable& is) const {
if (rank() != detail::axes_rank(is))
BOOST_THROW_EXCEPTION(
std::invalid_argument("number of arguments != histogram rank"));
const auto idx = detail::at(axes_, is);
if (!idx.valid())
BOOST_THROW_EXCEPTION(std::out_of_range("at least one index out of bounds"));
return storage_and_mutex_.first()[*idx];
}
/// Access value at index (number for rank = 1, else `std::tuple` or iterable).
template <class Indices>
decltype(auto) operator[](const Indices& is) {
return at(is);
}
/// Access value at index (read-only).
template <class Indices>
decltype(auto) operator[](const Indices& is) const {
return at(is);
}
/// Equality operator, tests equality for all axes and the storage.
template <class A, class S>
bool operator==(const histogram<A, S>& rhs) const noexcept {
return detail::axes_equal(axes_, unsafe_access::axes(rhs)) &&
storage_and_mutex_.first() == unsafe_access::storage(rhs);
}
/// Negation of the equality operator.
template <class A, class S>
bool operator!=(const histogram<A, S>& rhs) const noexcept {
return !operator==(rhs);
}
/// Add values of another histogram.
template <class A, class S,
class = std::enable_if_t<detail::has_operator_radd<
value_type, typename histogram<A, S>::value_type>::value>>
histogram& operator+=(const histogram<A, S>& rhs) {
if (!detail::axes_equal(axes_, unsafe_access::axes(rhs)))
BOOST_THROW_EXCEPTION(std::invalid_argument("axes of histograms differ"));
auto rit = unsafe_access::storage(rhs).begin();
auto& s = storage_and_mutex_.first();
std::for_each(s.begin(), s.end(), [&rit](auto&& x) { x += *rit++; });
return *this;
}
/// Subtract values of another histogram.
template <class A, class S,
class = std::enable_if_t<detail::has_operator_rsub<
value_type, typename histogram<A, S>::value_type>::value>>
histogram& operator-=(const histogram<A, S>& rhs) {
if (!detail::axes_equal(axes_, unsafe_access::axes(rhs)))
BOOST_THROW_EXCEPTION(std::invalid_argument("axes of histograms differ"));
auto rit = unsafe_access::storage(rhs).begin();
auto& s = storage_and_mutex_.first();
std::for_each(s.begin(), s.end(), [&rit](auto&& x) { x -= *rit++; });
return *this;
}
/// Multiply by values of another histogram.
template <class A, class S,
class = std::enable_if_t<detail::has_operator_rmul<
value_type, typename histogram<A, S>::value_type>::value>>
histogram& operator*=(const histogram<A, S>& rhs) {
if (!detail::axes_equal(axes_, unsafe_access::axes(rhs)))
BOOST_THROW_EXCEPTION(std::invalid_argument("axes of histograms differ"));
auto rit = unsafe_access::storage(rhs).begin();
auto& s = storage_and_mutex_.first();
std::for_each(s.begin(), s.end(), [&rit](auto&& x) { x *= *rit++; });
return *this;
}
/// Divide by values of another histogram.
template <class A, class S,
class = std::enable_if_t<detail::has_operator_rdiv<
value_type, typename histogram<A, S>::value_type>::value>>
histogram& operator/=(const histogram<A, S>& rhs) {
if (!detail::axes_equal(axes_, unsafe_access::axes(rhs)))
BOOST_THROW_EXCEPTION(std::invalid_argument("axes of histograms differ"));
auto rit = unsafe_access::storage(rhs).begin();
auto& s = storage_and_mutex_.first();
std::for_each(s.begin(), s.end(), [&rit](auto&& x) { x /= *rit++; });
return *this;
}
/// Multiply all values with a scalar.
template <class V = value_type,
class = std::enable_if_t<detail::has_operator_rmul<V, double>::value>>
histogram& operator*=(const double x) {
// use special implementation of scaling if available
detail::static_if<detail::has_operator_rmul<storage_type, double>>(
[](storage_type& s, auto x) { s *= x; },
[](storage_type& s, auto x) {
for (auto&& si : s) si *= x;
},
storage_and_mutex_.first(), x);
return *this;
}
/// Divide all values by a scalar.
template <class V = value_type,
class = std::enable_if_t<detail::has_operator_rmul<V, double>::value>>
histogram& operator/=(const double x) {
return operator*=(1.0 / x);
}
/// Return value iterator to the beginning of the histogram.
iterator begin() noexcept { return storage_and_mutex_.first().begin(); }
/// Return value iterator to the end in the histogram.
iterator end() noexcept { return storage_and_mutex_.first().end(); }
/// Return value iterator to the beginning of the histogram (read-only).
const_iterator begin() const noexcept { return storage_and_mutex_.first().begin(); }
/// Return value iterator to the end in the histogram (read-only).
const_iterator end() const noexcept { return storage_and_mutex_.first().end(); }
/// Return value iterator to the beginning of the histogram (read-only).
const_iterator cbegin() const noexcept { return begin(); }
/// Return value iterator to the end in the histogram (read-only).
const_iterator cend() const noexcept { return end(); }
private:
axes_type axes_;
using mutex_type = mp11::mp_if_c<(storage_type::has_threading_support &&
detail::has_growing_axis<axes_type>::value),
std::mutex, detail::noop_mutex>;
detail::compressed_pair<storage_type, mutex_type> storage_and_mutex_;
friend struct unsafe_access;
};
/**
Pairwise add cells of two histograms and return histogram with the sum.
The returned histogram type is the most efficient and safest one constructible from the
inputs, if they are not the same type. If one histogram has a tuple axis, the result has
a tuple axis. The chosen storage is the one with the larger dynamic range.
*/
template <class A1, class S1, class A2, class S2>
auto operator+(const histogram<A1, S1>& a, const histogram<A2, S2>& b) {
auto r = histogram<detail::common_axes<A1, A2>, detail::common_storage<S1, S2>>(a);
return r += b;
}
/** Pairwise multiply cells of two histograms and return histogram with the product.
For notes on the returned histogram type, see operator+.
*/
template <class A1, class S1, class A2, class S2>
auto operator*(const histogram<A1, S1>& a, const histogram<A2, S2>& b) {
auto r = histogram<detail::common_axes<A1, A2>, detail::common_storage<S1, S2>>(a);
return r *= b;
}
/** Pairwise subtract cells of two histograms and return histogram with the difference.
For notes on the returned histogram type, see operator+.
*/
template <class A1, class S1, class A2, class S2>
auto operator-(const histogram<A1, S1>& a, const histogram<A2, S2>& b) {
auto r = histogram<detail::common_axes<A1, A2>, detail::common_storage<S1, S2>>(a);
return r -= b;
}
/** Pairwise divide cells of two histograms and return histogram with the quotient.
For notes on the returned histogram type, see operator+.
*/
template <class A1, class S1, class A2, class S2>
auto operator/(const histogram<A1, S1>& a, const histogram<A2, S2>& b) {
auto r = histogram<detail::common_axes<A1, A2>, detail::common_storage<S1, S2>>(a);
return r /= b;
}
/** Multiply all cells of the histogram by a number and return a new histogram.
If the original histogram has integer cells, the result has double cells.
*/
template <class A, class S>
auto operator*(const histogram<A, S>& h, double x) {
auto r = histogram<A, detail::common_storage<S, dense_storage<double>>>(h);
return r *= x;
}
/** Multiply all cells of the histogram by a number and return a new histogram.
If the original histogram has integer cells, the result has double cells.
*/
template <class A, class S>
auto operator*(double x, const histogram<A, S>& h) {
return h * x;
}
/** Divide all cells of the histogram by a number and return a new histogram.
If the original histogram has integer cells, the result has double cells.
*/
template <class A, class S>
auto operator/(const histogram<A, S>& h, double x) {
return h * (1.0 / x);
}
#if __cpp_deduction_guides >= 201606
template <class Axes>
histogram(Axes&& axes)->histogram<std::decay_t<Axes>, default_storage>;
template <class Axes, class Storage>
histogram(Axes&& axes, Storage&& storage)
->histogram<std::decay_t<Axes>, std::decay_t<Storage>>;
#endif
/** Helper function to mark argument as weight.
@param t argument to be forward to the histogram.
*/
template <typename T>
auto weight(T&& t) noexcept {
return weight_type<T>{std::forward<T>(t)};
}
/** Helper function to mark arguments as sample.
@param ts arguments to be forwarded to the accumulator.
*/
template <typename... Ts>
auto sample(Ts&&... ts) noexcept {
return sample_type<std::tuple<Ts...>>{std::forward_as_tuple(std::forward<Ts>(ts)...)};
}
template <class T>
struct weight_type {
T value;
};
template <class T>
struct sample_type {
T value;
};
} // namespace histogram
} // namespace boost
#endif