//[ getting_started_listing_01 #include #include int main() { namespace bh = boost::histogram; using namespace bh::literals; // enables _c suffix /* create a static 1d-histogram with an axis that has 6 equidistant bins on the real line from -1.0 to 2.0, and label it as "x" */ auto h = bh::make_static_histogram(bh::axis::regular<>(6, -1.0, 2.0, "x")); // fill histogram with data, typically this happens in a loop // STL algorithms are supported auto data = {-0.5, 1.1, 0.3, 1.7}; h = std::for_each(data.begin(), data.end(), h); /* a regular axis is a sequence of semi-open bins; extra under- and overflow bins extend the axis in the default configuration index : -1 0 1 2 3 4 5 6 bin edge: -inf -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 inf */ h(-1.5); // put in underflow bin -1 h(-1.0); // put in bin 0, bin interval is semi-open h(2.0); // put in overflow bin 6, bin interval is semi-open h(20.0); // put in overflow bin 6 /* do a weighted fill using bh::weight, a wrapper for any type, which may appear at the beginning of the argument list */ h(bh::weight(1.0), 0.1); /* iterate over bins with a fancy histogram iterator - order in which bins are iterated over is an implementation detail - iterator dereferences to histogram::element_type, which is defined by its storage class; by default something with value() and variance() methods; the first returns the actual count, the second returns a variance estimate of the count (see Rationale section for what this means) - idx(N) method returns the index of the N-th axis - bin(N_c) method returns current bin of N-th axis; the suffx _c turns the argument into a compile-time number, which is needed to return different `bin_type`s for different axes - `bin_type` usually is a semi-open interval representing the bin, whose edges can be accessed with methods `lower()` and `upper()`, but the implementation depends on the axis, please look it up in the reference */ std::cout.setf(std::ios_base::fixed); for (auto it = h.begin(); it != h.end(); ++it) { const auto bin = it.bin(0_c); std::cout << "bin " << it.idx(0) << " x in [" << std::setprecision(1) << std::setw(4) << bin.lower() << ", " << std::setw(4) << bin.upper() << "): " << std::setprecision(1) << it->value() << " +/- " << std::setprecision(3) << std::sqrt(it->variance()) << std::endl; } /* program output: (note that under- and overflow bins appear at the end) bin 0 x in [-1.0, -0.5): 1 +/- 1 bin 1 x in [-0.5, 0.0): 0 +/- 0 bin 2 x in [ 0.0, 0.5): 1 +/- 1 bin 3 x in [ 0.5, 1.0): 0 +/- 0 bin 4 x in [ 1.0, 1.5): 0 +/- 0 bin 5 x in [ 1.5, 2.0): 0 +/- 0 bin 6 x in [ 2.0, inf): 2 +/- 1.41421 bin -1 x in [-inf, -1): 1 +/- 1 */ } //]